www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éh INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (IJCRT)
Qa/ An International Open Access, Peer-reviewed, Refereed Journal

“Multi-Source Energy Powered Smart

Ventilation Unit For Battery Management
System”

Author Name:-
1 2 .3 . 4 5
A.R Durunde, Y.M.Patil, P.S.Pise, D.D.Daphal, M.R.Khadtare

45
Final Year B.Tech Students, Assistant Professor,

12345
Department of Electrical Engineering,
12345

SVERPD’s College of Engineering, Pandharpur, India

Abstract:-

The use of green energy is becoming increasingly more important in today’s world. Therefore, electric vehicles are currently the best
choice for the environment in terms of public and personal transportation. Because of its high energy and current density, lithium-ion
batteries are widely used in electric vehicles. Unfortunately, lithium-ion batteries can be dangerous if they are not operated within their

Safety Operation Area (SOA). Therefore, a battery management system (BMS) must be used in every lithium-ion battery, especially for

those used in electric vehicle- In this work, the purpose, functions and topologies of BMS are discussed in detail. In addition, early

battery models along with the hardware and system designs for BMS are covered in a literature review. Then, an improved battery model
is introduced, and simulation results are shown to verify the model’s performance. Finally, the design of a novel BMS hardware system
and its experimental results are discussed. The possible improvements for the battery models and BMS hardware are given in the section

on conclusions and future work.

A battery management system (BMS) is proposed which is used for electronic vehicle that manages a rechargeable battery (cell or
battery pack), such as by protecting the battery from operating outside its safe operating area, monitoring its state using PIC
microcontroller.The controlling device of the whole system is PIC microcontroller. The integrated modules to the controller are
temperature sensor, Battery pack along with relays, Charger and LCD Module. When the battery pack gets drained, it will charge through
relays. Here we are using two relays for fast and slow charging. Here DC MOTOR works as a vehicle. While running the vehicle
microcontroller will display the voltage and current values on LCD module as well as it displays the temperature continuously. If the
temperature value crosses the set limit then PIC microcontroller active the buzzer for alerts. Based on the battery voltage it will charge
the battery in two modes like fast and slow. Here relay works as a switch to on/off the charging connection. To achieve this task

microcontroller loaded program written in embedded C 1

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c904

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Keywords :- Electrical vehicle, Embedded System.

The major building blocks of this project are:

e Regulated power supply
e PIC Microcontroller.

e DS18B20 Temperature sensor.
e Voltage sensor.

e Buzzer.

e Battery pack

e Relays

e Charging Circuit.

e LCD display.

e LED Indicators

e Crystal oscillator

e Reset button.

Software’s used:-

1. PIC-C compiler for Embedded C programming.
2. PICkit 2 programmer for dumping code into Micro controller.

3. Express SCH for Circuit design.

Block diagram:-

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c905

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Electric Vehicle BMS with Charge Monitoring and Fire

® Protection using DS18B20
Power
[Step down transformer]

\4
N .
(" h \oltage & LCD display
—>| Relay current ADC S with driver
11.2v sensor Converter

Battery DC

Charging 7

haran _) pack e Motor
icro
controller Reset
Buzzer
Crystal
N— oscillator
[DS18B20 Temperature]é
sensor ,' LED indicator]

History:

In the earliest years of computers in the 1930 - 40s, computers were sometimes dedicated to a single task, but were far too large and
expensive for most kinds of tasks performed by embedded computers of today. Over time however, the concept of programmable
controllers evolved from traditional electromechanical sequencers, via solid state devices, to the use of computer technology.One of the
first recognizably modern embedded systems was the Apollo Guidance Computer, developed by Charles Stark Draper at the MIT
Instrumentation Laboratory. At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo
project as it employed the then newly developed monolithic integrated circuits to reduce the size and weight. An early mass-produced
embedded system was the Automatics’ D-17 guidance computer for the Minuteman missile, released in 1961. It was built from transistor
logic and had a hard disk for main memory. When the Minuteman II went into production in 1966, the D-17 was replaced with a new

computer that was the first high-volume use of integrated circuits.
Tools:

Embedded development makes up a small fraction of total programming. There's also a large number of embedded architectures, unlike
the PC world where 1 instruction set rules, and the Unix world where there's only 3 or 4 major ones. This means that the tools are more
expensive. It also means that they're lowering featured, and less developed. On a major embedded project, at some point you will almost
always find a compiler bug of some sort.Debugging tools are another issue. Since you can't always run general programs on your
embedded processor, you can't always run a debugger on it. This makes fixing your program difficult. Special hardware such as JTAG
ports can overcome this issue in part. However, if you stop on a breakpoint when your system is controlling real world hardware (such
as a motor), permanent equipment damage can occur. As a result, people doing embedded programming quickly become masters at

using serial IO channels and error message style debugging.

Resources:
IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c906

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

To save costs, embedded systems frequently have the cheapest processors that can do the job. This means your programs need to be
written as efficiently as possible. When dealing with large data sets, issues like memory cache misses that never matter in PC
programming can hurt you. Luckily, this won't happen too often- use reasonably efficient algorithms to start, and optimize only when
necessary. Of course, normal profilers won't work well, due to the same reason debuggers don't work well. Memory is also an issue. For
the same cost savings reasons, embedded systems usually have the least memory they can get away with. That means their algorithms
must be memory efficient (unlike in PC programs, you will frequently sacrifice processor time for memory, rather than the reverse). It
also means you can't afford to leak memory. Embedded applications generally use deterministic memory techniques and avoid the
default "new" and "malloc" functions, so that leaks can be found and eliminated more easily. Other resources programmers expect may
not even exist. For example, most embedded processors do not have hardware FPUs (Floating-Point Processing Unit). These resources

either need to be emulated in software, or avoided altogether.

Real Time Issues:

Embedded systems frequently control hardware, and must be able to respond to them in real time. Failure to do so could cause inaccuracy
in measurements, or even damage hardware such as motors. This is made even more difficult by the lack of resources available. Almost
all embedded systems need to be able to prioritize some tasks over others, and to be able to put off/skip low priority tasks such as Ul in

favor of high priority tasks like hardware control.

Embedded Systems:

The uses of embedded systems are virtually limitless, because every day new products are introduced to the market that utilizes
embedded computers in novel ways. In recent years, hardware such as microprocessors, microcontrollers, and FPGA chips have become
much cheaper. So when implementing a new form of control, it's wiser to just buy the generic chip and write your own custom software
for it. Producing a custom-made chip to handle a particular task or set of tasks costs far more time and money. Many embedded computers
even come with extensive libraries, so that "writing your own software" becomes a very trivial task indeed. From an implementation
viewpoint, there is a major difference between a computer and an embedded system. Embedded systems are often required to provide

Real-Time response. The main elements that make embedded systems unique are its reliability and ease in debugging.

Physically embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like
traffic lights, factory controllers, or the systems controlling nuclear power plants. Complexity varies from low, with a single

microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure..

In general, “embedded system” is not a strictly definable term, as most systems have some element of extensibility or programmability.
For example, handheld computers share some elements with embedded systems such as the operating systems and microprocessors
which power them, but they allow different applications to be loaded and peripherals to be connected. Moreover, even systems which
don’t expose programmability as a primary feature generally need to support software updates. On a continuum from “general purpose”
to “embedded”, large application systems will have subcomponents at most points even if the system as a whole is “designed to perform

one or a few dedicated functions”, and is thus appropriate to call “embedded”. A modern example of embedded system

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c907

http://www.ijcrt.org/

www.ijert.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Debugging:

Embedded debugging may be performed at different levels, depending on the facilities available. From simplest to most sophisticate

they can be roughly grouped into the following areas:

Interactive resident debugging, using the simple shell provided by the embedded operating system (e.g. Forth and Basic)
External debugging using logging or serial port output to trace operation using either a monitor in flash or using a debug server
like the Remedy Debugger which even works for heterogeneous multi core systems.

An in-circuit debugger (ICD), a hardware device that connects to the microprocessor via a JTAG or Nexus interface. This
allows the operation of the microprocessor to be controlled externally, but is typically restricted to specific debugging
capabilities in the processor.

An in-circuit emulator replaces the microprocessor with a simulated equivalent, providing full control over all aspects of the
microprocessor.

A complete emulator provides a simulation of all aspects of the hardware, allowing all of it to be controlled and modified and
allowing debugging on a normal PC.

Unless restricted to external debugging, the programmer can typically load and run software through the tools, view the code

running in the processor, and start or stop its operation. The view of the code may be as assembly code or source-code.

Because an embedded system is often composed of a wide variety of elements, the debugging strategy may vary. For instance, debugging

a software(and microprocessor) centric embedded system is different from debugging an embedded system where most of the processing

is performed by peripherals (DSP, FPGA, co-processor). An increasing number of embedded systems today use more than one single

processor core. A common problem with multi-core development is the proper synchronization of software execution. In such a case,

the embedded system design may wish to check the data traffic on the busses between the processor cores, which requires very low-

level debugging, at signal/bus level, with a logic analyzer, for instance.

Reliability:

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c908

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Embedded systems often reside in machines that are expected to run continuously for years without errors and in some cases recover by

them if an error occurs. Therefore the software is usually developed and tested more carefully than that for personal computers, and

unreliable mechanical moving parts such as disk drives, switches or buttons are avoided.

Specific reliability issues may include:

The system cannot safely be shut down for repair, or it is too inaccessible to repair. Examples include space systems, undersea
cables, navigational beacons, bore-hole systems, and automobiles.

The system must be kept running for safety reasons. “Limp modes” are less tolerable. Often backups are selected by an operator.
Examples include aircraft navigation, reactor control systems, safety-critical chemical factory controls, train signals, engines
on single-engine aircraft.

The system will lose large amounts of money when shut down: Telephone switches, factory controls, bridge and elevator

controls, funds transfer and market making, automated sales and service.

A variety of techniques are used, sometimes in combination, to recover from errors—both software bugs such as memory leaks, and

also soft errors in the hardware:

Watchdog timer that resets the computer unless the software periodically notifies the watchdog

Subsystems with redundant spares that can be switched over to

software “limp modes” that provide partial function

Designing with a Trusted Computing Base (TCB) architecture[6] ensures a highly secure&reliable system environment

An Embedded Hypervisor is able to provide secure encapsulation for any subsystem component, so that a compromised
software component cannot interfere with other subsystems, or privileged-level system software. This encapsulation keeps
faults from propagating from one subsystem to another, improving reliability. This may also-allow a subsystem to be
automatically shut down and restarted on fault detection.

Immunity Aware Programming

Explanation of Embedded Systems:

Software Architecture:

There are several different types of software architecture in common use.

Simple Control Loop:

In this design, the software simply has a loop. The loop calls subroutines, each of which manages a part of the hardware or
software.

Interrupt Controlled System: Some embedded systems are predominantly interrupt controlled. This means that tasks
performed by the system are triggered by different kinds of events. An interrupt could be generated for example by a timer in
a predefined frequency, or by a serial port controller receiving a byte. These kinds of systems are used if event handlers need

low latency and the event handlers are short and simple.

Usually these kinds of systems run a simple task in a main loop also, but this task is not very sensitive to unexpected delays. Sometimes

the interrupt handler will add longer tasks to a queue structure. Later, after the interrupt handler has finished, these tasks are executed

by the main loop. This method brings the system close to a multitasking kernel with discrete processes.

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c909

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

* Cooperative Multitasking: A non-preemptive multitasking system is very similar to the simple control loop scheme, except
that the loop is hidden in an API. The programmer defines a series of tasks, and each task gets its own environment to “run”
in. When a task is idle, it calls an idle routine, usually called “pause”, “wait”, “yield”, “nop” (stands for no operation), etc. The

advantages and disadvantages are very similar to the control loop, except that adding new software is easier, by simply writing

a new task, or adding to the queue-interpreter.

* Primitive Multitasking: In this type of system, a low-level piece of code switches between tasks or threads based on a timer
(connected to an interrupt). This is the level at which the system is generally considered to have an “operating system” kernel.
Depending on how much functionality is required, it introduces more or less of the complexities of managing multiple tasks

running conceptually in parallel.

As any code can potentially damage the data of another task (except in larger systems using an MMU) programs must be carefully
designed and tested, and access to shared data must be controlled by some synchronization strategy, such as message queues, semaphores

or a non-blocking synchronization scheme.

Because of these complexities, it is common for organizations to buy a real-time operating system, allowing the application programmers
to concentrate on device functionality rather than operating system services, at least for large systems; smaller systems often cannot
afford the overhead associated with a generic real time system, due to limitations regarding memory size, performance, and/or battery

life.

e Microkernels And Exokernels:

A microkernel is a logical step up from a real-time OS. The usual arrangement is that the operating system kernel allocates memory and
switches the CPU to different threads of execution. User mode processes implement major functions such as file systems, network
interfaces, etc. In general, microkernels succeed when the task switching and intertask communication is fast, and fail when they are
slow. Exokernels communicate efficiently by normal subroutine calls. The hardware and all the software in the system are available to,
and extensible by application programmers. Based on performance, functionality, requirement the embedded systems are divided into

three categories:

Stand Alone Embedded System:

These systems takes the input in the form of electrical signals from transducers or commands from human beings such as pressing of a
button etc.., process them and produces desired output. This entire process of taking input, processing it and giving output is done in

standalone mode. Such embedded systems comes under stand alone embedded systems

Eg: microwave oven, air conditioner etc..

Real-time embedded systems:

Embedded systems which are used to perform a specific task or operation in a specific time period those systems are called as real-time

embedded systems. There are two types of real-time embedded systems.

1. Hard Real-time embedded systems:

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c910

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

These embedded systems follow an absolute dead line time period i.e.., if the tasking is not done in a particular time period then there
is a cause of damage to the entire equipment. Eg: consider a system in which we have to open a valve within 30 milliseconds. If this
valve is not opened in 30 ms this may cause damage to the entire equipment. So in such cases we use embedded systems for doing

automatic operations.
2. Soft Real Time embedded systems:

These embedded systems follow a relative dead line time period i.e.., if the task is not done in a particular time that will not cause
damage to the equipment. Eg: Consider a TV remote control system, if the remote control takes a few milliseconds delay it will not
cause damage either to the TV or to the remote control. These systems which will not cause damage when they are not operated at

considerable time period those systems comes under soft real-time embedded systems.

Network communication embedded systems: A wide range network interfacing communication is provided by using embedded

systems. Eg:

* Consider a web camera that is connected to the computer with internet can be used to spread communication like sending
pictures, images, videos etc.., to another computer with internet connection throughout anywhere in the world.

* Consider a web camera that is connected at the door lock.

Whenever a person comes near the door, it captures the image of a person and sends to the desktop of your computer which is connected
to internet. This gives an alerting message with image on to the desktop of your computer, and then you can open the door lock just by

clicking the mouse. Fig: 2.2 show the network communications in embedded systems.

Network communication embedded systems
Different types of processing units:

The central processing unit (c.p.u) can be any one of the following microprocessor, microcontroller, digital signal processing.

IJCRT2505331 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c911

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

* Among these Microcontroller is of low cost processor and one of the main advantage of microcontrollers is, the components
such as memory, serial communication interfaces, analog to digital converters etc.., all these are built on a single chip. The
numbers of external components that are connected to it are very less according to the application.

* Microprocessors are more powerful than microcontrollers. They are used in major applications with a number of tasking
requirements. But the microprocessor requires many external components like memory, serial communication, hard disk, input
output ports etc.., so the power consumption is also very high when compared to microcontrollers.

» Digital signal processing is used mainly for the applications that particularly involved with processing of signals

HARDWARE DESCRIPTION

Introduction:

In this chapter the block diagram of the project and design aspect of independent modules are considered. Block diagram is

shown in fig:

Electric Vehicle BMS with Charge Monitoring and Fire
® Protection using DS18B20

Power
[Step down transformer] supply
(__\ A4
é A Voltage & LCD display
—>| Relay I > current ADC [+ with driver
11.2v sensor Converter
Battery | bc
Motor

Charging ack
icro
controller Reset
Buzzer

N— Crystal
oscillator
[DS18B20 Temperature I |
sensor LED indicator

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c912

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

FIG :EV BMS with Charger Monitoring and Fix Protection

The major building blocks of this project are:

O Regulated power supply
O PIC Microcontroller.

U Temperature sensor.

0 Voltage and current sensor.
U Buzzer.

O Battery pack

O Relays.

O Charging Circuit.

0 LCD display.

O LED Indicators.

O Crystal oscillator.

0 Reset button.

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c913

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Micro controller:
Introduction to Microcontrollers:

Circumstances that we find ourselves in today in the field of microcontrollers had their beginnings in the development of technology of
integrated circuits. This development has made it possible to store hundreds of thousands of transistors into one chip. That was a
prerequisite for production of microprocessors, and the first computers were made by adding external peripherals such as memory, input-
output lines, timers and other. Further increasing of the volume of the package resulted in creation of integrated circuits. These integrated
circuits contained both processor and peripherals. That is how the first chip containing a microcomputer, or what would later be known

as a microcontroller came about.

Microprocessors and microcontrollers are widely used in embedded systems products. Microcontroller is a programmable device. A
microcontroller has a CPU in addition to a fixed amount of RAM, ROM, I/O ports and a timer embedded all on a single chip. The fixed
amount of on-chip ROM, RAM and number of I/O ports in microcontrollers makes them ideal for many applications in which cost and

space are critical.

Description of PIC16F72 microcontroller:

The PIC16F72 CMOS FLASH-based 8-bit microcontroller is upward compatible with PIC16C72/72A and PIC16F872devices. It
features 200 ns instruction execution, self programming, an ICD, 2 Comparators, 5 channels of 8-bit Analog-to-Digital (A/D) converter,
2 capture/compare/PWM functions, a synchronous serial port that can be configured as either 3-wire SPI or 2-wire I2C bus, a USART,

and a Parallel Slave Port.

* High-Performance RISC CPU

* Only 35 single word instructions to learn.

* All single cycle instructions except for program branches which are two-cycle
* Operating speed: DC — 20 MHz clock input DC — 200 ns instruction cycle

* 2K x 14 words of Program Memory

. 128 x 8 bytes of Data Memory (RAM)

* Pin out compatible to the PIC16C72/72A and PIC16F872

. Interrupt capability

. Eight level deep hardware stack

. Direct, Indirect and Relative Addressing modes

Peripheral Features

* TimerO: 8-bit timer/counter with 8-bit prescaler

* Timerl: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c914

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

» Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler

Capture, Compare, PWM(CCP) module

1. Capture is 16-bit, max resolution is 12.5 ns

2. Compare is 16-bit, max resolution is 200 ns

3. PWM max resolution is 10-bit.

4. 8-bit, 5-channel Analog-to-Digital convert

5. Synchronous Serial Port (SSP) with SPI (Master mode) and 12C (Slave).
6. Heat sink/Source Current: 25 mA

7. Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

* Low power, high speed CMOS FLASH technology

* Fully static design

» Wide operating voltage range: 2.0V to 5.5V

* Industrial temperature range

* Low power consumption:

<0.6 mA typical @ 3V, 4 MHz

A typical @ 3V, 32 kHz

<1 pA typical standby current

Memory organization

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c915

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

PIC16F72 has two separate memory blocks, one for data and the other for program. EEPROM memory with GPR and SFR registers in

RAM memory make up the data block, while FLASH memory makes up the program block.

Program memory

Program memory has been carried out in FLASH technology which makes it possible to program a microcontroller many times before
it’s installed into a device, and even after its installment if eventual changes in program or process parameters should occur. The size of

program memory is 1024 locations with 14 bits width where locations zero and four are reserved for reset and interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 256 eight bit locations whose contents are not
lost during loosing of power supply. EEPROM is not directly addressable, but is accessed indirectly through EEADR and EEDATA
registers. As EEPROM memory usually serves for storing important parameters (for example, of a given temperature in temperature
regulators) , there is a strict procedure for writing in EEPROM which must be followed in order to avoid accidental writing. RAM
memory for data occupies space on a memory map from location 0x0C to 0x4F which comes to 68 locations. Locations of RAM memory
are also called GPR registers which is an abbreviation for General Purpose Registers. GPR registers can be accessed regardless of which

bank is selected at the moment.

Applications

PIC16F72 perfectly fits many uses, from automotive industries and controlling home appliances to-industrial instruments, remote
sensors, electrical door locks and safety devices. It is also ideal for smart cards as well as for battery supplied devices because of its low

consumption.

EEPROM memory makes it easier to apply microcontrollers to devices where permanent storage of various parameters is needed (codes
for transmitters, motor speed, receiver frequencies, etc.). Low cost, low consumption, easy handling and flexibility make PIC 16F72
applicable even in areas where microcontrollers had not previously been considered (example: timer functions, interface replacement in

larger systems, coprocessor applications, etc.).

In System Programmability of this chip (along with using only two pins in data transfer) makes possible the flexibility of a product,
after assembling and testing have been completed. This capability can be used to create assembly-line production, to store calibration

data available only after final testing, or it can be used to improve programs on finished products.

REGULATED POWER SUPPLY:

Introduction:

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c916

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Power supply is a supply of electrical power. A device or system that supplies electrical or other types of energy to an output load or
group of loads is called a power supply unit or PSU. The term is most commonly applied to electrical energy supplies, less often to

mechanical ones, and rarely to others.

A power supply may include a power distribution system as well as primary or secondary sources of energy such as

» Conversion of one form of electrical power to another desired form and voltage, typically involving converting AC line voltage
to a well-regulated lower-voltage DC for electronic devices. Low voltage, low power DC power supply units are commonly
integrated with the devices they supply, such as computers and household electronics.

+ Batteries.

* Chemical fuel cells and other forms of energy storage systems.

* Solar power.

. Generators or alternators.

Block Diagram:
Regulated Power supply
AC 230V ” e N 7 ~ DCEV
Transformer : Rectifier Filter : Regulator :>
= ~— J \ J

The components mainly used in above figure are

230V AC MAINS
+ TRANSFORMER

+ BRIDGE RECTIFIER(DIODES)

IJCRT2505331 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c917

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

« CAPACITOR
* VOLTAGE REGULATOR(IC 7805)
* RESISTOR

+ LED(LIGHT EMITTING DIODE)

The detailed explanation of each and every component mentioned above is as follows:

Transformation:

The process of transforming energy from one device to another is called transformation. For transforming energy we use transformers.

Transformers: A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled
conductors without changing its frequency. A varying current in the first or primary winding creates a varying magnetic flux in the
transformer’s core, and thus a varying magnetic field through the secondary winding. This varying magnetic field induces a varying

electromotive force (EMF) or “voltage” in the secondary winding. This effect is called mutual induction.

If a load is connected to the secondary, an electric current will flow in the secondary winding and electrical energy will be transferred
from the primary circuit through the transformer to the load. This field is made up from lines of force and has the same shape as a bar

magnet.

If the current is increased, the lines of force move outwards from the coil. If the current is reduced, the lines of force move inwards.

If another coil is placed adjacent to the first coil then, as the field moves out or in, the moving lines of force will “cut’” the turns of the
second coil. As it does this, a voltage is induced in the second coil. With the 50 Hz AC mains supply, this will happen 50 times a second.

This is called MUTUAL INDUCTION and forms the basis of the transformer.

The input coil is called the PRIMARY WINDING:; the output coil is the SECONDARY WINDING.

Fig: shows step-down transformer.

Step-Down Transformer

The voltage induced in the secondary is determined by the TURNS RATIO.

For example, if the secondary has half the primary turns; the secondary will have half the primary voltage.

Another example is if the primary has 5000 turns and the secondary has 500 turns, then the turn’s ratio is 10:1. If the primary voltage

is 240 volts then the secondary voltage will be x 10 smaller = 24 volts. Assuming a perfect transformer, the power provided by the

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c918

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

primary must equal the power taken by a load on the secondary. If a 24-watt lamp is connected across a 24 volt secondary, then the

primary must supply 24 watts.

To aid magnetic coupling between primary and secondary, the coils are wound on a metal CORE. Since the primary would induce power,
called EDDY CURRENTS, into this core, the core is LAMINATED. This means that it is made up from metal sheets insulated from
each other. Transformers to work at higher frequencies have an iron dust core or no core at all. Note that the transformer only works on
AC, which has a constantly changing current and moving field. DC has a steady current and therefore a steady field and there would be
no induction. Some transformers have an electrostatic screen between primary and secondary. This is to prevent some types of

interference being fed from the equipment down into the mains supply, or in the other direction. Transformers are sometimes used for

IMPEDANCE MATCHING

We can use the transformers as step up or step down.

Step Up transformer:

In case of step up transformer, primary windings are every less compared to secondary winding. Because of having more turns secondary

winding accepts more energy, and it releases more voltage at the output side.

Step down transformer:

Incase of step down transformer, Primary winding induces more flux than the secondary winding, and secondary winding is having less

number of turns because of that it accepts less number of flux, and releases less amount of voltage.

Rectification:

The process of converting an alternating current to a pulsating direct current is called as rectification. For rectification purpose we use

rectifiers.

Rectifiers:

Acrectifier is an electrical device that converts alternating current (AC) to direct current (DC), a process known as rectification. Rectifiers
have many uses including as components of power supplies and as detectors of radio signals. Rectifiers may be made of solid-state

diodes, vacuum tube diodes, mercury arc valves, and other components.

A device that it can perform the opposite function (converting DC to AC) is known as an inverter.

When only one diode is used to rectify AC (by blocking the negative or positive portion of the waveform), the difference between the
term diode and the term rectifier is merely one of usage, i.e., the term rectifier describes a diode that is being used to convert AC to DC.
Almost all rectifiers comprise a number of diodes in a specific arrangement for more efficiently converting AC to DC than is possible
with only one diode. Before the development of silicon semiconductor rectifiers, vacuum tube diodes and copper (I) oxide or selenium

rectifier stacks were used.

Bridge full wave rectifier:

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c919

http://www.ijcrt.org/

www.ijert.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

The Bridge rectifier circuit is shown in fig: 3.3.7, which converts an ac voltage to dc voltage using both half cycles of the input ac
voltage. The Bridge rectifier circuit is shown in the figure. The circuit has four diodes connected to form a bridge. The ac input voltage
is applied to the diagonally opposite ends of the bridge. The load resistance is connected between the other two ends of the bridge. For
the positive half cycle of the input ac voltage, diodes D1 and D3 conduct, whereas diodes D2 and D4 remain in the OFF state. The
conducting diodes will be in series with the load resistance RL and hence the load current flows through RL. For the negative half cycle
of the input ac voltage, diodes D2 and D4 conduct whereas, D1 and D3 remain OFF. The conducting diodes D2 and D4 will be in series
with the load resistance RL and hence the current flows through RL in the same direction as in the previous half cycle. Thus a bi-

directional wave is converted into a unidirectional wave.

Input Output

Fig : Bridge rectifier: a full-wave rectifier using 4 diodes

DB107: Now -a -days Bridge rectifier is available in IC with a number of DB107. In our project we are using an IC in place of

bridge rectifier. The picture of DB 107 is shown in fig:

Features:

* Good for automation insertion

» Surge overload rating — 30 amperes peak

» Ideal for printed circuit board

* Reliable low cost construction utilizing molded
* Glass passivated device.

* Polarity symbols molded on body

* Mounting position: Any

* Weight: 1.0 gram

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org €920

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

DESCRIPTION

The DS18B20 Digital Thermometer provides 9 to 12-bit centigrade temperature measurements and has an alarm function with
nonvolatile user-programmable upper and lower trigger points. The DS18B20 communicates over a 1-Wire bus that by definition
requires only one data line (and ground) for communication with a central microprocessor. It has an operating temperature range of —
55°C to +125°C and is accurate to £0.5°C over the range of —10°C to +85°C. In addition, the DS18B20 can derive power directly from
the data line (“parasite power”), eliminating the need for an external power supply. Each DS18B20 has a unique 64-bit serial code,
which allows multiple DS18B20s to function on the same 1—wire bus; thus, it is simple to use one microprocessor to control many
DS18B20s distributed over a large area. Applications that can benefit from this feature include HVAC environmental controls,

temperature monitoring systems inside buildings, equipment or machinery, and process monitoring and control systems.

OVERVIEW

a block diagram of the DS18B20, and pin descriptions are given in Table 1. The 64-bit ROM stores the device’s unique serial code. The
scratchpad memory contains the 2-byte temperature register that stores the digital output from the temperature sensor. In addition, the
scratchpad provides access to the 1-byte upper and lower alarm trigger registers (TH and TL), and the 1-byte configuration register. The
configuration register allows the user to set the resolution of the temperature-to-digital conversion to 9, 10, 11, or 12 bits. The TH, TL
and configuration registers are nonvolatile (EEPROM), so they will retain data when the device is powered down. The DS18B20 uses
Dallas’ exclusive 1-Wire bus protocol that implements bus communication using one control signal. The control line requires a weak
pull up resistor since all devices are linked to the bus via a 3-state or open-drain port (the DQ pin in the case of the DS18B20). In this
bus system, the microprocessor (the master device) identifies and addresses devices on the bus using each device’s unique 64-bit code.
Because each device has a unique code, the number of devices that can be addressed on one bus is virtually unlimited. The 1-Wire bus
protocol, including detailed explanations of the commands and “time slots,” is covered in the 1-WIRE BUS SYSTEM section of this

datasheet.

Another feature of the DS18B20 is the ability to operate without an external power supply. Power is instead supplied through the 1-Wire
pullup resistor via the DQ pin when the bus is high. The high bus signal also charges an internal capacitor (CPP), which then supplies
power to the device when the bus is low. This method of deriving power from the 1-Wire bus is referred to as “parasite power.” As an

alternative, the DS18B20 may also be powered by an external supply on VDD.

OPERATION — MEASURING TEMPERATURE

The core functionality of the DS18B20 is its direct-to-digital temperature sensor. The resolution of the temperature sensor is user-
configurable to 9, 10, 11, or 12 bits, corresponding to increments of 0.5°C, 0.25°C, 0.125°C, and 0.0625°C, respectively. The default
resolution at power-up is 12-bit. The DS18B20 powers-up in a low-power idle state; to initiate a temperature measurement and A-to-D
conversion, the master must issue a Convert T [44h] command. Following the conversion, the resulting thermal data is stored in the 2-

byte temperature register in the scratchpad memory and the DS18B20 returns to its idle state. If the DS18B20 is powered by an external

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c921

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

supply, the master can issue “read time slots” (see the 1- WIRE BUS SYSTEM section) after the Convert T command and the DS18B20
will respond by transmitting 0 while the temperature conversion is in progress and 1 when the conversion is done. If the DS18B20 is
powered with parasite power, this notification technique cannot be used since the bus must be pulled high by a strong pull up during the
entire temperature conversion. The bus requirements for parasite power are explained in detail in the POWERING THE DS18B20

section of this datasheet

The DS18B20 output temperature data is calibrated in degrees centigrade; for Fahrenheit applications, a lookup table or conversion
routine must be used. The temperature data is stored as a 16-bit sign-extended two’s complement number in the temperature register
(see Figure 2). The sign bits (S) indicate if the temperature is positive or negative: for positive numbers S = 0 and for negative numbers
S =1.If the DS18B20 is configured for 12-bit resolution, all bits in the temperature register will contain valid data. For 11-bit resolution,
bit 0 is undefined. For 10-bit resolution, bits 1 and 0 are undefined, and for 9-bit resolution bits 2, 1 and 0 are undefined. Table 2 gives

examples of digital output data and the corresponding temperature reading for 12-bit resolution conversions.

OPERATION — ALARM SIGNALING

After the DS18B20 performs a temperature conversion, the temperature value is compared to the user defined two’s complement alarm
trigger values stored in the 1-byte TH and TL registers (see Figure 3). The sign bit (S) indicates if the value is positive or negative: for
positive numbers S = 0 and for negative numbers S = 1. The TH and TL registers are nonvolatile (EEPROM) so they will retain data
when the device is powered down. TH and TL can be accessed through bytes 2 and 3 of the scratchpad as explained in the MEMORY

section of this datasheet.

TH AND TL REGISTER FORMAT

Only bits 11 through 4 of the temperature register are used in the TH and TL comparison since TH and TL are 8-bit registers. If the
measured temperature is lower than or equal to TL or higher than TH, an alarm condition exists and an alarm flag is set inside the
DS18B20. This flag is updated after every temperature measurement; therefore, if the alarm condition goes away, the flag will be turned

off after the next temperature conversion.

The master device can check the alarm flag status of all DS18B20s on the bus by issuing an Alarm Search [ECh] command. Any
DS18B20s with a set alarm flag will respond to the command, so the master can determine exactly which DS18B20s have experienced
an alarm condition. If an alarm condition exists and the TH or TL settings have changed, another temperature conversion should be done

to validate the alarm condition.

POWERING THE DS18B20

The DS18B20 can be powered by an external supply on the VDD pin, or it can operate in “parasite power” mode, which allows the
DS18B20 to function without a local external supply. Parasite power is very useful for applications that require remote temperature
sensing or that are very space constrained. Figure 1 shows the DS18B20’s parasite-power control circuitry, which “steals” power from
the 1-Wire bus via the DQ pin when the bus is high. The stolen charge powers the DS18B20 while the bus is high, and some of the
charge is stored on the parasite power capacitor (CPP) to provide power when the bus is low. When the DS18B20 is used in parasite

power mode, the VDD pin must be connected to ground. In parasite power mode, the 1-Wire bus and CPP can provide sufficient current

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c922

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

to the DS18B20 for most operations as long as the specified timing and voltage requirements are met (refer to the DC ELECTRICAL
CHARACTERISTICS and the AC ELECTRICAL CHARACTERISTICS sections of this data sheet). However, when the DS18B20 is
performing temperature conversions or copying data from the scratchpad memory to EEPROM, the operating current can be as high as
1.5mA. This current can cause an unacceptable voltage drop across the weak 1-Wire pull up resistor and is more current than can be
supplied by CPP. To assure that the DS18B20 has sufficient supply current, it is necessary to provide a strong pull up on the 1-Wire bus
whenever temperature conversions are taking place or data is being copied from the scratchpad to EEPROM. This can be accomplished
by using a MOSFET to pull the bus directly to the rail as shown in Figure 4. The 1-Wire bus must be switched to the strong pull up
within 10us (max) after a Convert T [44h] or Copy Scratchpad [48h] command is issued, and the bus must be held high by the pull up
for the duration of the conversion (tconv) or data transfer (twr = 10ms). No other activity can take place on the 1-Wire bus while the
pull up is enabled. The DS18B20 can also be powered by the conventional method of connecting an external power supply to the VDD
pin, as shown in Figure 5. The advantage of this method is that the MOSFET pull up is not required, and the 1-Wire bus is free to carry

other traffic during the temperature conversion time.

The use of parasite power is not recommended for temperatures above +100°C since the DS18B20 may not be able to sustain
communications due to the higher leakage currents that can exist at these temperatures. For applications in which such temperatures are
likely, it is strongly recommended that the DS18B20 be powered by an external power supply. In some situations the bus master may
not know whether the DS18B20s on the bus are parasite powered or powered by external supplies. The master needs this information
to determine if the strong bus pull up should be used during temperature conversions. To get this information, the master can issue a
Skip ROM [CCh] command followed by a Read Power Supply [B4h] command followed by a “read time slot”. During the read time
slot, parasite powered DS18B20s will pull the bus low, and externally powered DS18B20s will let the bus remain high. If the bus is

pulled low, the master knows that it must supply the strong pull up on the 1-Wire bus during temperature conversions.

64-BIT LASERED ROM CODE

Each DS18B20 contains a unique 64-bit code (see Figure 6) stored in ROM. The least significant 8 bits of the ROM code contain the
DS18B20’s 1-Wire family code: 28h. The next 48 bits contain a unique serial number. The most significant 8 bits contain a cyclic
redundancy check (CRC) byte that is calculated from the first 56 bits of the ROM code. A detailed explanation of the CRC bits is
provided in the CRC GENERATION section. The 64-bit ROM code and associated ROM function control logic allow the DS18B20 to

operate as a 1-Wire device using the protocol detailed in the 1-WIRE BUS SYSTEM section of this datasheet.

MEMORY

The DS18B20’s memory is organized as shown in Figure 7. The memory consists of an SRAM scratchpad with nonvolatile EEPROM
storage for the high and low alarm trigger registers (TH and TL) and configuration register. Note that if the DS18B20 alarm function is
not used, the TH and TL registers can serve as general-purpose memory. All memory commands are described in detail in the DS18B20
FUNCTION COMMANDS section. Byte 0 and byte 1 of the scratchpad contain the LSB and the MSB of the temperature register,
respectively. These bytes are read-only. Bytes 2 and 3 provide access to TH and TL registers. Byte 4 contains the configuration register
data, which is explained in detail in the CONFIGURATION REGISTER section of this datasheet. Bytes 5, 6, and 7 are reserved for
internal use by the device and cannot be overwritten; these bytes will return all 1s when read. Byte 8 of the scratchpad is read-only and
contains the cyclic redundancy check (CRC) code for bytes 0 through 7 of the scratchpad. The DS18B20 generates this CRC using the

method described in the CRC GENERATION section. Data is written to bytes 2, 3, and 4 of the scratchpad using the Write Scratchpad

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c923

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

[4Eh] command; the data must be transmitted to the DS18B20 starting with the least significant bit of byte 2. To verify data integrity,
the scratchpad can be read (using the Read Scratchpad [BEh] command) after the data is written. When reading the scratchpad, data is
transferred over the 1-Wire bus starting with the least significant bit of byte 0. To transfer the TH, TL and configuration data from the
scratchpad to EEPROM, the master must issue the Copy Scratchpad [48h] command. Data in the EEPROM registers is retained when
the device is powered down; at power-up the EEPROM data is reloaded into the corresponding scratchpad locations. Data can also be
reloaded from EEPROM to the scratchpad at any time using the Recall E2 [B8h] command. The master can issue read time slots
following the Recall E2 command and the DS18B20 will indicate the status of the recall by transmitting 0 while the recall is in progress

and 1 when the recall is done.

CONFIGURATION REGISTER

Byte 4 of the scratchpad memory contains the configuration register, which is organized as illustrated in Figure 8. The user can set the
conversion resolution of the DS18B20 using the RO and R1 bits in this register as shown in Table 3. The power-up default of these bits
is RO =1 and R1 = 1 (12-bit resolution). Note that there is a direct trade-offs between resolution and conversion time. Bit 7 and bits 0
to 4 in the configuration register are reserved for internal use by the device and cannot be overwritten; these bits will return 1s when

read.

CRC GENERATION

CRC bytes are provided as part of the DS18B20’s 64-bit ROM code and in the 9th byte of the scratchpad memory. The ROM code
CRC is calculated from the first 56 bits of the ROM code and is contained in the most significant byte of the ROM. The scratchpad CRC
is calculated from the data stored in the scratchpad, and therefore it changes when the data in the scratchpad changes. The CRCs provide
the bus master with a method of data validation when data is read from the DS18B20. To verify that data has been read correctly, the
bus master must re-calculate the CRC from the received data and then compare this value to either the ROM code CRC (for ROM reads)
or to the scratchpad CRC (for scratchpad reads). If the calculated CRC matches the read CRC, the data has been received error free. The
comparison of CRC values and the decision to continue with an operation are determined entirely by the bus master. There is no circuitry
inside the DS18B20 that prevents a command sequence from proceeding if the DS18B20 CRC (ROM or scratchpad) does not match the

value generated by the bus master.

The equivalent polynomial function of the CRC (ROM or scratchpad) is:

CRC=X8+X5+X4+1

The bus master can re-calculate the CRC and compare it to the CRC values from the DS18B20 using the polynomial generator shown
in Figure 9. This circuit consists of a shift register and XOR gates, and the shift register bits are initialized to 0. Starting with the least
significant bit of the ROM code or the least significant bit of byte 0 in the scratchpad, one bit at a time should shifted into the shift
register. After shifting in the 56th bit from the ROM or the most significant bit of byte 7 from the scratchpad, the polynomial generator

will contain the re-calculated CRC. Next, the 8-bit ROM code or scratchpad CRC from the DS18B20 must be shifted into the circuit.

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c924

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

At this point, if the re-calculated CRC was correct, the shift register will contain all 0s. Additional information about the Dallas 1-Wire
cyclic redundancy check’s available in Application Note 27: Understanding and Using Cyclic Redundancy Checks with Dallas

Semiconductor Touch Memory Products.

1-WIRE BUS SYSTEM

The 1-Wire bus system uses a single bus master to control one or more slave devices. The DS18B20 is always a slave. When there is
only one slave on the bus, the system is referred to as a “single-drop” system; the system is “multi drop” if there are multiple slaves on
the bus. All data and commands are transmitted least significant bit first over the 1-Wire bus. The following discussion of the 1-Wire
bus system is broken down into three topics: hardware configuration, transaction sequence, and 1-Wire signaling (signal types and

timing).

HARDWARE CONFIGURATION

The 1-Wire bus has by definition only a single data line. Each device (master or slave) interfaces to the data line via an open-drain or 3-
state port. This allows each device to “release” the data line when the device is not transmitting data so the bus is available for use by
another device. The 1-Wire port of the DS18B20 (the DQ pin) is open drain with an internal circuit equivalent to that shown in Figure
10. The 1-Wire bus requires an external pull up resistor of approximately 5kQ; thus, the idle state for the 1- Wire bus is high. If for any
reason a transaction needs to be suspended, the bus MUST be left in the idle state if the transaction is to resume. Infinite recovery time
can occur between bits so long as the 1-Wire bus is in the inactive (high) state during the recovery period. If the bus is held low for more

than 480ps, all components on the bus will be reset.

TRANSACTION SEQUENCE

The transaction sequence for accessing the DS18B20 is as follows:

Step 1. Initialization

Step 2. ROM Command (followed by any required data exchange)

Step 3. DS18B20 Function Command (followed by any required data exchange) It is very important to follow this sequence every
time the DS18B20 is accessed, as the DS18B20 will not respond if any steps in the sequence are missing or out of order. Exceptions to
this rule are the Search ROM [FOh] and Alarm Search [ECh] commands. After issuing either of these ROM commands, the master must

return to Step 1 in the sequence.

INITIALIZATION :

All transactions on the 1-Wire bus begin with an initialization sequence. The initialization sequence consists of a reset pulse transmitted

by the bus master followed by presence pulse(s) transmitted by the slave(s). The presence pulse lets the bus master know that slave

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c925

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

devices (such as the DS18B20) are on the bus and are ready to operate. Timing for the reset and presence pulses is detailed in the 1-

WIRE SIGNALING section.

ROM COMMANDS

After the bus master has detected a presence pulse, it can issue a ROM command. These commands operate on the unique 64-bit ROM
codes of each slave device and allow the master to single out a specific device if many are present on the 1-Wire bus. These commands
also allow the master to determine how many and what types of devices are present on the bus or if any device has experienced an alarm
condition. There are five ROM commands, and each command is 8 bits long. The master device must issue an appropriate ROM

command before issuing a DS18B20 function command. A flowchart for operation of the ROM commands is shown in Figure 11.

SEARCH ROM [F0h]

When a system is initially powered up, the master must identify the ROM codes of all slave devices on the bus, which allows the master
to determine the number of slaves and their device types. The master learns the ROM codes through a process of elimination that requires
the master to perform a Search ROM cycle (i.e., Search ROM command followed by data exchange) as many times as necessary to
identify all of the slave devices. If there is only one slave on the bus, the simpler Read ROM command (see below) can be used in place
of the Search ROM process. For a detailed explanation of the Search ROM procedure, refer to the After every Search ROM cycle, the

bus master must return to Step 1 (Initialization) in the transaction sequence.

READ ROM [33h]

This command can only be used when there is one slave on the bus. It allows the bus master to read the slave’s 64-bit ROM code without
using the Search ROM procedure. If this command is used when there is more than one slave present on the bus, a data collision will

occur when all the slaves attempt to respond at the same time.

MATCH ROM [55h]

The match ROM command followed by a 64-bit ROM code sequence allows the bus master to address a specific slave device on a multi
drop or single-drop bus. Only the slave that exactly matches the 64-bit ROM code sequence will respond to the function command

issued by the master; all other slaves on the bus will wait for a reset pulse.

SKIP ROM [CCh]

The master can use this command to address all devices on the bus simultaneously without sending out any ROM code information. For
example, the master can make all DS18B20s on the bus perform simultaneous temperature conversions by issuing a Skip ROM command
followed by a Convert T [44h] command. Note that the Read Scratchpad [BEh] command can follow the Skip ROM command only if
there is a single slave device on the bus. In this case time is saved by allowing the master to read from the slave without sending the
device’s 64-bit ROM code. A Skip ROM command followed by a Read Scratchpad command will cause a data collision on the bus if

there is more than one slave since multiple devices will attempt to transmit data simultaneously.

ALARM SEARCH [ECh]

The operation of this command is identical to the operation of the Search ROM command except that only slaves with a set alarm flag

will respond. This command allows the master device to determine if any DS18B20s experienced an alarm condition during the most

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c926

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

recent temperature conversion. After every Alarm Search cycle (i.e., Alarm Search command followed by data exchange), the bus master
must return to Step 1 (Initialization) in the transaction sequence. Refer to the OPERATION — ALARM SIGNALING section for an
explanation of alarm flag operation. DS18B20 FUNCTION COMMANDS After the bus master has used a ROM command to address
the DS18B20 with which it wishes to communicate, the master can issue one of the DS18B20 function commands. These commands
allow the master to write to and read from the DS18B20’s scratchpad memory, initiate temperature conversions and determine the power
supply mode. The DS18B20 function commands, which are described below, are summarized in Table 4 and illustrated by the flowchart

in Figure

CONVERT T [44h]

This command initiates a single temperature conversion. Following the conversion, the resulting thermal data is stored in the 2-byte
temperature register in the scratchpad memory and the DS18B20 returns to its low-power idle state. If the device is being used in parasite
power mode, within 10us (max) after this command is issued the master must enable a strong pull up on the 1-Wire bus for the duration
of the conversion (tconv) as described in the POWERING THE DS18B20 section. If the DS18B20 is powered by an external supply,
the master can issue read time slots after the Convert T command and the DS18B20 will respond by transmitting a 0 while the
temperature conversion is in progress and a 1 when the conversion is done. In parasite power mode this notification technique cannot

be used since the bus is pulled high by the strong pull up during the conversion.

WRITE SCRATCHPAD [4Eh]

This command allows the master to write 3 bytes of data to the DS18B20’s scratchpad. The first data byte is written into the TH register
(byte 2 of the scratchpad), the second byte is written into the TL register (byte 3), and the third byte is written into the configuration
register (byte 4). Data must be transmitted least significant bit first. All three bytes MUST be written before the master issues a reset, or

the data may be corrupted.

READ SCRATCHPAD [BEh]

This command allows the master to read the contents of the scratchpad. The data transfer starts with the least significant bit of byte 0
and continues through the scratchpad until the 9th byte (byte 8 — CRC) is read. The master may issue a reset to terminate reading at any

time if only part of the scratchpad data is needed.

COPY SCRATCHPAD [48h]

This command copies the contents of the scratchpad TH, TL and configuration registers (bytes 2, 3 and 4) to EEPROM. If the device is
being used in parasite power mode, within 10us (max) after this command is issued the master must enable a strong pull up on the 1-

Wire bus for at least 10ms as described in the POWERING THE DS18B20 section.

RECALL E2 [B8h]
IJCRT2505331 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c927

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

This command recalls the alarm trigger values (TH and TL) and configuration data from EEPROM and places the data in bytes 2, 3,
and 4, respectively, in the scratchpad memory. The master device can issue read time slots following the Recall E2 command and the
DS18B20 will indicate the status of the recall by transmitting 0 while the recall is in progress and 1 when the recall is done. The recall

operation happens automatically at power-up, so valid data is available in the scratchpad as soon as power is applied to the device.

READ POWER SUPPLY [B4h]

The master device issues this command followed by a read time slot to determine if any DS18B20s on the bus are using parasite power.
During the read time slot, parasite powered DS18B20s will pull the bus low, and externally powered DS18B20s will let the bus remain

high. Refer to the POWERING THE DS18B20 section for usage information for this command.

1-WIRE SIGNALING

The DS18B20 uses a strict 1-Wire communication protocol to insure data integrity. Several signal types are defined by this protocol:
reset pulse, presence pulse, write 0, write 1, read 0, and read 1. The bus master initiates all of these signals, with the exception of the

presence pulse.
INITTALIZATION PROCEDURE: RESET AND PRESENCE PULSES

All communication with the DS18B20 begins with an initialization sequence that consists of a reset pulse from the master followed by
a presence pulse from the DS18B20. This is illustrated in Figure 13. When the DS18B20 sends the.presence pulse in response to the
reset, it is indicating to the master that it is on the bus and ready to operate. During the initialization sequence the bus master transmits
(TX) the reset pulse by pulling the 1-Wire bus low for a minimum of 480us. The bus master then releases the bus and goes into receive
mode (RX). When the bus is released, the 5k pull up resistor pulls the 1-Wire bus high. When the DS18B20 detects this rising edge, it

waits 15us to 60us and then transmits a presence pulse by pulling the 1-Wire bus low for 60pus to 240us.

READ/WRITE TIME SLOTS

The bus master writes data to the DS18B20 during write time slots and reads data from the DS18B20 during read time slots. One bit of

data is transmitted over the 1-Wire bus per time slot.

WRITE TIME SLOTS

There are two types of write time slots: “Write 1” time slots and “Write 0” time slots. The bus master uses a Write 1 time slot to write a
logic 1 to the DS18B20 and a Write 0 time slot to write a logic 0 to the DS18B20. All write time slots must be a minimum of 60us in
duration with a minimum of a 1us recovery time between individual write slots. Both types of write time slots are initiated by the master

pulling the 1-Wire bus low (see Figure 14). To generate a Write 1 time slot, after pulling the 1-Wire bus low, the bus master must release

IJCRT2505331 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c928

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

the 1-Wire bus within 15us. When the bus is released, the Sk pullup resistor will pull the bus high. To generate a Write 0 time slot, after

pulling the 1-Wire bus low, the bus master must continue to hold the bus low for the duration of the time slot (at least 60us).

The DS18B20 samples the 1-Wire bus during a window that lasts from 15us to 60ps after the master initiates the write time slot. If the

bus is high during the sampling window, a 1 is written to the DS18B20. If the line is low, a 0 is written to the DS18B20.

READ TIME SLOTS

The DS18B20 can only transmit data to the master when the master issues read time slots. Therefore, the master must generate read time
slots immediately after issuing a Read Scratchpad [BEh] or Read Power Supply [B4h] command, so that the DS18B20 can provide the
requested data. In addition, the master can generate read time slots after issuing Convert T [44h] or Recall E2 [B8h] commands to find
out the status of the operation as explained in the DS18B20 FUNCTION COMMAND section. All read time slots must be a minimum
of 60us in duration with a minimum of a 1ps recovery time between slots. A read time slot is initiated by the master device pulling the
1-Wire bus low for a minimum of 1pus and then releasing the bus (see Figure 14). After the master initiates the read time slot, the
DS18B20 will begin transmitting a 1 or 0 on bus. The DS18B20 transmits a 1 by leaving the bus high and transmits a 0 by pulling the
bus low. When transmitting a 0, the DS18B20 will release the bus by the end of the time slot, and the bus will be pulled back to its high
idle state by the pullup resister. Output 15us 45ps VPU GND 1-WIRE BUS 60us < TX “0” < 120us 1us < TREC <o DS18B20 Samples
MIN TYP MAX 15us 30ps > 1us MASTER WRITE “0” SLOT MASTER WRITE “1” SLOT VPU GND 1-WIRE BUS 15us MASTER
READ “0” SLOT MASTER READ “1” SLOT Master samples Master samples START OF SLOT START OF SLOT > 1 us 1ps <TREC
<o 15us 15us 15us 30pus DS18B20 Samples MIN TYP MAX LINE TYPE LEGEND Bus master pulling low DS18B20 pulling low
Resistor pullup > 1us DS18B20 17 of 21 data from the DS18B20 is valid for 15us after the falling edge that initiated the read time slot.
Therefore, the master must release the bus and then sample the bus state within 15us from the start of the slot. Figure 15 illustrates that
the sum of TINIT, TRC, and TSAMPLE must be less than 15us for a read time slot. Figure 16 shows that system timing margin is
maximized by keeping TINIT and TRC as short as possible and by locating the master sample time during read time slots towards the

end of the 15us period.

RELATED APPLICATION NOTES

The following Application Notes can be applied to the DS18B20. These notes can be obtained from the Dallas Semiconductor

“Application Note Book,” via the Dallas website at http://www.dalsemi.com/, or through our faxback service at (214) 450-0441.

Application Note 27: Understanding and Using Cyclic Redundancy Checks with Dallas Semiconductor Touch Memory Product
Application Note 55: Extending the Contact Range of Touch Memories Application Note 74: Reading and Writing Touch Memories via
Serial Interfaces Application Note 104: Minimalist Temperature Control Demo Application Note 106: Complex Microloan’s Application
Note 108: MicroLAN — In the Long Run Application Note 162: Interfacing the DS18X20/DS1822 1-Wire Temperature Sensor in a
Microcontroller Environment Sample 1-Wire subroutines that can be used in conjunction with AN74 can be downloaded from the Dallas

website or anonymous FTP Site.

Features:

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c929

http://www.ijcrt.org/
http://www.dalsemi.com/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

* High energy density

* High working voltage for single battery cells.
* Pollution-free

* Long cycle life

* No memory effect

» Capacity, resistance, Voltage, platform time consistency is good.
* Good consistency and low self-discharge.

* Lightweight, small size

» Shape: Cylindrical Battery

* Battery Type: Lithium-Ion Battery

* High performance and capacity

» Flat top to suit many devices fitting.

Applications:

* Electric Scooter

* Electric Bicycle

+ E-Skate Board

* Electric Motorcycle
* E-Wheel Chair

* Electric Tool

* Drone

* Electric Vehicle Etc.

* Power Bank

Specifications:

* Nominal Voltage : 3.7V

* Max Charge Voltage : 4.2V
* Discharge Voltage : 2.8V

* Form Factor : 18650

+ Life cycle : 200 Cycles

* Rechargeable : Yes

* Capacity : 1200mAh

* Weight: 35gm

* Height: 65mm

* Diameter: 18mm

* In this project we are using three battery pack which consist of 11.2 volts.

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c930

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Conclusion:

Integrating features of all the hardware components used have been developed in it. Presence of every module has
been reasoned out and placed carefully, thus contributing to the best working of the unit. Secondly, using highly advanced IC’s with the

help of growing technology, the project has been successfully implemented. Thus the project has been successfully designed and tested.

Future Scope:

The future for electric vehicles is bright. Low battery prices, longer-range models, and more charging stations are driving forward
electric vehicle sales. And with the auto industry investing billions to meet strong pollution standards globally, the oil industry has good

reason to be nervous.

REFERENCES

The sites which were used while doing this project:

1. www.wikipedia.com

2. www.allaboutcircuits.com

3. www.microchip.com

4. www.howstuffworks.com

Books referred:

1. Raj kamal —Microcontrollers Architecture, Programming, Interfacing and System Design.
2. Mazidi and Mazidi ~-Embedded Systems.

3. PCB Design Tutorial —David.L.Jones.

4. PIC Microcontroller Manual — Microchip.

5. Embedded C —Michael.J.Pont.

IJCRT2505331 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c931

http://www.ijcrt.org/
http://www.wikipedia.com/
http://www.allaboutcircuits.com/
http://www.microchip.com/
http://www.howstuffworks.com/

