IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Dynamic Solar Energy System With Real Time Weather Data Integration

Nelapati koteswaramma¹, Manohar Reddy KotthiReddy ², Javeed Mohammad Abdul ³, Vishnu Vardhan Reddy Mudumala ⁴, Abdul Wahabuddin Mohammad⁵

¹Associate Professor, Department of ECE, Vignan Institute of Technology & Science, Yadadri, Bhuvanagiri Dist., India ^{2,3,4,5}UG Student, Department of ECE, Vignan Institute of Technology & Science, Yadadri, Bhuvanagiri Dist., India

Abstract— The integration of real-time weather data enhances the efficiency and adaptability of renewable energy solutions. This project focuses on leveraging an Arduino UNO-based weather monitoring system to collect and analyze environmental data, enabling intelligent solar system adjustments. The weather monitoring system utilizes sensors to measure parameters such as temperature, humidity, light intensity, and wind speed. Data is continuously collected and processed in real-time to optimize the performance of solar panels, including dynamic adjustments to their orientation or energy output regulation. The Arduino UNO serves as the central controller for the weather monitoring subsystem, interfacing with sensors like the DHT11 (temperature and humidity), LDR (light intensity), and anemometers (wind speed). The collected data is displayed on an LCD screen and transmitted to a central system for further processing. The integration enables predictive decisionmaking, such as tilting solar panels to maximize energy absorption during peak sunlight or safeguarding them during adverse weather conditions. This project highlights the critical role of real-time weather data in improving solar energy systems' adaptability and efficiency. The Arduino UNO-based solution provides a cost-effective, scalable, and accurate approach for monitoring environmental factors, ensuring sustainable energy utilization and resilience to changing weather conditions.

I. INTRODUCTION

In recent years, the growing concern over climate change and the increasing demand for sustainable and eco-friendly energy sources have spurred global efforts to find alternatives to traditional fossil fuels. Among the many renewable energy technologies being explored, solar energy has emerged as one of the most promising and widely adopted solutions. Solar energy offers a vast, clean, and sustainable power source that can significantly reduce greenhouse gas emissions and dependence on non-renewable resources. As the world increasingly turns to solar power for electricity generation, the challenge of improving the efficiency of solar energy systems becomes ever more important.

Solar photovoltaic (PV) panels, the most common technology used to harness solar power, rely on direct sunlight to generate electricity. However, the efficiency of these systems can be limited by factors such as the position of

the sun in the sky and the angle at which sunlight hits the panel. Traditional, fixed-position solar panels are often installed at a specific angle based on geographical location. While this setup works to some degree, it restricts the panel's exposure to the sun's changing position throughout the day and across seasons. As a result, fixed panels may miss out on a significant amount of solar energy, leading to reduced overall energy output.

Among the various types of solar tracking systems, the 360-degree solar sun tracker stands out due to its ability to track the sun both horizontally and vertically, providing full-range movement. This dual-axis tracking capability allows the solar panel to continuously adjust to the sun's position throughout the day, ensuring the panel remains perpendicular to the sun's rays at all times. Such continuous alignment is essential for maximizing the total amount of solar radiation the panel receives, which ultimately leads to higher efficiency in energy conversion.

A 360-degree tracker system comprises several key components: the mechanical structure, actuators, control systems, and sensors. The mechanical structure consists of the framework that holds the solar panels and allows them to move. The actuators, such as servo motors or stepper motors, provide the mechanical movement needed to adjust the panels. The control system uses data from sensors, such as Light Dependent Resistors (LDRs) or photodetectors, to determine the sun's position in the sky and send corresponding signals to the actuators to adjust the panel's orientation.

Light Dependent Resistors (LDRs) are commonly used in solar tracking systems because of their ability to detect changes in light intensity. LDRs are light-sensitive devices whose resistance decreases as the intensity of light increases. By placing multiple LDRs in different positions on the tracker, the system can calculate the direction of the strongest sunlight and use that data to adjust the solar panel to face the sun directly. The continuous feedback from these sensors allows the system to make real-time adjustments, ensuring that the solar panel remains aligned with the sun even as it moves across the sky.

Furthermore, the integration of microcontrollers such as the Arduino or Raspberry Pi has significantly enhanced the performance and flexibility of solar tracking systems. These small, low-cost, and highly capable devices can process sensor data, execute tracking algorithms, and control the movement of the motors with high precision. The microcontroller serves as the brain of the tracker, enabling it

to make intelligent decisions based on the data it receives. It can adjust for changing light conditions, weather patterns, and even time of day, optimizing the tracking operation for maximum energy capture. With the ability to store and process data, microcontrollers can also be programmed to execute advanced algorithms that predict the sun's position throughout the day, reducing the need for constant sensor readings and improving the overall system efficiency.

In addition to their practical energy benefits, solar tracking systems can also improve the longterm reliability and durability of photovoltaic installations. By ensuring that the panels are always in the most optimal position, solar trackers reduce wear and tear caused by suboptimal panel angles. They also help reduce the effects of soiling (dirt and debris buildup), which is common on stationary panels that are not cleaned regularly. The ability to clean or maintain the system with minimal manual intervention further adds to the convenience and cost effectiveness of solar tracking systems.

A. Solar system tracker

The primary objective of this project is to design and develop an energy-efficient 360-degree solar sun tracker that significantly enhances the energy capture of photovoltaic (PV) systems by enabling continuous tracking of the sun. As solar energy systems become more prevalent, maximizing their energy output has become crucial for improving their efficiency and reducing the cost of solar energy. Fixed solar panel systems, though widely used, have a limited capacity to capture solar radiation due to their stationary nature. By

incorporating a dual-axis tracking mechanism, this project aims to overcome the inherent limitations of fixed installations and boost solar panel performance, particularly in optimizing the angle of incidence throughout the day.

These sensors, typically Light Dependent Resistors (LDRs), are highly sensitive to changes in light intensity and will play a crucial role in detecting the sun's position. The LDRs will be strategically placed to measure light levels in different directions. The microcontroller will analyze these readings in real-time and use the data to calculate the sun's position relative to the solar panel. Based on this, the microcontroller will send signals to control of the solar panel to maintain optimal sun.

The solar tracker design will focus on creating a dual-axis tracking system, capable of adjusting the orientation of the solar panel both horizontally (azimuth) and vertically (altitude), following the sun's path across the sky. This comprehensive tracking mechanism will ensure that the solar panel is always positioned at the optimal angle, perpendicular to the sun's rays, which is essential for maximizing solar radiation absorption. The continuous, dynamic alignment with the sun will increase the panel's energy yield by 25% to 40%, depending on geographical location, climate, and other environmental factors. The two axes of movement will ensure that the solar panels are not constrained by seasonal changes in the sun's position or local obstacles such as buildings and trees that may cast shadows on a fixed system.

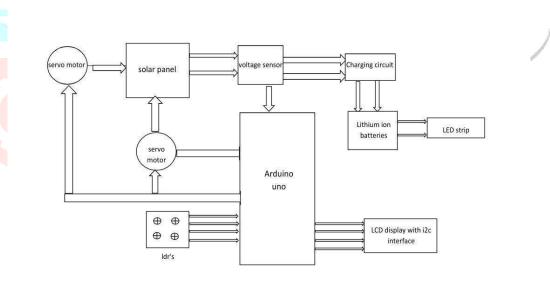


Fig.1. Block diagram

II. METHODOLOGY

The methodology for the 360-degree solar sun tracker project begins with the goal of designing and developing an efficient system that maximizes solar energy capture by enabling solar panels to track the sun throughout the day. The first stage involves the creation of a dual-axis tracking system,

which allows for both horizontal and vertical movement. This ensures that the solar panel remains aligned with the sun at all times, thus optimizing energy capture. The mechanical design will focus on developing a lightweight yet robust structure capable of withstanding varying environmental conditions such as wind and rain. A frame will be constructed to support both the solar panel and the motors responsible for its

movement, ensuring stability and durability. The materials chosen for the frame will be corrosion-resistant, lightweight, and capable of supporting the necessary components. Following the mechanical design, the control system is integrated, which relies on Light Dependent Resistors (LDRs) to detect the intensity of sunlight. These sensors will be positioned around the solar panel, allowing the system to determine the direction of the sun based on which LDR is receiving the most light. The data from these LDRs will be sent to an Arduino microcontroller, which will process the information and compute the necessary adjustments to the solar panel's orientation. This control system will ensure that the solar panel continuously faces the sun throughout the day, increasing its exposure to sunlight and maximizing energy production.

The control logic for the system will be implemented using C++ programming language, which will be uploaded to the Arduino microcontroller. The primary function of the code will be to continuously monitor the LDR data, determine the sun's position, and issue commands to the servo motors to adjust the panel's angle accordingly. The system will also incorporate algorithms to improve the accuracy of tracking, accounting for factors such as the time of day and geographic location. The code will be designed to be efficient and optimized to minimize power consumption, while ensuring that the system responds quickly and accurately to changes in the sun's position.

The paper examines the design and implementation of a dual-axis solar tracking system, highlighting its capability to follow the sun's trajectory in both the azimuth and elevation angles.

A thorough examination of various control systems used in solar trackers is presented here. This includes a comparison of open-loop versus closed-loop control strategies. The paper discusses the effectiveness of PID (Proportional-Integral-Derivative) controllers, fuzzy logic systems, and machine learning algorithms in enhancing tracking precision and responsiveness.

This section reviews the various sensors employed in solar tracking systems. Lightdependent resistors (LDRs), photovoltaic cells, and GPS modules are examined for their roles in determining solar position. The strengths and weaknesses of each sensor type are discussed, along with emerging sensor technologies that may enhance tracking accuracy. Numerous studies have assessed the performance and efficiency of 360-degree solar trackers compared to fixed systems. This section summarizes key findings that illustrate the benefits of implementing 360-degree trackers, including efficiency gains that can exceed 40% in energy capture. Performance metrics such as energy output, response time, and accuracy of tracking are evaluated in different environmental conditions.

III. IMPLEMENTATION & RESULTS

The Arduino integrated development environment (IDE) is a cross-platform application written in Java, and is derived from the IDE for the Processing programming language and the Wiring projects. It includes a code editor which is capable of compiling and uploading programs to the board with a single click. A program or code written for Arduino is called a "sketchArduino programs are written in C or C++. The Arduino IDE comes with a software library called "Wiring" from the original Wiring project, which makes many common input/output operations much efficient.

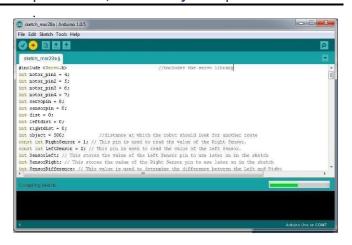


Fig.2. Software Hardware implemenation

The Arduino Uno serves as the central processing unit (CPU) in the 360-degree solar sun tracker, a system designed to maximize solar energy capture by aligning the solar panel with the sun's position. Its versatility, simplicity, and compatibility with various sensors and actuators make it an ideal choice for controlling the sun tracker.

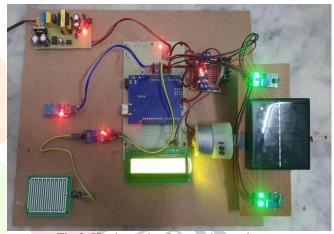


Fig.3. Hardware implemenation and output

The potential integration of IoT and machine learning technologies adds significant value to the system. Remote monitoring and predictive maintenance features could further improve the system's performance and extend its lifespan by providing users with real-time data and alerts on potential issues. The integration of smart technologies also enables efficiency.

Energy Storage: The use of Li-ion batteries to store excess energy for later use is a key advantage of this system. It mitigates the intermittent nature of solar energy generation and provides a reliable power source even when the sun is not shining. This energy storage capability makes the system more versatile and practical for users who require a consistent energy supply, especially in areas where the electricity grid is unreliable or unavailable. The long lifespan and high energy density of Li-ion batteries further enhance the system's efficiency and cost-effectiveness.

IV. CONCLUSION

This project highlights the critical role of real-time weather data in improving solar energy systems' adaptability and efficiency. The Arduino UNO-based solution provides a cost-effective, scalable, and accurate approach for monitoring environmental factors, ensuring sustainable energy utilization and resilience to changing weather conditions.

REFERENCES

- [1] Zhao, Y., & Zhang, S. (2013). A Review of Solar Tracking Systems: Techniques and
- [2] Khan, A. F., & Sulaiman, A. (2017). Performance Enhancement of Solar Photovoltaic Systems Using 360-Degree Solar Tracking. International Journal of Electrical Power & Energy Systems, 85, 132-139.
- [3] K. M. Chandra Babu and P. A. Harsha Vardhini, "Brain Computer Interface based Arduino Home Automation System for Physically Challenged," 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 2020, pp. 125-130, doi: 10.1109/ICISS49785.2020.9315999.
- [4] Al-Soud, M. R., & Khasawneh, A. T. (2019). Optimal Design of a 360-Degree Solar Tracker for Maximum Energy Efficiency. Solar Energy, 176, 101-113.
- [5] K. M. C. Babu and P. A. Harsha Vardhini, "Design and Development of Cost Effective Arduino based Object Sorting System," 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2020, pp. 913-918, doi: 10.1109/ICOSEC49089.2020.9215269.
- [6] Dincer, I., & Rosen, M. A. (2013). Solar Tracking Technologies and Their Applications.
- [7] Koteswaramma, N., and PA Harsha Vardhini. "Implementation of Arduino based Object Detection System." International Journal of Modern Electronics and Communication Engineering (IJMECE) 7.3 (2019): 2018-211.
- [8] Hussain, M., & Al-Mohamad, A. (2014). Design and Simulation of a Solar Tracker
- [9] Vardhini, PA Harsha, et al. "Power optimized Arduino baggage tracking system with finger print authentication." Journal of Applied Science and Computations J-ASC 6.4 (2019): 3655-3660.
- [10] Fathima, S. A., & Rao, N. R. (2015). 360-Degree Solar Sun Tracker: An Innovative
- [11] P. A. H. Vardhini and K. M. C. Babu, "IoT based Autonomous Robot Design Implementation for Military Applications," 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, 2022, pp. 1-5, doi: 10.1109/DELCON54057.2022.9753507.
- [12] López, M., & Castillo, J. (2016). Solar Tracking Systems: A Comprehensive Review. Energy, 116, 69-78.
- [13] Molina, P., & Garcia, J. (2017). Solar Tracker Control System: Performance, Design, and Optimization. IEEE Transactions on Industrial Electronics, 64(12), 9502-9510.
- [14] N. Ananthula, T. Rajeshwari, B. Mounika, P. A. Harsha Vardhini and B. Kalyani, "Arduino based Rescue device with GPS Alert for Women Safety Application," 2022 International Mobile and Embedded

- Technology Conference (MECON), Noida, India, 2022, pp. 343-347, doi: 10.1109/MECON53876.2022.9751817.
- [15] Gholami, A., & Tatar, F. (2016). A Study on the Effectiveness of Solar Tracking Systems in Different Climates. Renewable and Sustainable Energy Reviews, 58, 423431
- [16] P. Sandeep, J. V. Rao, P. A. H. Vardhini, Y. Shanmukha Lakshmi Sai, A. Raju Sagar and P. Phaneendhar, "Arduino based Economical Floor Cleaning Robot," 2022 International Mobile and Embedded Technology Conference (MECON), Noida, India, 2022, pp. 263-267, doi: 10.1109/MECON53876.2022.9752317.
- [17] Harsha Vardhini, P.A., Sindhu, N., Janardhana Raju, G., Srinivas, K., Vishnu Sai, M.H.S. (2023). Energy-Efficient Solar Powered Raspberry Pi Pesticide Sprayer Robot for Agriculture Applications. In: Jain, S., Marriwala, N., Tripathi, C.C., Kumar, D. (eds) Emergent Converging Technologies and Biomedical Systems. ETBS 2022. Lecture Notes in Electrical Engineering, vol 1040. Springer, Singapore. https://doi.org/10.1007/978-981-99-2271-0_36
- [18] Vardhini D, Chandra Babu K, Rani D (2019) Raspberry Pi based automated and efficient irrigation system with add-on field security. Int J Adv Sci Technol 28(19):192–196
- [19] Harsha Vardhini PA (2017) Efficient irrigation system powered by solar panel setup with tracking mechanism. Int J Emerg Technol Innov Res 4(3):238–241
- [20] Vardhini PH, Hanku V. Energy efficient implementation of IoT based home irrigation system using Raspberry Pi. In: 1st international conference on advanced technologies in engineering management & sciences, pp 218–223
- [21] Kiani, A., & Baghery, M. (2019). Comparative Analysis of Solar Tracking and Fixed Solar Systems for Enhanced Power Generation. Energy Reports, 5, 1606-1612.
- [22] P. Upender, G. N. Reddy and G. Santoshini, "Arduino based Accident Prevention System with Eye Twitch and Alcohol sensor," 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 2020, pp. 130-134, doi: 10.1109/CICN49253.2020.9242577.
- [23] C. N. Sujatha, A. Gudipalli, H. P. M, S. R. P and H. R, "Embedded Design of Smart Helmet for Physically Impaired," 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 2021, pp. 1-7, doi: 10.1109/i-PACT52855.2021.9696754.
- [24] Sujatha, C. N., B. Sri Charan, and K. Himabindu. "Arduino-based robot for purification of COVID-19 using far UVC light." 2022. 359-384.