www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Al AND MACHINE LEARNING REVIEW IN
ANDROID APPS

Shakil Saiyad, Piyush Mali

Assistant Professor, Lecturer
Department of Computer Science and Engineering
Parul University, Vadodara, Gujarat, India

Abstract: This article discusses how Android applications that use Al and ML are changing the mobile
technology landscape by providing intelligent, efficient, and personalized user experiences. The current
approaches, frameworks, and tools—such as Tensor Flow Lite and ML Kit—that enable Al and ML function
within Android ecosystems are examined in this study. It looks at a number of application areas where Al-
powered Android apps are providing game-changing solutions, such as healthcare, finance, education, and
entertainment. This article gives a thorough overview of how Al and ML integration is transforming Android
app development by combining the most recent research and industry experiences. It also highlights important
potential and problems for developers.

Keywords: mobile computing, edge Al, on-device Al, model optimization, privacy and security, Tensor
Flow Lite, ML Kit, Android applications, artificial intelligence, machine learning, Intelligent Systems, Deep
Learning, and Real-Time Processing

|. INTRODUCTION

The development of mobile applications, especially for the Android platform, has changed dramatically as a
result of the quick development of artificial intelligence (Al) and machine learning (ML) technologies.
Demand for intelligent applications that can automate chores, improve security, personalize user experiences,
and provide predictive insights is rising as smartphones get more potent and networked. Features like voice
recognition, image categorization, recommendation systems, natural language processing, and real-time data
analysis are made possible by Al and ML integration in Android apps, which improves the applications'
usability and intuitiveness. The approaches, resources, and frameworks for incorporating Al and ML into
Android apps are examined in this study.

It looks at the difficulties developers have, including the requirement for effective on-device processing,
computational constraints, and data protection issues. The research also highlights new developments that
enable developers to incorporate advanced Al functionalities while optimizing speed and energy consumption,
such as TensorFlow Lite, ML Kit, and edge computing technologies.

This study attempts to give a thorough grasp of how Al and ML are changing the Android ecosystem by
examining current trends, use cases, and future directions. This will open up new avenues for innovation in a
variety of sectors, including healthcare, finance, education, and entertainment.

METHODOLOGY

In order to provide intelligent and effective user experiences, Android applications that integrate Al and ML
adhere to a systematic methodology. Clearly defining the problem the application is meant to answer and
determining whether it entails classification, regression, clustering, or other machine learning tasks is the first
step in the process. Following the identification of the issue, pertinent data is gathered from a variety of

IJCRT2505644 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ f690

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

sources, including sensors, public datasets, and user interactions. Preprocessing procedures including
cleaning, normalization, and labeling are then carried out. Depending on the type of problem, the next step is
to choose the best machine learning techniques, such as neural networks, decision trees, or pre-trained models
like MobileNet or BERT.

LITERATURE REVIEW

To comprehend the present state-of-the-art in AI/ML integration in mobile applications, a thorough analysis
of scholarly articles, industry reports, and technical documentation was carried out. ACM Digital Library,
Google Scholar, IEEE Xplore, and new developer documentation from well-known platforms like
TensorFlow Lite, PyTorch Mobile, and Google ML Kit were among the sources used.

TECHNOLOGY AND FRAMEWORK ANALYSIS

Performance, model size, compatibility, and usability must all be carefully considered when choosing
technologies and frameworks to incorporate Al and ML into Android apps. The main technologies and
techniques assessed and utilized for creating Al-powered Android apps are described in this section.

1. The Android Development Environment

The official IDE for Android development, Android Studio has native capabilities for Ul design, debugging,
and performance analysis in addition to strong support for Java and Kotlin.

Support for Languages:

Kotlin (preferred): Complete Google support, improved null safety, and a modern syntax.

Java: Widely used, however in more recent projects, Kotlin is gradually taking its place.

2. Frameworks for Machine Learning

A number of frameworks for on-device machine learning inference were assessed:

Framework Overview: Benefits and Drawbacks

TensorFlow Lite is a slimmed-down variant of TensorFlow designed for mobile and peripheral devices.
Performance-enhancing, broad hardware compatibility, and quantization support for dynamic operations is
limited.

Firebase's ML Kit Google’s mobile SDK for cloud-based ML APIs and on-device MLPre-trained models,
ease of use, and good Firebase integration Limited personalization, a certain amount of cloud dependence
Cross-platform, open-standard ONNX Runtime Mobile for ML model inference supports a variety of
framework models quickly Android Studio contains less native support.

PyTorch Mobile: A mobile version of PyTorch for iOS and Android model deployment Graphs of dynamic
computation and expanding support Slower startup and a larger model size.

3. Tools for Model Optimization

Models need to be tuned for seamless performance on mobile devices: Toolkit for TensorFlow Model
Optimization:

Quantization (FP32 -> INTS8, for example) Clustering and pruning TensorFlow models can be converted into
TFLite format using the TFLite Converter.

Netron: For model architecture analysis and visualization.

4. Tools for Deployment and Inference
Locally loads and executes TFLite models using the TFLite Interpreter API. GPU Delegate and NNAPI are
hardware acceleration APIs that use accelerators particular to a given device to increase the performance of

IJCRT2505644 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 691

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

model inference. CameraX: Makes camera integration easier for applications like image categorization and
real-time object recognition.

5. Integration with the Cloud (Optional)

For more complex models or features that need frequent updates: For cloud-based inference, use Firebase ML
(Cloud). Google Cloud Al Platform: For using REST APIs to provide bespoke models.

Alternatives for enterprise-level cloud ML model hosting include AWS SageMaker and Azure ML.

6. Tools for Datasets
To access curated datasets, use TensorFlow Datasets (TFDS). For labeling and augmenting datasets, use
Labellmg or Roboflow. Jupyter Notebooks and Google Colab: For testing and training models.

CASE STUDIES

For the case study investigation, a number of pre-existing Android apps that make use of AlI/ML capabilities
were chosen. To find best practices, architecture patterns, and user experience enhancements brought about
by Al integration, applications from industries such as healthcare (such as symptom checker apps),
entertainment (such as Al-based photo editing), and productivity (such as smart assistants) were analyzed.

EXPERIMENTAL PROTOTYPING

An experimental prototype was created to verify the use of Al and machine learning in Android
applications. Evaluating the viability, effectiveness, and effects on user experience of integrating machine
learning models into an Android native environment was the aim. The following steps made up the
prototype process:

1. Selection of the Problem and Goal
We chose real-time picture classification as a use case that is pertinent to mobile consumers. The prototype
app's goal was to use a pre-trained deep learning model to identify things that were photographed.

2. Model Preparation and Selection

Because the MobileNet\VV2 model performs well on mobile and edge devices, we used it. To decrease size and
speed up inference, the model was transformed to TensorFlow Lite (TFLite) format.

The MobileNetV2 model

TensorFlow Lite (.tflite) is the format.

Dimensions: about 14 MB

224x224 RGB image as input

Output: Confidence score for the top-1 object label

3. Development of Android Apps

Using Android Studio with Java/Kotlin, the prototype was created, incorporating the TFLite Interpreter API
for on-device inference.

Important elements:

To record live camera frames, use the CameraX API.

Image preprocessing: Adjust the image's size and normalization to meet the specifications of the model input.
TFLite model inference is carried out by the ML Inference Module.

Result Display: Instantaneously displays the object label and confidence score.

4. Examination and Assessment
Several Android smartphones with different hardware configurations were used for testing. Metrics of
Performance:

Per-frame inference time (ms)
IJCRT2505644 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ f692

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Frame rate (fps) of the app
Use of batteries

User Input:

Adaptability

Perception of accuracy
Usability of the user interface

RESULTS
The study's main conclusions of incorporating machine learning (ML) and artificial intelligence (Al) into
Android apps were as follows:

FRAMEWORK PERFORMANCE

For on-device machine learning tasks, TensorFlow Lite and Google ML Kit outperformed the other
examined frameworks. While ML Kit offered minimal coding effort and simplicity of integration for
popular use cases such as text recognition, image labeling, and translation, TensorFlow Lite gave more
flexibility for custom model deployment.

MODEL OPTIMIZATION AND INFERENCE SPEED

Through experimental prototyping, it was demonstrated that model optimization methods such
quantization—which lowers the model precision from float32 to int8—significantly increased inference
performance and decreased memory use without sacrificing a substantial amount of model accuracy. For
instance, on a mid-range Android smartphone, the quantized picture classification model achieved an
average inference time of 60—70 milliseconds.

ENERGY CONSUMPTION AND RESOURCE USAGE

Battery consumption rose as a result of using more CPU and GPU power to run ML models on-device.
Nevertheless, these problems were lessened by the use of hardware accelerators (such as the Android Neural
Networks API) and optimized models. When compared to baseline non-Al apps, the prototype application's
battery consumption increased by almost 9% when used continuously.

ACCURACY AND USER EXPERIENCE

By providing intelligent features like real-time suggestions, tailored content, and effective data processing,
the incorporation of Al improved the user experience. On a bespoke dataset, the prototype picture
classifier's top-1 accuracy of 90% was deemed adequate for the majority of consumer-facing applications.

CHALLENGES IDENTIFIED

The study also identified a number of difficulties: Controlling on-device model changes without
unnecessarily growing the size of the app. protecting user privacy when using on-device processing to
handle sensitive input data. weighing the trade-off between real-time responsiveness and model complexity
on devices with limited resources.

CASE STUDY OBSERVATIONS

Successful Al/ML-enabled apps frequently employ hybrid strategies, integrating on-device models with
cloud-based services as necessary, according to case study analysis. Apps with an emphasis on effective
UI/UX design and lightweight models continued to get better app reviews and higher user retention rates.

CONCLUSION

The way mobile apps are created and used is being drastically changed by the incorporation of Al and ML
technology into Android apps. It is clear from this research that AI/ML may greatly improve app
functionalities, providing more intelligent, efficient, and tailored user experiences. Frameworks such as
Google ML Kit and TensorFlow Lite have made it easier for developers to directly implement potent machine
learning models. juggling resource limitations and performance on Android devices In conclusion, integrating
Al and ML into Android apps is now a need to satisfy changing user expectations rather than a futuristic idea.

IJCRT2505644 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ f693

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

With advancements in hardware acceleration, federated learning, and privacy-preserving Al, Android apps
will grow increasingly more intelligent, self-sufficient, and user-focused as technology advances. Enhancing
real-time learning capabilities on devices, optimizing large models for mobile contexts, and creating better
tools for smooth Al deployment at scale should be the main goals of future research.

REFERENCES

[1] Tahir, R., & Ahmed, A. (2020)."Smart Android applications using machine learning: A survey."In
Artificial Intelligence Review, Springer. DOI: 10.1007/s10462-020-09843-7
[2] Li, X., etal. (2021)."Mobile Al: Enabling Al on Android Devices. "Proceedings of the IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS).IEEE Xplore
[3] Zhang, C., et al. (2019). "Deep learning in mobile and embedded devices: State-of-the-art, challenges, and
future directions."
ACM Computing Surveys, 52(3), 1-37. DOI: 10.1145/3310232
[4] Google Developers. "ML Kit for Firebase." A mobile SDK that brings Google's machine learning expertise
to Android and iOS apps. https://developers.google.com/ml-kit
[5] TensorFlow Lite. TensorFlow Lite is a lightweight solution for deploying ML models on mobile and
embedded devices.
https://www.tensorflow.org/lite
[6] PyTorch Mobile. Provides tools to deploy PyTorch models on Android with optimized performance.
https://pytorch.org/mobile/home/
[7] Siriwardhana, Y., et al. (2021). "Al and 5G for the future of mobile services: A survey." IEEE Access, 8,
150988-151017.
DOI: 10.1109/ACCESS.2020.3014870
[8] Google Al Blog. Use cases like Smart Reply, On-device translation, and Face detection.
https://ai.googleblog.com/
[9] Howard, A. G., et al. (2017). "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications."
arXiv preprint. https://arxiv.org/abs/1704.04861
[10] Lane, N. D, et al. (2015). "DeepX: A Software Accelerator for Low Power Deep Learning Inference on
Mobile Devices."
In Proceedings of the 14th International Conference on Information Processing in Sensor Networks
(IPSN).
DOI: 10.1145/2737095.2737098

IJCRT2505644 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ f694

http://www.ijcrt.org/

