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Abstract:   
Background and Objectives: Cryptographic hash functions are the linchpins of mobile services, 
blockchains, and many other technologies. Designing cryptographic hash functions has been 
approached by research communities from the physics, mathematics, computer science, and electrical 
engineering fields. The emergence of new hash functions, new hash constructions, and new 
requirements for application-specific hash functions, such as the ones of mobile services, have 
encouraged us to make a comparison of different hash functions and propose a new classification. 
Methods: Over 100 papers were surveyed and reviewed in detail. The research conducted in this paper 
has included four sections; article selection, detailed review of selected articles, data collection, and 
evaluation of results. Data were collected as new hash function properties, new hash function 
constructions, new hash function categories, and existing hash function attacks which are used to 
evaluate the results. 
Results: This paper surveys seven categories of hash functions including block cipher-based functions, 
algebraic-based functions, custom-designed functions, Memory-hard Functions (MHFs), Physical 
Unclonable Functions (PUFs), quantum hash functions and optical hash functions. To the best of our 
knowledge, the last four mentioned categories have not been sufficiently addressed in most existing 
surveys. Furthermore this paper overviews hash-related adversaries and six hash construction variants. 
In addition, we employed the mentioned adversaries as evaluation criteria to illustrate how different 
categories of hash functions withstand the mentioned adversaries. Finally, the surveyed hash function 
categories were evaluated against mobile service requirements. 
Conclusion: In addition to new classification, our findings suggest using PUFs with polynomial-time 
error correction or possibly bitwise equivalents of algebraic structures that belongs to post-quantum 
cryptography as candidates to assist mobile service interaction requirements. 
 

Index Terms - Optical Hash Function, Memory-Hard Function, Bandwidth-Hard Function, Physical 

Unclonable Function, Quantum Hash Function 
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I. INTRODUCTION 

 

A cryptographic hash function is an integral part of a variety of applications such as digital signatures 

[1], authentication by static passwords, authentication by One-Time Passwords (OTP) [2], [3], data 

integrity [4], holographic encryption [5], Elliptic Curve Integrated Encryption Scheme (ECIES) [6], 

Merkle tree [7], WS- Security [8], [9], data anonymization [10], Blockchain [11]- 

[13], cryptocurrencies [14], [15], video similarity search [16], and hash chain based strong password 

authentication [17], to name a few. Nine uses of cryptographic hash functions have been reviewed by 

messages. 

Depending on the application, a hash function h may need to support some or all of the following 

properties: 

I.It maps arbitrary length input x to h(x) efficiently. An efficient implementation may be achieved in 

software or hardware or both. 

II. One-way property or pre-image resistant property: For any given 𝑦 in the image of ℎ, it is not 

computationally feasible to find a message 𝑥 such that 
𝑦 = ℎ(𝑥). 

III. Second pre-image resistant property: For any given message 𝑥, it is not computationally feasible to find a 

message 𝑥′ such that 𝑥 ≠ 𝑥′ and ℎ(𝑥) = ℎ(𝑥′). 

IV. Collision resistant property: It is not computationally feasible to find a pair 𝑥 and 𝑥′ such that 𝑥 ≠ 𝑥′ and 

ℎ(𝑥) = ℎ(𝑥′). 

V. Second collision resistant property: An attacker should not be able to use a given collision ℎ(𝑥1) = ℎ(𝑥′) 

to find another collision ℎ(𝑥2) = ℎ(𝑥′ ). 

VI. Hiding property: Given ℎ(𝑟||𝑥) so that 𝑟 is chosen from a high min‐entropy probability distribution and 

|| denotes concatenation of values, it is not computationally feasible to find [30]. This property is a variant 

of one-way property and originates from blockchain terminology. 

VII. Puzzle friendliness property: Given 𝑟 and ℎ(𝑟||𝑥) so that 𝑟 comes from a spread‐out set and ℎ is an 

n-bit hash function, it is computationally infeasible to find 𝑥 in time significantly less than 2𝑛 [30]. Bitcoin 

mining is a race to solve such a computational puzzle. 

VIII. Chosen-Target-Forced-Prefix (CTFP) preimage resistance property: Committing a hash value ℎ, without 

knowing the prefix of the message that will be hashed should be difficult [31], [32]. 

 

The first four properties are mentioned in many references, but the rest are more or less new. Property 

I emphasizes that a hash function may be used by resource-constrained devices or to provide a fingerprint 

for a possibly very large file. An example of this property is a parameter provided by SHA-3 hash 

function to trade- off security and performance [20], [21]. As another example, some hash functions such 

as MD-6 provide parallel implementation to speed up hashing a long message on multicore processors 

[36]. 

A hash function that supports Properties I and II is called a one-way hash function [1], [37]. A 

cryptographic hash function is a one-way hash function that provides second pre-image and collision 

resistant properties. 

     Since the introduction of cryptographic hash functions in the late 1970s, lots of hash functions have 

emerged that support pre-image resistance and second pre-image resistance properties; providing collision 

resistance, however, is more challenging. Fortunately, while few of hash function applications, such as 

digital signature, rely on collision resistance, for others providing pre-image resistance and second pre-

image resistance properties is sufficient [2], [19]. 

Regarding the special ways that hash functions are employed in blockchain, hiding and puzzle 

friendliness properties are defined. Properties VI and VII harden bitcoin mining by reducing its surface of 

vulnerability, but as bitcoin lacks Property X, there are ASIC machines which speed up mining with 

reduced cost per bitcoin mined. Properties VIII and IX are preventive criteria to resist against herding 

attack (Section IV-A-4). Finally, Property XI focuses video hashing design on semantic content changes 

[16], [35] extracted from segmented video structural elements such as video shots [39]. Illustrated with 

UML class diagram, Fig. 1 depicts how hash functions, one-way hash functions, and cryptographic hash 

functions are subsequently extended (denoted by UML Generalization relationship) by adding pre-image 

property and both second pre-image and collision resistant properties, respectively. Fig. 1 further shows 

http://www.ijcrt.org/


www.ijcrt.org                                                      © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c519 
 

how application-specific hash functions, such as blockchain specific and video hash functions, enrich the 

required properties to satisfy application-specific requirements. 
One may wonder whether a practical hash function without one-way property exists. Murmur hash 

[40] is an example of a hash function which is not designed for one- wayness. Non-cryptographic hash 
functions (NCHFs) [41] provide fast lookup capability. This paper concentrates on cryptographic hash 
functions, referred to hereafter as hash functions. 

 

CONSTRUCTIONS AND COMBINERS 

Designing a hash function entails making important decision on how to mix input message bits all 

together. While a large number of hash functions exists, they all have been designed based on a handful 

of constructions. 

 

 

 
 

 

Fig. 1: Hierarhy of hash functions. 

 

Hash function constructions are important in combining all bits of arbitrary-length messages in a way 

that holds properties such as collision resistance. These constructions split an arbitrary-length message into 

equal-sized blocks and iterate through the blocks to combine block bits all together. Some constructions 

combine block bits themselves, while others apply a compression function on each block and combine the 

results. 

A compression function is a one-way function which takes a fixed length block of message along with a 

chaining variable as input, mixes the bits of input with each other, and returns a shorter, fixed-length 

output. 

The way that a hash function construction combines the results of its underlying compression function is 

called domain extension [42]. For some domain extensions, if the underling compression function has a 

security property such as collision resistance, that domain extension can produce hash functions that retain 

that property. For example, it is proven that hash functions based on the Merkle-Damgård construction 

(Section III-B-1) which use a fixed initial value along with an appropriate padding are collision resistant as 

long as their corresponding compression function is collision resistant. 

Moreover, some other domain extensions such as the Zipper hash construction [43] (Section III-B-3) 

produce hash functions which hold properties such as collision resistance regardless of their underlying 

compression function. 
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This section reviews four iterative and two noniterative hash function constructions. The former 

includes most common constructions such as Merkle- Damgård and Sponge, while the latter includes tree 

style and graph-based hash function constructions. Other rarely used hash function constructions, such as 

Wide- pipe and the Hash Iterated Framework, are not included in this survey. Both of the omitted 

constructions aim to solve internal collision problems. The former uses output transformation, while the 

latter uses a salt and a counter to achieve this goal [44]. 

Finally, this section reviews two hash function combiners (simply combiner henceforth). A combiner 

combines the output of two hash functions or the output of the compression functions of two hash 

functions [45]. As an example, bitcoin uses double SHA-256 (i.e. SHA- 256(SHA-256(message))) and a 

combination of RIPEMD- 160 and SHA-256 (i.e. RIPEMD-160(SHA-256(message))) 

that are examples of combining hash functions in a sequential order. As another example, a 

combination of MD-5 and SHA-1 was used by SSL/TLS [46]. Concatenation combiners and XOR 

combiners are also used [45]. Merkle tree and Zipper hash combiners are reviewed in this section. The 

former combines the outputs of a hash function in tree style, while the latter combines the outputs of two 

different compression functions in reverse order. 

A. Noniterative Constructions 

This section first reviews Merkle tree and then discusses tree- and graph-based constructions. 

These constructions map arbitrary-length input to tree leaves or graph walks and process the resulting tree 

or graph. 

1. Merkle Tree: Merkle tree [7] is a combiner and uses a binary tree structure to allow the integrity of 

large data sets to be verified quickly. One of its recent applications is bitcoin. Fig. 2 depicts an example of 

a Merkle tree [14]. The tree’s leaves are data blocks we want to hash. The hash of each leaf node is stored 

in its immediate parent node. Then, the hash of each pair of nodes is concatenated and hashed together, 

until there is one root hash known as the Merkle root [14]. Data integrity of a block is verified by checking 

hashes from that block to the root node (Fig. 3 [14], [30]). A tree consisting of 𝑛 nodes requires verifying 

about log 𝑛 items [30], including verifying hash of that data block and its sibling-node (if it exists), and 

then proceeds upward until it reaches the top. 

MD-6 Tree style construction: MD-6 [36] uses a 4-ary tree structure to achieve parallelism along with 

alternative sequential mode. As a source of parallelism, each round of  its  compression  function  

uses  16 parallelizable loops. Moreover, it parallelizes a quaternary Merkle tree-like structure with a 

height adjustment parameter (L). Regarding L, there are three modes of operation: 

 L = 64 as the default and means fully tree-based mode. 

 L = 0 means sequential mode and uses a Merkle- Damgård construction. 

 Specifying a number greater than 0 and less than 64 means hybrid mode. First using L level tree, and 

then sequential mode. 

Fig. 4 shows an example of an MD-6 tree [36]. MD-6 uses a 4-to-1 compression function at each 

internal node of the tree. Tree leaves store blocks of data to be hashed, and internal nodes store the results 

of applying compression function on the concatenated data of four child nodes. The compression function 

at the root node is flagged to return truncated result as a MD-6 hash value. 

MD-6 was submitted to the SHA-3 competition, but due to an error found in its security proof against 

differential attacks [19], it did not proceed to the second round of that competition. 
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Fig. 2: An example of a Merkle tree construction [14]. 

 

 

Fig. 3: Verifying hashes from a block to the root node [14], [30]. 

 

                        
 

Fig. 4: An example of an MD-6 tree construction [36]. 

1. Graph based constructions: There are a number of hash functions defined based on Cayley graphs which 

are expanders too. A Cayley graph is one that encodes a group based on its generator set. An expander 

graph is a sparse but highly connected graph, so that each small set of vertices has many neighbors. 

Cayley graphs which map non-Abelian finite groups and are expanders were used to design hash functions. 

An example is the elliptic curves- based graph hash function defined by Charles et al. [47]. Regarding the 

hardness of finding cycles in an expander graph, this graph hash function used the input message to walk 

around an expander graph and defined collision- resistancy as equivalent to finding a cycle in such a 

highly connected graph. 

In addition, the preimage resistance of some graph hash functions depends on the hardness of the 

Factorization problem in non-  Abelian groups [48]. 

B. Iterative Constructions 
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These constructions iterate through an arbitrary- length input to compute bitwise operations such as 

XOR on fixed-length blocks of that input. Each iteration mixes an input block with either an initial value 

or the output of its previous iteration. The input message will be padded if its length is not an integer 

multiple of the block size. Hash functions based on such constructions are known as iterated 

cryptographic hash functions [49]. 

1. Merkle-Damgård construction: Merkle-Damgård construction [50], [51] was used by known 

hash functions MD-5, SHA-1, and SHA-2. It allows the construction of collision-resistant hash functions 

from collision-resistant compression functions when fixed initial values are used and the length of the 

input message is appended to it [19]. The same, however, is not true about pre-image resistance and 

second pre-image resistance properties [52]. Fig. 5 represents this construction [28]; Mi labelled boxes 

represent message blocks, F labelled trapezoids represent compression functions, solid lines represent 

dataflows, and other symbols intuitively represent initial value and output digest. This notation is 

common in cryptography literature with some exceptions that are considered irrelevant. 

 

              
Fig. 5: Merkle-Damgård construction [28]. 

 

2) Shoup construction: The Shoup construction aims to achieve pre-image resistance and is depicted in 

Fig. 6 [53], [54]. It is similar to the Merkle-Damgård construction along with some mask bits that are 

XORed with the results of the compression function at each iteration [53], [54]. Bitwise XOR operations 

are represented by the ⊕ symbol. 

3) Zipper hash construction: Zipper hash combines the results of two different compression functions 

in reverse order. Hence, it is a hash function combiner and a hash function construction as well. 

Regarding the second collision-resistant property, this construction aims to prevent the use of a successful 

attack on a compression function to attack a hash function which applies it.  

 

 

Fig. 6: Shoup construction [53], [54]. 

 

The output transformation function is represented by a g labelled trapezoid. 

A second pre-image attack on Zipper hash was introduced [42], although the time complexity of this 

attack was not much better than the time complexity of the brute force attack (i.e. O (2n)). In addition, 

Herding attack (Section IV.A.4) was extended to attack the Zipper hash and other hash function 

constructions which process each message block more than once [55]. 

4: Sponge construction: The Sponge construction [20], 

[21] is used by the Keccak hash function which won the SHA-3 competition. This construction takes 

the padding algorithm as input and adds zero initiated bits which are called capacity (c) to the processing 

bits of each iteration which are called bit-rate (r). The ratio of capacity bits to bit-rate determines the 

balance between security and performance [21]. 
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Accomplishing such iteration through all blocks is called the absorbing phase which processes b= r + 

c bits at each iteration. In addition, the Sponge construction allows users to customize the output size. If 

the length of required output (l) is not greater than b, then the first l bit of b is returned as output; if l>b, 

however, then the squeezing phase begins, so that the first r bit of the output of all squeezing iterations 

are concatenated and returned as output. Fig. 8(b) shows the squeezing phase [21]. 

 

 

 
 

Fig. 7: Zipper hash construction [43]. 

A. Generic Attacks 

Generic attacks are slow, but they apply to all hash functions, regardless of their algorithms and 

corresponding implementations. Thus, these attacks define a lower band for the output length of 

secure hash functions [56]. These attacks call a hash function or its compression function a number of 

times and seek relationships between the results. As a generic attack uses the black box model, it 

may cause exponential time complexity in the form of (2(𝑛−𝑘)/𝑎), where n is output length of hash 

function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and 

herding attack), and k is the order reduction achieved in the cost of (2𝑘) space (herding attack and rainbow 

tables). See Table 2. 
1: Brute force attacks:  
A brute force attack on an n-bit hash function evaluates that function on 𝜃(2𝑛) distinct input values to find 
(second) pre-images; considering multiple targets, say 𝜃(2𝑡) targets, the cost can be reduced to 𝜃(2𝑛−𝑡), 
while this degradation can be answered by parameterization of the hash function [19]. Furthermore, in 
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash 
values, may accelerate these attacks and trade increased space usage with decreased time. But random 
salting [57] and automatic padding [58] prevent such lookup table creations. 

A brute force attack shows the worst case to find a pre- image or second pre-image on an n-bit hash 

function. It determines a lower bound for the output length of hash function to resist pre-image and 

second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash 

function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and 

SHA-3 hash functions. 

2: Birthday attacks: These algorithms find a collision based on the so-called birthday paradox in the 

cost of 

(2𝑛/2) with a probability greater than ½. 

Seemingly unintuitive, the birthday paradox states that 

23 people are sufficient to have a shared birthday occurrence with ½ probability, i.e. the probability of 

finding a shared birthday (i.e. collision) for 𝑡 people whose birthdays are independently distributed among 

the n = 365 days of a non-leap year is 𝜃(𝑡2/𝑛) if 𝑡 < 𝑛1/2 and is a constant value otherwise [56]; the exact 

value is computed by the possibility that each investigated person does not share their birthday with 

previously investigated persons and subtracting that product value from 1 [1]; this probability is denoted 

in (1). 
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Fig. 8: Sponge construction, (a) input padding (b) squeezing output [21]. 

 

 

ATTACKS AND ADVERSARIES 

How a hash function resists different attacks is the most important criterion for gaining wide acceptance. 

Loosely speaking, there are four categories of approaches to make an attack on a hash function: generic 

attacks, cryptanalysis attacks, quantum adversaries, and implementation specific adversaries. This section 

briefly describes these categories, and Table 1 depicts the target, method, and complexity of each attack 

category. The parameter n used in the last column of Table 1 denotes the length of input message which 

will be hashed. 

Generic Attacks:Generic attacks are slow, but they apply to all hash functions, regardless of their 

algorithms and corresponding implementations. Thus, these attacks define a lower band for the output 

length of secure hash functions [56]. These attacks call a hash function or its compression function a 

number of times and seek relationships between the results. As a generic attack uses the black box 

model, it may cause exponential time complexity in the form of (2(𝑛−𝑘)/𝑎), where n is output length of 

hash function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and 

herding attack), and k is the order reduction achieved in the cost of (2𝑘) space (herding attack and rainbow 

tables). See Table 2. 
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𝑖=0 

    1: Brute force attacks:  
A brute force attack on an n-bit hash function evaluates that function on 𝜃(2𝑛) distinct input values to find 
(second) pre-images; considering multiple targets, say 𝜃(2𝑡) targets, the cost can be reduced to 𝜃(2𝑛−𝑡), 
while this degradation can be answered by parameterization of the hash function [19]. Furthermore, in 
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash 
values, may accelerate these attacks and trade increased space usage with decreased time. But random 
salting [57] and automatic padding [58] prevent such lookup table creations. 

A brute force attack shows the worst case to find a pre- image or second pre-image on an n-bit hash 

function. It determines a lower bound for the output length of hash function to resist pre-image and 

second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash 

function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and 

SHA-3 hash functions. 

2: Birthday attacks:  

These algorithms find a collision based on the so-called birthday paradox in the cost of (2𝑛/2) with a 

probability greater than ½.Seemingly unintuitive, the birthday paradox states that 23 people are sufficient 

to have a shared birthday occurrence with ½ probability, i.e. the probability of finding a shared birthday 

(i.e. collision) for 𝑡 people whose birthdays are independently distributed among the n = 365 days of a 

non-leap year is 𝜃(𝑡2/𝑛) if 𝑡 < 𝑛1/2 and is a constant value otherwise [56]; the exact value is computed by 

the possibility that each investigated person does not share their birthday with previously investigated 

persons and subtracting that product value from 1 [1]; this probability is denoted in (1). 

𝑝 = 1 − ∏𝑡−1(365 − 𝑖)/365. (1) 

This attack stores (2𝑛/2) values, and it may be possible to trade off required time against memory as 

described by Katz and Lindell [56]. 

Table 1: Categories of Attacks on Hash Functions; Targets and Methods. n, a, k, b, c, d and e present 

output length of hash function, possible order reduction by statistical methods, order reduction achieved 

in the cost of 𝑥(2𝑥) space, polynomial time constant value, polynomial time constant value, polynomial 

time constant value, sub-exponential time constant value, and , polynomial time constant value 

respectively 

 

Category Target Method Elements Time Complexity 
Generic attacks The output of hash function 

(hash value) or the output of 

compression function 

Statistical methods 

and probability 

theory 

𝜃(2(𝑛−𝑘)/𝑎); where 

k and a are 

constant values 

Cryptanalysis Steps of 
algorithm 

 Detecting no

 random 

behavior in parts of 

a hash 
algorithm 

From 𝜃(𝑛𝑏) to 

𝜃(2𝑛), where b is 

a constant 
value 

Quantum 
adversaries 

Steps of 
algorithm 

 Quantum solution 

for classically non-

polynomial steps of 

algorithm, such as 

Integer 

Factorization and 
Discrete Logarithm. 

From 𝜃(𝑛𝑐) to 

𝜃(2𝑛/𝑑), where c is 

a constant value 

Implementation 

specific attacks 

Physical 

security 

attacks 

Dependency of 

Time and

 pow

er 

consumption   

to executed 

operations and 

processed data. 

Electromagnetic 

Time measurements 

to verify the 

correlation between 

a partial key value 

and the expected 

running time, power 

traces, and also 

measuring near- and 

far- field of 

(𝑛𝑒), where e is a 

constant value – 

few declared

 tim

e complexities. 
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fields which

 are 

emitted  

 by 
processors. 

processors 

 Software 

implementatio

n attacks 

Steps of 

algorithm 

implemented 

in a vulnerable 

programming 

language or in 

a 
vulnerable 
manner. 

For example, buffer 

overflow for 

algorithms 

implemented in C 

language

 witho

ut boundary 

checking 

 

 

To counter this attack, one may use Universal One- Way Hash Functions (UOWHF), which are a class 

of hash functions that are indexed by a parameter (key) and select function instance based on selected 

challenge input [2]. 

3: Meet-in-the-middle attacks: These attacks apply to multiple encryption schemes such as double DES 

and find matches between encrypted values of one scheme and decrypted values of another scheme [59]. 

Derived from encryption, these attacks were applied for finding pre- images of reduced variants of 

common hash functions such as MD4 [60], [61], MD-5 [61], SHA-1 [62], [63] and SHA-2 [60], [64]. For 

example, Aoki et al. [64] divided the steps of the compression function and used a pre-image of the 

compression function to gain a pre-image of the hash function. As another example, Knellwolf and 

Khovratovich [62] employed the meet-in-the-middle technique along with differential cryptanalysis 

(differential cryptanalysis is discussed in section IV-B-3) to attack SHA-1. 

4: Herding attack: A herding attack, aka the Nostradamus attack, finds (second) pre-images on a hash 

function by searching collisions among precomputed compression functions. 

It uses the birthday paradox to find the mentioned collisions and constitutes a diamond-shaped network 

of these collisions to determine a hash value that can be declared as a commitment to some predictions 

about the future. 

At a point in the future, a second pre-image of that value which includes some happened events will be 

published as evidence to support that assertion [65], [66]. This attack finds a suffix that can be appended 

to a message, so that the concatenated message results in a hash value which is equal to the hash value 

claimed by attacker. 

Mennink [32] improved the flexibility of the attack by adjusting trade-off between the speed of attack 

and the length of the (second) pre-image. 

The herding attack was designed to target hash functions based on the Merkle–Damgard construction. 

Moreover, Andreeva et al. [55] showed the success of herding attacks on four other hash function 

constructions, namely concatenated, zipper, hash-twice, and tree hash constructions. constructions. 

 

A. Cryptanalysis 

Cryptanalysis exploits logical weaknesses in a hash algorithm to invert or forge hash values [67]. 

These attacks are generally more efficient than generic attacks, but their applicability is limited to either a 

specific hash function or a specific implementation of a hash function. 

This section overviews four attacks in this category: length extension attack, algebraic cryptanalysis, 

differential cryptanalysis, and rebound attack. 

The first exploits the lack of output transformations, and the second breaks codes by solving equivalent 

equations. The others detect primitives that hold properties leading to a non-random behavior through a 

number of rounds. Some cryptanalysis attacks operate in polynomial time (e.g., length extension attack and 

differential cryptanalysis), while others operate in exponential time and space complexity (e.g., rebound 

attack). See Table 2. 
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1: Length Extension Attack: Some hash function constructions, such as the known Merkle–Damgård 

one, process subsequent blocks, mix the results subsequently, and provide the internal state of the 

processed blocks as a hash value. 

Exposure of the internal state makes the hash function vulnerable to length extension attack. 

Message authentication is an example of an application which is susceptible to length extension attack. 

Applications may authenticate messages by prepending a secret value to the message and computing the 

hash of the concatenated message at both sides (i.e. sender and receiver) [67]. 

Such applications are susceptible to length extension attack if they use a vulnerable hash algorithm and 

the attacker has access to the message and its hash value, and they know or guess the length of the secret, 

although they do not know the secret itself. 

This attack is implemented by initiating the hash algorithm with a given internal state, which is the hash 

value of a secret prepended to a message, and appending attacker data as subsequent blocks by 

subsequently feeding the algorithm. 

Next, the attacker will submit the computed hash value along with a concatenated message that involves 

the original message, padding of the original algorithm, and attacker data to the receiver. 

Output transformation is a solution to resist length extension attack [19] that is employed by hash 

functions such as Modular Arithmetic Secure Hash (MASH) [2] and MD-6 [36]. 

2: Algebraic Cryptanalysis: Algebraic cryptanalysis is a method for attacking hash functions by solving 

polynomial systems of equations [68]. Some hash functions are reduced to instances of a satisfiability 

problem [69]. Such encoding of cryptographic algorithms and the subsequent reasoning is called logical 

cryptanalysis [70]. There are many examples of this type of attack to find second pre-images on round 

reduced variants of MD-4 [71], MD-5 [71] and SHA-1 [71], pre- images on a round reduced variant of 

MD-4 [72], and Keccak [73], [74]. 

3: Differential Cryptanalysis: Differential cryptanalysis seeks the relation between input differences 

and corresponding output differences. It is quite common to see eXclusive OR (XOR) as the difference 

operator. In addition, operators such as modular subtraction have been used to successfully attack MD-5 

[75] and SHA-1 [76] hash functions. 

A. Quantum Adversaries 

This section discusses quantum adversaries. Companies such as IBM, Google, D-Wave, and Microsoft 

have developed quantum computers using various types of qubits. D-Wave practical quantum devices 

have attracted research interest [77]. While up to eight trapped-ion qubits, about ten nuclear magnetic 

resonance qubits, and about ten optic qubits were considered as the maximum number of qubits in 2010 

[78], in 2017, D-Wave announced and shipped its new commercial quantum computer equipped with 

2000 qubits [79] (D-Wave uses Adiabatic quantum computation instead of gate-based quantum 

computation). 

In 2019, D-Wave announced a new 5000 qubit device too. Moreover, Microsoft announced that the 

company is going to offer a full-fledged topological quantum computing system which includes 

hardware, software, and programming languages, so that a free preview of the programming language 

which supports simulation of up to 30 logical qubits on personal computers (or up to 40 logical qubits on 

Azure) would be released by the end of the 2017 [80]. Microsoft Quantum Development Kit including 

Q# programming language is a released part of this stack. 

Moreover, programming languages and software development kits (SDKs) such as Google qsim [81], 

IBM Qiskit [82], D-Wave Ocean [83], Scaffold [84], Quipper [85], and Microsoft LIQUi|> [86] facilitate 

the transition from high-level quantum algorithms to low-level gate representation, different 

architectures, error correction, and so on. 

The emergence of these commercial quantum computers (D-Wave and in future Microsoft) connoted 

the existence of both opportunity of quantum cryptography schemes and threat of quantum adversaries. 

Tackling the latter is referred to as post-quantum cryptography. 
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Table 2: Categories of Hash Functions – Analysis and applicability of attacks 
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In brief, quantum computing upsides include: 

I. Significant speedup: There are quantum algorithms for some computationally hard problems such as 

Factoring and Ground State Estimation that are exponentially faster than the best classical algorithms for 

those problems [87]. Such problems belong to the Bounded-error Quantum Polynomial (BQP) 

computational complexity class which can be solved efficiently on a quantum computer with a bounded 

probability of error [88]. 
Their disadvantages include: 

I.Error correction: Resisting communication channel noise errors such as bit-flip errors and phase errors, 

and tolerating computational faults such as faulty logic gates are necessary and are achieved through error 

correction techniques such as employing redundant qubits [88]. 

II. Scalability problems: Existence of noise and entanglement phenomena cause scalability problems [89]. 

Shor [90] introduced polynomial time algorithms for Factorization and Discrete Logarithms on quantum 

computers. Grover’s quantum searching algorithm [91], [92] can find a 256-bit AES key in about 2128 

quantum operations [93] and is used to find hash pre-images [94]. Furthermore, there are quantum attacks 

to find hash collisions [95].In contrast to problems such as Factorization and Discrete Logarithms which 

have polynomial time quantum algorithms [90], post-quantum cryptography [96] tends to introduce 

problems that cannot be solved by quantum computers in polynomial time. Watrous [97] proved that 

problems such as Graph Isomorphism and Graph 3-coloring are zero-knowledge against general quantum 

attacks. Kashefi and Kerenidis [98] defined several quantum one-way functions such as Graph Non- 

Isomorphism, Approximate Closest Lattice Vector, and Group Non-Membership and generalize their 

results for any hard instance of Circuit Quantum Sampling problem as a candidate quantum one-way 

function. 
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B. Physical Security: Side Channel Attacks 

 

Classical cryptanalysis views steps of algorithms as transformation of inputs to outputs. Conversely, 

physical security views specific characteristics imposed by an implementation of those steps which are 

running on a specific processor in a specific environment. Physical attacks may or may not depackage the 

chip; such situations are called invasive or noninvasive attacks, respectively. In addition, physical attacks 

may or may not try to tamper with the proper functioning of the device and are called active or passive 

attacks, respectively [2]. Side-channel attacks, or environmental attacks, exploit dependency of 

information such as running time, power consumption, and electromagnetic emissions of operated data 

and performing instructions to (statistically) learn about an algorithm’s internal state [2], [99] or expose 

the device’s secrets. The SHA-3 finalists were evaluated against three variants of side channel attack: 

timing attack, power analysis, and electromagnetic analysis. The evaluation declared the sufficient 

security margin of all finalists and found collisions on the round reduced variant of Keccak [99]. 

Cryptographic algorithms prevent such attacks by avoiding the use of data-dependent or power- 

dependent operations such as multiplications, data- dependent rotations, and table lookups. 

PUFs (See Section V-D) are tamper resistant variants of hash functions, but there are polynomial time 

side channel attacks on PUFs [100] that enable the attacker to read the generated output value. 

In addition to physical security, there are adversaries which consider an implementation of a security 

primitive from the viewpoint of software and programming language flaws. The buffer overflow found 

on the C language implementation of MD-6 is an instance of such software implementation attacks [19]. 

 

HASH FUNCTION CATEGORIES 

This section describes cryptographic hash functions in seven categories and analyses the strengths and 

vulnerabilities of each category (See Table 2). The proposed seven-category classification includes hash 

functions based on a block cipher, hash functions based on algebraic structures, custom-designed hash 

functions, PUFs, quantum hash functions, MHFs, and optical hash functions. To the best of our 

knowledge, the last four mentioned categories have not been sufficiently addressed in most existing 

surveys [18], [19], [26]-[29]. 

A. Hash Functions Based on Block Ciphers 

Developed mostly based on DES and AES, these hash functions reuse underlying block ciphers to 

achieve a compact implementation. The main challenges of these hash functions lie in designing a 

noninvertible construction based on an invertible block cipher. The SHA-3 finalist BLAKE [101] and 

Russian standard hash Streebog [24] are two known hash functions of this category. 

B. Hash Functions Based on Algebraic Structures 

Most hash functions in this category use computationally hard problems such as Factorization, Discrete 

Logarithm, Knapsack, Lattice Problems, and Elliptic Curves and prove their security by reduction [102]. 

Some of these hash functions, though, allow the insertion of trapdoors to construct collisions by the person 

who chooses the design parameters [2]. The functions based on modular arithmetic suffer from being slow. 

There are many attacks for specific instances of hard problems, such as RSA [103]. As an example, 

collision resistancy of Very Smooth Hash (VHA) [104] is reduced to find nontrivial modular square 

roots, but this function is not pre-image resistant [105]. Modular Arithmetic Secure Hash (MASH) was 

published as an International Organization for Standardization (ISO) standard on December 1998 and was 

reviewed and re-confirmed as current version of standard in 2022 [106]. It has strong output transformation 

but its security is not supported by a mathematical proof. Finite field is used to define some hash functions 

[107]. A recent survey on hash functions based on computational problems defined on lattices was provided 

by Mishra et al [108]. Furthermore, hash functions based on Cellular Automata [109] are newly introduced 

members of this category. 

Finally, another important family of hash functions comprises chaos-based hash functions. A chaotic 

system behaves in an unpredictable but deterministic manner and is highly sensitive to initial conditions, so 

a very small change in its initial state may have a large effect on its later state. A chaotic map is a 

mathematical function which states such a chaotic behavior in one- or multi- dimensions. As an example, 

Teh et al. [110] presented a compression function based on a one-dimensional chaotic map and used 

Merkle–Damgard construction to process arbitrary-length messages. 
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A. Custom-Designed Hash Functions 

Known cryptographic hash functions including MD-2, MD-4, SHA-1, SHA-2, and SHA-3 (Keccak) are 

instances of this category. These algorithms are designed independent from other security primitives. 

Although these hash functions do not provide provable security and their security depends on confusion 

and diffusion, the use of bitwise operations such as XOR, AND, and circular shifts leads to low processing 

time and partial security against side channel attacks, even though there are some reports of such attacks 

[111]. 

B. Physical Unclonable Functions (PUFs) 

PUFs are hardware based security primitives and provide challenge response behavior based on 

manufacturing variations that occur on a small scale. Their intrinsic unpredictablity stems from random 

elements (e.g., various gate delay) in their manufacturing process [112], [2]. Depending on the usage, this 

challenge response behavior may be provided in an invertible or non-invertible manner [113]. An 

individual PUF device, however, cannot be practically cloned or copied, even with access to the exact 

manufacturing process that produced it in the first place. This intrinsic randomness reduces computational 

costs, thus making PUFs a candidate for the security of resource-constrained devices such as embedded 

systems [114], and IoT [113]. 

There are two notable PUF types: Weak PUFs and Strong PUFs; the former accepts one or a few 

challenges and is employed as a secret key for device specific encryption, while the latter accepts, 

possibly, an exponential number of challenges and is considered as a physical hash function [115]. 

SRAM PUFs and their variants are the most popular implementation of Weak PUFs and Arbiter PUFs, 

and their variants are the most popular implementation of electrically Strong PUFs. Weak PUFs suffer 

from cloning and invasive attacks (e.g., Helfmeier et al. [116] created a physical clone of a SRAM PUF 

using Focused Ion). Cloning and invasive attacks are hardly applicable on Strong PUFs. The most 

common attacks on Strong PUFs are modeling attacks [117], side channel attacks [118], and the 

combination of both [100], [119]. 

To conclude, PUFs benfit from the following advantages: 

I.Instead of storing a hash value or a sectret key on the device that includes both security consideration 

and additional device memory cost, the PUF response is derived when needed [115]. 

II. Most types of PUFs are tamper-resistant [115], but there are some side channel attacks enhanced by 

machine learning [100]. 

and suffer from the following disadvantages: 

I.PUFs are prone to error and need to employ an error correction mechanism. Depending on PUF type, 

error correction may be executed on a PUF holding device or on a communication server [115]. 

II. In contrast to non-physical approaches, PUFs are prone to aging [115]. 

In essence, PUFs are maps between fixed length inputs and fixed length outputs, while arbitrary length 

input is desired. Therefore, PUFs are widely used for authentication and rarely used for integrity checks 

(a common application of hash functions). 

Finally, PUFs based on nanotechnology are the recently reported trend of PUF design [120]. 

A. Quantum Hash Functions 

There are two sub-categories of quantum hash functions, i.e. hard problems which belong to 

postquantum cryptography and hash functions based on quantum state. The former was described in 

Section 4.3, and the latter is discussed in the current section. In addition to the mentioned subcategories, 

there are quantum hash functions which operate on classical inputs and produce classical outputs [121]. 

Ziiatdinov [122] and Yang et al. [121] attributed the first state-based quantum hash function to Buhrman 

et al. [123], who introduced the notion of quantum fingerprinting. Ablayev and Vasiliev [124], [125] 

introduced quantum hash functions that map input data to quantum states so that the functions have pre-

image resistance (sampling property), second pre-image resistance, and collision resistance properties. 

Ablayev et al. [126] discussed the reverse relation between the pre- image resistance and collision 

resistance properties of quantum hash functions and introduced a construction to build balanced quantum 

hash functions. 

C. Memory-Hard Functions 

There are cases such as cryptocurrency mining and password hashing in which a hash function without 

an efficient input-to-output mapping property (Property I in Section 2) is desired. In contrast to the design 
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goals of distributed electronic payment systems such as Bitcoin, multicore CPUs, GPUs, and dedicated 

ASIC modules are used to accelerate cryptocurrency mining at a low cost. This consolidates the computing 

power of the network. Some ASIC miners are roughly 200,000 times faster and 40,000 times more energy 

efficient than a modern multi- core CPU [127]. Dictionary attacks on hashed password databases are 

further examples of such parallel computation. 

The ASIC resistance property (Property X in Section II) aims to reduce attackers’ massively parallel 

advantage. To this end, MHFs [128] and BHFs [127] were introduced to increase the hardware capital cost 

and energy consumption, respectively. Percival [128] put forward the MHFs idea that with an increase in 

the size of a hash derivation circuit, the number of possible circuits on a given area of silicon will decrease. 

Furthermore, he introduced the scrypt hash function [128], [129] as the first instance of MHF. 

Input-independent memory addressing, input- dependent memory addressing, and number of passes over 

the memory are major considerations in designing an MHF. For example, Argon2 hash function [22] 

includes the following tree variants: 

I.Argon2d: It uses data-dependent memory access and targets the design of cryptocurrency Proof-of-Work 

(PoW). 

II. Argon2i: It uses data-independent memory access to resist side channel attacks and includes more passes 

over the memory in comparison with Argon2d. Argon2i aims to secure password hashing. 

III. Argon2id: It is not a part of Argon2 hash function proposal [22] and use a sequential composition of data-

depending and data-independent memory accesses. First half pass uses data-independent memory access 

and the second half uses data- dependent memory access. 

As a last example of MHFs, Zamanov et al. [34] evaluated the memory demand of Equihash and Ethash 

algorithms. The former increases PoW memory usage based on the birthday problem, while the latter fills a 

huge amount of memory and searches within it. 

Although MHFs incur additional capital costs, ASICs require far less energy than CPUs. To this end, 

BHFs define a large number of planned memory accesses to avoid the energy saving of ASIC hash 

engines [127]. 

A. Optical Hash Functions 

Because of physical properties of light such as velocity and its parallel nature, light-based computing is 

promising and has been shown to outperform electronic computing in some cases [130]. Optical hash 

functions are photoelectric systems which encode blocks into images known as the “information plane” 

[131] and replace computations of a compression function with “confusion” and “diffusion” of modulated 

light [132]. Amplitude-only spatial light modulator, phase-only spatial light modulator, charge coupled 

devices along with lenses [131], half mirrors [131], and/or scattering media [132] are the basic 

constituents of such systems. As an example, Wen-Qi et al. [132] proposed an optical hash function which 

is based on scattering media and provides the avalanche effect and collision resistance. As another 

example, He and Peng [131] proposed two optical hash functions based on phase-truncated Fourier 

transform and interference phenomena (i.e. two beam interference). Last but not least on our list of 

examples, as noise inherent in free space setup can affect the security and performance of beam 

interference and phase truncation-based hash functions, Kumar et al. [133] proposed an optical hash 

function based on superposition. 

MOBILE SERVICE REQUIREMENTS 

Mobile devices can consume some services and also provide some other services, but they have several 

constraints on their resources which may jeopardize the Quality of Service (QoS). On the other hand, as 

mobile devices roam between environments, they are exposed to more attacks than stationary computers. 

Hence, lightweight but not less secure cryptographic hash functions which secure interactions of 

resource- constrained devices are urgently needed. Mobile service requirements are as follows: 

I.Roaming may cause inaccessibility of some resources and accessibility to some others. To aid service 

continuity, hash functions are used to identify identical alternative resources and mutual authentication 

of the mobile device and remote servers [134]. 

II. Most mobile devices have low processing power in comparison with desktop computers. 

III. Most mobile devices have small memory size in comparison with desktop computers. 

IV. Limited battery capacity makes energy consumption an important consideration for mobile devices. Not 

only does WS-Security hash computation required by service invocation consume energy, but also the 

battery usage of hash computation is important to avoid power analysis side channel attacks [135]. 
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Mobile device bandwidth is limited by the network interfaces of that device and by the network being 

used. This limit mediated mobile WS-Security solutions usage [136], [137]. 

IV. From time to time, mobile devices undergo connection intermittence caused not only by roaming, but also 

by things such as other wireless devices, microwave ovens, and other devices with poorly shielded 

cabling. 

V. Some mobile devices have multiple network interfaces such as Wi-Fi, Bluetooth, NFC, and GPRS (in 

addition to LoRaWAN and ZigBee for IoT). To benefit from multi-homed architectures, authentication 

and integrity achieved by hash functions are urgent needs for mobile service communications [138]. 

Hence, low processor usage, thrifty memory usage, and limited battery usage are urgent needs of 

application- specific hash functions for mobile services. In addition, due to connection intermittence and 

bandwidth limitation, mobile security-related computations such as hash computation can hardly be 

delegated to servers that are available through wireless connections. For simplicity, the application-specific 

hash function for mobile services will be referred to hereafter as mobile hash functions. 

Such mobile hash functions need to cope with the mentioned limitations, and it is desirable that they 

benefit from multi-homed architectures. Table 3 shows the appropriateness of each hash function category 

for satisfying mobile service requirements. As Table 3 outlines, optical hash functions and state-based 

quantum hash functions are not applicable for mobile devices. Algebraic-based functions benefit from 

provable security but have high computational costs. Bitwise equivalent of algebraic structures that 

belongs to post-quantum cryptography seemed like a good idea, but we could not find such algebraic-based 

hash functions in practice. PUFs have very low computational costs and communicate just challenge-

responses. In addition, PUFs are available for IoT nodes [139]. Hence, we suggest PUFs with polynomial- 

time error correction for mobile service hashing. 

APPLICATION SCENARIOS 

All applications do not have the same requirements for security and performance. There are a number of 

application scenarios for cryptographic hash functions. Four scenarios and their corresponding analysis to 

select appropriate cryptographic hash functions are presented in Table 4. The first scenario benefits from 

the parallel processing capability of hash functions such as MD-6. The second scenario uses the intrinsic 

randomness of PUFs to lighten hash computation load for resource constrained sensor nodes. The third 

shows the usage of hash chains for process authentication. Finally, the last scenario shows the need for 

output transformation in the lack of encryption. 

CONCLUSION 

Massive usage, significant competitions such as the SHA-3 competition, the Password Hashing 

competition and the NIST lightweight competition, and nationwide hash standards [20], [21], [23]-[25] 

have led to the introduction of new hash functions and new hash function constructions. To the best of 

our knowledge, recent research and competitions make the following futuristic trends possible: Resource 

constrained devices are used in IoT solutions such as smart farming and smart cities. Security plays a 

crucial role in the success such systems so that employing hash functions need to be both resource efficient 

and side-channel resistant [141]. Hence, lightweight hash functions received great attention in recent 

years so that IoT specific hash functions emerged and NIST lightweight competition is ongoing since 

2018 [142]-[144]. In contrast to the lightweight design of these hash functions, it is important that a hash 

function cannot be computed too fast on massively parallel computers and quantum computers. Hence, 

evaluation of hash functions on quantum computers is a recent measure to avoid brute force attacks [145]. 
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Table 3: Appropriateness of each Hash Function category for satisfying mobile service requirements 

 

 
Row 

 
Hash Function Category 

Mobile Service Hash Consideration 

Processing Memory Battery Security Applicability 

1 Hash functions based on a block 
cipher 

High     

2 Hash functions based on algebraic 
structures 

High   Proven  

3 Custom-designed hash functions Low     

4 Physical unclonable functions Very low None or 
very low 

(depending 
on PUF 
type) 

   

5 Quantu
m hash 
functio
ns 

Quantum states No reported work (have not found yet) Not 
applicable 

Post-quantum 
cryptography 

High     

6 Memory-hard functions  High    

7 Optical hash functions No reported work (have not found yet) Not 
applicable 

 

Table 4: Application scenarios – selecting appropriate Hash Function 
Row Scenario Name Scenario Analysis 

1 A file server 
on a 
multiprocessor 
host 

A multiprocessor file server stores 
some large multimedia files. This 
server needs to provide the hash 
value of each file as a checksum. 
Users can download files along 
with corresponding checksums. To 
ensure a file has not been 
tampered with after the checksum 
was created, user computes the 
hash of the downloaded file and 
compares it 
with the checksum. 

Computing hash for large files 
connotes the need for fast 
computation. It may be obtained by 
using a fast hash function such as 
BLAKE [101], [140] (BLAKE 2 or 3) or 
a multiprocessing support hash 
function such as MD-6 [36]. The 
multiprocessor server indicates the 
latter function as choice. 

2 Message 
authentication 
in a sensor 
network 

A sensor network sends monitored 
data to a server. A hash function is 
used for message authentication. 
Each sensor node has limited 
memory and limited processing 
speed. More importantly, each 
sensor node operates with limited 
battery energy and will die as 
its 
energy is consumed. 

Resource constraints of sensor 
nodes and the reverse relationship 
between energy consumption and 
node lifetime suggest the use of 
intrinsic properties of sensors 
instead of running a hash algorithm 
on these nodes. Hence, PUFs [139] 
are appropriate for this 
scenario. 

3 One-
time 
passwor
ds 

In a geographically distributed 
organization, it is required that 
two processes hosted on different 
servers authenticate and 
communicate with each other. 
There is no deployed 
authentication (or encryption) 

This scenario may benefit from one-
time passwords that are a hash 
chain made by consecutive 
computation of hash values and 
using the hash values in descending 
order (using last value first). Any 
hash function that supports the one-
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facilities such as Primary Key 
Infrastructure (KPI). 

way property is appropriate for this 
scenario, so that an eavesdropper 
cannot use an observed password 
to compute the next 
valid password. 

4 Authentication 
and
 integr
ity without 
encryption 

A key is shared between sender 
and receiver. To send a message, 
the sender hashes that message 
prepended by the shared key. 
Then the message along with the 
hash value is transmitted to the 
receiver. Having the shared key, 
the receiver will hash the received 
message prepended by the shared 
key and compares it with the 
received hash value. 

This scenario is prone to length 
extension attack (Section 4.2.1). It 
allows the attacker to forge 
messages with the same prefix. 
Hence, both authentication and 
integrity will be lost. Section 
4.2.1 pointed out that exposure of 
the internal state of the hash 
function causes this vulnerability. 
Hence, hash functions benefitting 
from output transformation such as 
SHA-3 (Keccak)  and  MASH  
(section  5.2)  are 
appropriate for this scenario. 

 

As mentioned, PUFs based on nanotechnology are the recently reported trend of PUF design [120]. Last 

but not least, optical computing has a long history to trace back and was introduced 60-year ago [146], but 

optical hash functions were introduced in recent years are among the futuristic trend of hash functions. In 

addition, application- specific properties have been defined for applications such as cryptocurrency and 

video hashing. In this article, we discussed 11 properties of hash functions (Section 2), overviewed the 

concepts of compression function and domain extension, and outlined four iterative and three noniterative 

hash function constructions and combiners (Section 3). The current research also investigated those hash 

functions and proposed a seven-category classification (Section 5). To the best of our knowledge, four out 

of seven categories have not been sufficiently addressed in most existing surveys [18], [19], [26]-[29]. In 

addition, this article discussed some attacks affecting each category (Table 2) and summarized what 

effective attacks entail (Section 4). 

Furthermore, considering the prevalence of mobile devices, this paper discussed mobile service 

requirements on hash functions (Section 6), outlined how each hash function category fits these 

requirements (Table 3), and suggested (strong) PUFs with polynomial-time error correction for mobile 

service hashing. In addition, the bitwise equivalent of algebraic structures that belong to post-quantum 

cryptography seemed like a good idea, but we could not find such algebraic-based hash functions in 

practice. Finally, to clarify the usage, four application scenarios and their corresponding analysis to select 

appropriate cryptographic hash functions were presented (Table 4). The authors aim to extend this work 

by extracting patterns which fulfill the 11 properties discussed in second section. This extension, along 

with the other mentioned benefits, can assist design, choice, and analysis of hash functions. 
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ABBREVIATIONS 

 
MHF Memory-hard Functions 
BHF Bandwidth-hard Functions 
PUF Physical Unclonable Function 
SHA Secure Hash Algorithm 
UOWHF Universal One-Way Hash 

Functions 
WS-Security Web Services Security 
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