www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Django-Based Machine Learning Web
Application To Ensure Data Quality In Csv Files
And Train A Predictive Model

1 Mrs G Amala, 2 Mohammed Saad Mansoor, 3 Mohammed Huzaifa Mansoor, 4 Thejas H J
1 Assistant Professor, 2 Student, 3 Student, 4 Student
Department of Artificial Intelligence and Machine Learning, Vijaya Vittala Institute of Technology,
Bengaluru, India
Abstract: Ensuring the quality of tabular data is a critical preprocessing step before training reliable predictive
models. We present a web-based application built with Django that automates data quality assessment and
cleaning on uploaded CSV datasets, followed by training of a supervised learning model. The system ingests
user-provided CSV files and analyzes issues such as missing values, outliers, and skewed features, providing
visual dashboards summarizing key data quality metrics. Automated cleaning operations (mean/mode
imputation, outlier clipping via the IQR rule, log-transform for skewed features, and one-hot encoding of
categoricals) are performed using Python libraries (Pandas, SciPy, scikit-learn), producing a cleaned dataset
ready for analysis. Users can then select a target variable and train multiple regression/classification
algorithms (e.g. linear regression, random forest, k-NN), with the best model highlighted by evaluation metrics
(e.g. mean squared error). In a case study on a housing price dataset, the application identified approximately
5.97% missing values, 1.47% outliers, and 25.0% highly skewed features, yielding a composite data quality
score of 67.56%. A Random Forest regressor achieved the lowest error among models, consistent with known
performance. The interface displays feature correlations and per-unit effect sizes, along with interactive charts.
This integrated solution streamlines the machine learning pipeline by combining statistical data cleaning and

model training in a single Django-based framework.

Index Terms — Data Quality, Data Cleaning, Django, Machine Learning, Predictive Model, CSV Data, Web
Application.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c553

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
1. Introduction

Data-driven decision-making relies on high-quality datasets; poor data quality (missing values,
outliers, inconsistencies) can severely degrade machine learning outcomes. In practice, many real-world
datasets (often in CSV format) require extensive cleaning before modeling. The Python Pandas library
provides powerful tools for efficient data manipulation, and scikit-learn offers a suite of algorithms for
predictive modeling. However, these tools are typically used in standalone scripts rather than integrated, user-
friendly applications. Meanwhile, the Django framework provides a robust web application architecture
(Model-View-Template pattern) suitable for hosting data-intensive applications.

Current ML workflows often treat data cleaning as a separate, manual step. Analysts must inspect CSV
files for missing or erroneous entries, which is time-consuming and error-prone. Non-expert users lack easy-
to-use platforms to ensure dataset quality. Motivated by these needs, we design a Django web application that
automatically assesses and improves CSV data quality, then trains and evaluates a predictive model via an
interactive user interface. Our system integrates statistical preprocessing and model building, all accessible
through a web browser, thereby reducing the gap between raw data and actionable insights.

The remainder of this paper is organized as follows. Section 2 reviews related work on data cleaning
and web-based ML tools. Section 3 describes the proposed methodology and system design. Section 4 presents
experimental results from a case study and discusses the findings. Finally, Section 5 concludes the paper and

outlines future work.

1.1 Problem Statement

Current ML pipelines often treat data cleaning as a separate, manual step. Analysts must manually
inspect CSV files for missing data, erroneous entries, and non-standard formats, which is time-
consuming and error-prone. Without an easy-to-use platform, non-experts struggle to ensure dataset
quality..

MLAe TR OLE Y Mg

L v 4

Data Cleaming Data Transformation Data Reductron
Irrelevant data Outhers Too many dimensions
Duplicate data Unacceptable format Too many categories
Nossy data

Incorrect data type
Missing values
Multy collinearity

Figure 1 : Data Preprocessing

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c554

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
2. Literature Review

Research on data cleaning emphasizes its critical role in data mining and machine learning. Numerous
studies highlight that poor data quality can compromise model accuracy and reliability. For example, Rahm
and Do [7] survey various data quality problems and current cleaning approaches, stressing that automated
frameworks can greatly reduce manual effort. In recent work, Dasari and Varma [6] demonstrate how Python-
based pipelines can employ multiple data cleaning techniques (e.g. imputation, filtering) to improve data
quality in practice. These investigations concur that leveraging standard libraries (Pandas, OpenRefine, Data
Wrangler, etc.) helps in removing invalid values, normalizing formats, and detecting anomalies before

modeling.

In parallel, web applications have been developed to bring machine learning capabilities to end users
without programming. For instance, a recent study demonstrated a Django-based web app for music genre
classification by integrating Django with scikit-learn (support vector machines) in the backend. Such efforts
illustrate that Django can host machine learning pipelines within a user-facing interface. Leveraging this
insight, our work similarly uses Django’s web framework to expose data analysis and ML functionality to

users.

Key Python libraries underpin our methodology. Wes McKinney (2010) introduced Pandas as
providing “fundamental building blocks” for statistical computing and data analysis in Python [13], facilitating
efficient handling of tabular data. Likewise, Pedregosa et al. (2011) describe scikit-learn as a comprehensive,
easy-to-use library for machine learning in Python [14]. We adopt these proven tools.in our system: Pandas
and SciPy for preprocessing, scikit-learn for model construction, and Django/MVT (Model-View-Template)
as the web framework to orchestrate the pipeline. By building on this prior work, our application brings

together automated data cleaning and predictive modeling in an integrated platform.
3. Methodology

Our proposed system follows Django’s Model-View-Template (MVT) architecture and implements
the data science workflow in the following components:

3.0 Proposed System
Our system follows Django's MVC (MTV) architecture, starting with a web Ul for CSV upload
and pandas-based ingestion, allowing target/index column selection. Data quality is evaluated via
missing values, outliers (IQR), and skewness, producing a composite score; cleaning involves
imputation, one-hot encoding, clipping, and log transformation using Pandas/Scikit-learn.
Afterward, models (e.g. linear regression, KNN, random forest) are trained and evaluated, with Ul

visualizations (e.g. Seaborn charts) rendered via Django views and templates.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c555

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Data Cleaning Model Training

Csv

Trained Model

Figure 2 : Working Methodology
3.1 Data Ingestion

The web interface presents a file-upload form to the user. Uploaded CSV files are read on the server
using Pandas (pd.read_csv), enabling immediate inspection of the dataset as a DataFrame. Users may
optionally indicate a target column for prediction or drop unwanted index columns. The backend stores the
raw data for subsequent analysis.

3.2 Data Quality Analysis and Scoring

Once data is ingested, the application computes key quality metrics. A perform_quality check(df)
function calculates: the percentage of missing entries per column (using df.isnull()), the percentage of outliers
per column based on the interquartile range (IQR) rule, and the percentage of numeric features exhibiting high
skewness (using scipy.stats.skew()). For outliers, any value outside 1.5xIQR from the median is counted.

These metrics are combined into a composite Data Quality Score as:

Quality Score=100%—(%missing+%outliers+%skewed)\text{Quality =~ Score} = 100\% -
(\%\text{missing} + \%\text{outliers} + \%\text{skewed}).

This single score provides a quick summary of data cleanliness. All metrics are passed to the web
interface and visualized (e.g. as charts of missing vs. valid values, etc.) to help users understand the dataset

issues.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c556

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Data Quality Assessment

Data Quality Assessment Results

Missing Value Outliers Percentage: Skew Percentage: Total Data Quality:
Percentage: 5.97% 1.47% 25.0% 67.56%

W issing WEEE Avaiable B Outiors NN Inliers B Skeved NN No!Skawed

Figure 3 : Data Quality Analysis
3.3 Data Cleaning

The clean_data(df) routine applies standard cleaning operations. First, it separates numeric and categorical
columns using df.select_dtypes(). For numeric features, missing values are imputed using the mean (via scikit-
learn’s SimpleImputer(strategy="mean')). For categorical features, missing values are imputed with the most

frequent category. After imputation, categorical variables are transformed using one-hot encoding

(OneHotEncoder(drop="first')). Numeric outliers are clipped to the 1.5xIQR range to mitigate extreme values.

User Insights
Features which are positively related with ~ Features which are negatively realted with

the target column the target column
High Correlation: ['1st Fir SF', Total Bsmt SF', ‘Garage Area', ‘Garage Cars', ‘Gr Liv Area’, High Correlation: []
‘Overall Qual')

Feature Analysis

Unit increase in 1st Flr SF will increase the SalePrice by 126.73 units.

Unit increase in Total Bsmt SF will increase the SalePrice by 114.62 units.

Unit increase in Garage Area will increase the SalePrice by 237.93 units.
Unit increase in Garage Cars will increase the SalePrice by 68060.23 units.
Unit increase in Gr Liv Area will increase the SalePrice by 111.69 units.

Unit increase in Overall Qual will increase the SalePrice by 45251.03 units.

Figure 4 : User Insights

Features with high skewness (absolute skew > 1) undergo a log-transformation (with an offset to maintain
positivity) to reduce skew. These steps use established Pandas and SciPy functions, ensuring the cleaned
dataset has no missing values and reduced skew and outlier effects. The cleaned DataFrame is then stored for

modeling.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c557

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
3.4 Predictive Model Training

After cleaning, the dataset is split into features (X) and the selected target (y). We provide users with options
to train multiple supervised learning algorithms, such as linear regression, k-nearest neighbors, decision tree,
and random forest, using scikit-learn. Each model is fit to the training data, and performance is evaluated on
a holdout test set. For regression problems, we compute mean squared error (MSE) as the evaluation metric.
The system compares the models” MSE values and highlights the best-performing model (lowest error) as the
“Best Model.” The trained models (especially the best model) and their performance statistics are made

available for the user to download or further inspect.

Model Evaluation
Best Model

Among Linear Regression, Random Forest, K-Nearest Neighbors and Decision Tree
The best performing model based on Mean Squared Error (MSE) is: Random Forest with error metrics of 0.15800664684041227

You can download the trained model file from the following link:

Download Best Model

Figure S : Model Evaluation

3.5 Web Interface and Visualization

The frontend is implemented using Django HTML templates and styled with CSS/Bootstrap for
responsiveness. Key pages include the upload form, the data quality assessment dashboard, and the model
evaluation dashboard. Dynamic charts (created using the Seaborn library) visualize statistics: for example,
donut charts of missing vs. valid data and outliers vs. inliers for intuitive understanding. Feature correlations
with the target are computed (using df.corr()) and visualized, and “effect size” (slope of linear regression for
each feature) is reported to indicate feature impact. Django views pass context variables (data quality metrics,
cleaned data samples, model results) to the templates. Static resources (CSS/JS) are served via Django’s static
files system. The overall MVC (MTYV) structure ensures separation of concerns: the View functions act as
controllers coordinating data, the Template renders the pages, and the Model (in-memory or database storage)
represents the data and trained models. Throughout, all Python libraries used are open-source, aligning with

common data analysis stacks.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c558

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Data Management Tool

Choose CSV File

Target Variable: ‘["hf: target variable name |

) Drop Index Variable if Exists

Upload

Figure 6 : Ul and Upload Data

4. Results and Discussion

We evaluated the system using a case study on the publicly available Ames Housing dataset. After
uploading the CSV and selecting SalePrice as the target variable, the application produced a data quality
assessment. Table 1 summarizes the identified issues and the resulting score. The system detected
approximately 5.97% of entries as missing, 1.47% as outliers, and 25.0% of features with high skewness.
These combined into a composite data quality score of 67.56%. The interface displayed these metrics via

charts (e.g. donut charts of missing vs. available data and outlier vs. inlier counts) for ease of interpretation.

Table 1: Data quality metrics for the case study dataset.

Metric Value
Missing Values (%) 5.97
Outliers (%) 1.47

Highly Skewed Features (%) 25.00

Data Quality Score (%) 67.56

Under the User Insights section, the system listed features with strong correlations to the target. For
example, it identified first-floor area, basement area, garage size, and overall quality as positively correlated
with SalePrice. It also computed effect sizes; notably, it reported that “cach unit increase in GarageCars
increases SalePrice by 68060.23,” indicating the large impact of garage size on price. Negative correlations

were not strong for any features in this case.

IJCRT2505289 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c559

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
In the Model Evaluation section, we compared four algorithms (Linear Regression, k-NN, Decision Tree,

Random Forest). The Random Forest regressor achieved the lowest error (mean squared error = 0.158),
outperforming the other models (their MSE values were higher, typically above 0.20). Hence, the Random
Forest was designated as the “Best Model,” and a download link for this trained model was provided. The
dashboard also displayed the first few rows of the cleaned dataset and descriptive summary statistics (e.g.
mean, std) for user verification. Overall, these results confirm that the application effectively identifies data

issues (missing, outliers, skewness) and provides actionable feedback (cleaned data, best model) to the user.

Informal user feedback during testing was positive, with users noting the clarity of the visual dashboards and
the ease of managing the entire pipeline through a single interface.

User Insights

Features which are positively related with Features which are negatively realted with
the target column the target column

High Correlation: ['1st FIr SF', 'Total Bsmt SF', 'Garage Area', 'Garage Cars', 'Gr Liv Area', High Correlation: []
‘Overall Qual']

Feature Analysis
Unit increase in 1st Flr SF will increase the SalePrice by 126.73 units.
Unit increase in Total Bsmt SF will increase the SalePrice by 114.62 units
Unit increase in Garage Area will increase the SalePrice by 237.93 units.
Unit increase in Garage Cars will increase the SalePrice by 68060.23 units.
Unit increase in Gr Liv Area will increase the SalePrice by 111.69 units.

Unit increase in Overall Qual will increase the SalePrice by 45251.03 units.

Train Model

Figure 7 : User Insights and Results

5. Conclusion and Future Work

We have developed a Django-based web application that streamlines data quality assurance and predictive
modeling for CSV datasets. By leveraging Pandas for data manipulation and scikit-learn for modeling, the
system automates crucial preprocessing steps (such as imputation, outlier handling, and encoding) and
integrates them with a machine learning pipeline, all accessible via an interactive Ul. The application provides
real-time visual diagnostics (missing value and outlier charts) and model evaluation, facilitating data-driven

insights for users without requiring deep programming expertise.

In future work, we plan to extend this platform by incorporating more sophisticated data cleaning techniques
(e.g. advanced anomaly detection, cross-field validation rules) and supporting additional model types (such as
deep neural networks via TensorFlow). We also aim to implement user authentication and data logging for
reproducibility and auditing. To handle larger datasets, scalability improvements will be explored, such as
asynchronous processing or integration with cloud storage/compute resources. These enhancements will

further make the system robust and applicable to a wider range of real-world scenarios
IJCRT2505289 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c560

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
References

[1] Qiang, Z., Dai, F., Lin, H. and Dong, Y. 2019. Research on the course system of Data Science and
Engineering major. 2019 IEEE Int. Conf. on Computer Science and Educational Informatization (CSEI),

Kunming, China, pp. 90-93.

[2] Alazeb, A., Alshehri, M. and Almakdi, S. 2021. Review on Data Science and Prediction. 2nd Int. Conf. on
Computing and Data Science (CDS), Stanford, CA, USA, pp. 548-555.

[3] Liu, X. and Liu, C. 2020. An empirical analysis of applied statistics and probability statistics based on
computer software. 2020 Int. Conf. on Big Data and Social Sciences (ICBDSS), Xi’an, China, pp. 69—71.

[4] T. R. N and Gupta, R. 2020. A survey on machine learning approaches and its techniques. 2020 IEEE Int.
Students’ Conf. on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, pp. 1-6.

[5] Berral-Garcia, J. L. 2018. When and how to apply statistics, machine learning and deep learning
techniques. 20th Int. Conf. on Transparent Optical Networks (ICTON), Bucharest, Romania, pp. 1-4.

[6] Dasari, D. and Varma, P. S. 2022. Employing various data cleaning techniques to achieve better data
quality using Python. 6th Int. Conf. on Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, India, pp. 1379-1383.

[7] Rahm, E. and Do, H. H. 2000. Data cleaning: problems and current approaches. IEEE Data Engineering
Bulletin, 23(4): 3-13.

[8] McKinney, W. 2010. Data structures for statistical computing in Python. Proc. of the 9th Python in Science
Conf. (SciPy 2010), Austin, Texas, USA, June 28-July 3, 2010, pp. 56-61.

[9] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12: 2825-2830.

IJCRT2505289 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c561

http://www.ijcrt.org/

