www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
RESEARCH THOUGHTS (1JCRT)
An International Open Access, Peer-reviewed, Refereed Journal

Review On Brand New Categories Of
Cryptographic Hash Functions

Urvashi Chaudhary, 2Dr. Amit Bhatnagar

'Research Scholar, 2Assistant Professor
Computer Science & Applications Department
IFTMU, Moradabad, Uttar Pradesh, India

Abstract:

Background and Objectives: Cryptographic hash functions are the linchpins of mobile services,
blockchains, and many other technologies. Designing cryptographic hash functions has been
approached by research communities from the physics, mathematics, computer science, and electrical
engineering fields. The emergence of new hash functions, new hash constructions, and new
requirements for application-specific hash functions, such as the ones of mobile services, have
encouraged us to make a comparison of different hash functions and propose a new classification.
Methods: Over 100 papers were surveyed and reviewed in detail. The research conducted in this paper
has included four sections; article selection, detailed review of selected articles, data collection, and
evaluation of results. Data were collected as new hash function properties, new hash function
constructions, new hash function categories, and existing hash function attacks which are used to
evaluate the results.

Results: This paper surveys seven categories of hash functions including block cipher-based functions,
algebraic-based functions, custom-designed functions, Memory-hard Functions (MHFs), Physical
Unclonable Functions (PUFs), quantum hash functions and optical hash functions. To the best of our
knowledge, the last four mentioned categories have not been sufficiently addressed in most existing
surveys. Furthermore this paper overviews hash-related adversaries and six hash construction variants.
In addition, we employed the mentioned adversaries as evaluation criteria to illustrate how different
categories of hash functions withstand the mentioned adversaries. Finally, the surveyed hash function
categories were evaluated against mobile service requirements.

Conclusion: In addition to new classification, our findings suggest using PUFs with polynomial-time
error correction or possibly bitwise equivalents of algebraic structures that belongs to post-quantum
cryptography as candidates to assist mobile service interaction requirements.

Index Terms - Optical Hash Function, Memory-Hard Function, Bandwidth-Hard Function, Physical

Unclonable Function, Quantum Hash Function

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c517

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
. INTRODUCTION

A cryptographic hash function is an integral part of a variety of applications such as digital signatures
[1], authentication by static passwords, authentication by One-Time Passwords (OTP) [2], [3], data
integrity [4], holographic encryption [5], Elliptic Curve Integrated Encryption Scheme (ECIES) [6],
Merkle tree [7], WS- Security [8], [9], data anonymization [10], Blockchain [11]-

[13], cryptocurrencies [14], [15], video similarity search [16], and hash chain based strong password
authentication [17], to name a few. Nine uses of cryptographic hash functions have been reviewed by
messages.

Depending on the application, a hash function h may need to support some or all of the following
properties:

1.It maps arbitrary length input x to h(x) efficiently. An efficient implementation may be achieved in
software or hardware or both.

I.One-way property or pre-image resistant property: For any given y in the image of h, it is not
computationally feasible to find a message x such that

y = h(x).

1n.Second pre-image resistant property: For any given message x, it is not computationally feasible to find a
message x' such that x # x" and h(x) = h(x).

Iv.Collision resistant property: It is not computationally feasible to find a pair x and x’ such that x # x" and
h(x) = h(x).

v. Second collision resistant property: An attacker should not be able to use a given collision A([J1) = A([1")
to find another collision A([12) = A([1").
vi. Hiding property: Given A(r||x) so that r is chosen from a high min-entropy probability distribution and
|| denotes concatenation of values, it is not computationally feasible to find [30]. This property is a variant
of one-way property and originates from blockchain terminology.

VI Puzzle friendliness property: Given r and h(r||x) so that » comes from a spread-out set and h is an
n-bit hash function, it is computationally infeasible to find x in time significantly less than 27 [30]. Bitcoin
mining is a race to solve such a computational puzzle.

viil.Chosen-Target-Forced-Prefix (CTFP) preimage resistance property: Committing a hash value h, without
knowing the prefix of the message that will be hashed should be difficult [31], [32].

The first four properties are mentioned in many references, but the rest are more or less new. Property
I emphasizes that a hash function may be used by resource-constrained devices or to provide a fingerprint
for a possibly very large file. An example of this property is a parameter provided by SHA-3 hash
function to trade- off security and performance [20], [21]. As another example, some hash functions such
as MD-6 provide parallel implementation to speed up hashing a long message on multicore processors
[36].

A hash function that supports Properties | and Il is called a one-way hash function [1], [37]. A
cryptographic hash function is a one-way hash function that provides second pre-image and collision
resistant properties.

Since the introduction of cryptographic hash functions in the late 1970s, lots of hash functions have
emerged that support pre-image resistance and second pre-image resistance properties; providing collision
resistance, however, is more challenging. Fortunately, while few of hash function applications, such as
digital signature, rely on collision resistance, for others providing pre-image resistance and second pre-
image resistance properties is sufficient [2], [19].

Regarding the special ways that hash functions are employed in blockchain, hiding and puzzle
friendliness properties are defined. Properties VI and VII harden bitcoin mining by reducing its surface of
vulnerability, but as bitcoin lacks Property X, there are ASIC machines which speed up mining with
reduced cost per bitcoin mined. Properties VIII and 1X are preventive criteria to resist against herding
attack (Section IV-A-4). Finally, Property XI focuses video hashing design on semantic content changes
[16], [35] extracted from segmented video structural elements such as video shots [39]. Illustrated with
UML class diagram, Fig. 1 depicts how hash functions, one-way hash functions, and cryptographic hash
functions are subsequently extended (denoted by UML Generalization relationship) by adding pre-image
property and both second pre-image and collision resistant properties, respectively. Fig. 1 further shows

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c518

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
how application-specific hash functions, such as blockchain specific and video hash functions, enrich the

required properties to satisfy application-specific requirements.

One may wonder whether a practical hash function without one-way property exists. Murmur hash
[40] is an example of a hash function which is not designed for one- wayness. Non-cryptographic hash
functions (NCHFs) [41] provide fast lookup capability. This paper concentrates on cryptographic hash
functions, referred to hereafter as hash functions.

CONSTRUCTIONS AND COMBINERS

Designing a hash function entails making important decision on how to mix input message bits all
together. While a large number of hash functions exists, they all have been designed based on a handful
of constructions.

Hash Function

One-Way Hash Function

- Per-Image Resistant

Cryptographic Hash Function

- Collision Resistant Property
- Second Pre-Image Resistant

Multi-Aspect Hard Quantum Based Intrinsic Randomness Application Specific
Hash Functions Hash Function Based Hash Function Hash Function
Memory Hard Quantum State Bash Function Belongs | | - Phisical Unclonsble || i .1 ryoh Function Blockchain SpEcllic Hash Video Hash Function
Functions Based Hash Function to Post-Quantum Function Function
- Hiding Property i
. Puzle - Robustness Property
Friendliness
Bandwith Hard Property
Function

Fig. 1: Hierarhy of hash functions.

Hash function constructions are important in combining all bits of arbitrary-length messages in a way
that holds properties such as collision resistance. These constructions split an arbitrary-length message into
equal-sized blocks and iterate through the blocks to combine block bits all together. Some constructions
combine block bits themselves, while others apply a compression function on each block and combine the
results.

A compression function is a one-way function which takes a fixed length block of message along with a
chaining variable as input, mixes the bits of input with each other, and returns a shorter, fixed-length
output.

The way that a hash function construction combines the results of its underlying compression function is
called domain extension [42]. For some domain extensions, if the underling compression function has a
security property such as collision resistance, that domain extension can produce hash functions that retain
that property. For example, it is proven that hash functions based on the Merkle-Damgard construction
(Section 111-B-1) which use a fixed initial value along with an appropriate padding are collision resistant as
long as their corresponding compression function is collision resistant.

Moreover, some other domain extensions such as the Zipper hash construction [43] (Section I11-B-3)
produce hash functions which hold properties such as collision resistance regardless of their underlying
compression function.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c519

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

This section reviews four iterative and two noniterative hash function constructions. The former
includes most common constructions such as Merkle- Damgard and Sponge, while the latter includes tree
style and graph-based hash function constructions. Other rarely used hash function constructions, such as
Wide- pipe and the Hash Iterated Framework, are not included in this survey. Both of the omitted
constructions aim to solve internal collision problems. The former uses output transformation, while the
latter uses a salt and a counter to achieve this goal [44].

Finally, this section reviews two hash function combiners (simply combiner henceforth). A combiner
combines the output of two hash functions or the output of the compression functions of two hash
functions [45]. As an example, bitcoin uses double SHA-256 (i.e. SHA- 256(SHA-256(message))) and a
combination of RIPEMD- 160 and SHA-256 (i.e. RIPEMD-160(SHA-256(message)))

that are examples of combining hash functions in a sequential order. As another example, a
combination of MD-5 and SHA-1 was used by SSL/TLS [46]. Concatenation combiners and XOR
combiners are also used [45]. Merkle tree and Zipper hash combiners are reviewed in this section. The
former combines the outputs of a hash function in tree style, while the latter combines the outputs of two
different compression functions in reverse order.

. Noniterative Constructions

This section first reviews Merkle tree and then discusses tree- and graph-based constructions.
These constructions map arbitrary-length input to tree leaves or graph walks and process the resulting tree
or graph.

1. Merkle Tree: Merkle tree [7] is a combiner and uses a binary tree structure to allow the integrity of
large data sets to be verified quickly. One of its recent applications is bitcoin. Fig. 2 depicts an example of
a Merkle tree [14]. The tree’s leaves are data blocks we want to hash. The hash of each leaf node is stored
in its immediate parent node. Then, the hash of each pair of nodes is concatenated and hashed together,
until there is one root hash known as the Merkle root [14]. Data integrity of a block is verified by checking
hashes from that block to the root node (Fig. 3 [14], [30]). A tree consisting of n nodes requires verifying
about log n items [30], including verifying hash of that data block and its sibling-node (if it exists), and
then proceeds upward until it reaches the top.

MD-6 Tree style construction: MD-6 [36] uses a 4-ary tree structure to achieve parallelism along with
alternative sequential mode. As a source of parallelism, each round of its compression function
uses 16 parallelizable loops. Moreover, it parallelizes a quaternary Merkle tree-like structure with a
height adjustment parameter (L). Regarding L, there are three modes of operation:

L = 64 as the default and means fully tree-based mode.

L = 0 means sequential mode and uses a Merkle- Damgard construction.

Specifying a number greater than 0 and less than 64 means hybrid mode. First using L level tree, and
then sequential mode.

Fig. 4 shows an example of an MD-6 tree [36]. MD-6 uses a 4-to-1 compression function at each
internal node of the tree. Tree leaves store blocks of data to be hashed, and internal nodes store the results
of applying compression function on the concatenated data of four child nodes. The compression function
at the root node is flagged to return truncated result as a MD-6 hash value.

MD-6 was submitted to the SHA-3 competition, but due to an error found in its security proof against
differential attacks [19], it did not proceed to the second round of that competition.

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c520

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Root HaBcpEFGHIIKLMNOP

/ HABCDEFGH N\ / HukLMNOP N\

Harcp

I : | ; | S
L][> 1]
Fig. 2: An example of a Merkle tree construction [14].
Merkle Root
R=H(HS8+HS5)
Hs=ﬂ(ﬁ6+ﬂ7) . \HS
/ H6=H(H1+H2) \ . H7=H(H3+H4)) / HS \

"\ - | ' ry
[\ = e

Target Node

Fig. 3: Verifying hashes from a block to the root node [14], [30].

= e

[| | []] \‘

[| ‘\1 ‘ | ' H'\\ [[[]] “
"M “‘1 [(T LT [| L1111] ‘

A A A A P00 OO0 D OSSO0 RO A0S O a0kh

Fig. 4: An example of an MD-6 tree construction [36].

1. Graph based constructions: There are a number of hash functions defined based on Cayley graphs which
are expanders too. A Cayley graph is one that encodes a group based on its generator set. An expander
graph is a sparse but highly connected graph, so that each small set of vertices has many neighbors.
Cayley graphs which map non-Abelian finite groups and are expanders were used to design hash functions.
An example is the elliptic curves- based graph hash function defined by Charles et al. [47]. Regarding the
hardness of finding cycles in an expander graph, this graph hash function used the input message to walk
around an expander graph and defined collision- resistancy as equivalent to finding a cycle in such a
highly connected graph.

In addition, the preimage resistance of some graph hash functions depends on the hardness of the
Factorization problem in non- Abelian groups [48].

B. Iterative Constructions

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c521

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

These constructions iterate through an arbitrary- length input to compute bitwise operations such as
XOR on fixed-length blocks of that input. Each iteration mixes an input block with either an initial value
or the output of its previous iteration. The input message will be padded if its length is not an integer
multiple of the block size. Hash functions based on such constructions are known as iterated
cryptographic hash functions [49].

1. Merkle-Damgard construction: Merkle-Damgard construction [50], [51] was used by known
hash functions MD-5, SHA-1, and SHA-2. It allows the construction of collision-resistant hash functions
from collision-resistant compression functions when fixed initial values are used and the length of the
input message is appended to it [19]. The same, however, is not true about pre-image resistance and
second pre-image resistance properties [52]. Fig. 5 represents this construction [28]; Mi labelled boxes
represent message blocks, F labelled trapezoids represent compression functions, solid lines represent
dataflows, and other symbols intuitively represent initial value and output digest. This notation is
common in cryptography literature with some exceptions that are considered irrelevant.

Padded message Message length
| M |Length ‘ |

Irvutlal Output
Value

Fig. 5: Merkle-Damgard construction [28].

2) Shoup construction: The Shoup construction aims to achieve pre-image resistance and is depicted in
Fig. 6 [53], [54]. It is similar to the Merkle-Damgard construction along with some mask bits that are
XORed with the results of the compression function at each iteration [53], [54]. Bitwise XOR operations
are represented by the €@ symbol.

3) Zipper hash construction: Zipper hash combines the results of two different compression functions
in reverse order. Hence, it is a hash function combiner and a hash function construction as well.
Regarding the second collision-resistant property, this construction aims to prevent the use of a successful
attack on a compression function to attack a hash function which applies it.

xl x: X:

hitial | ¢, a M rlG

nalins

AL M

Fig. 6: Shoup construction [53], [54].

The output transformation function is represented by a g labelled trapezoid.

A second pre-image attack on Zipper hash was introduced [42], although the time complexity of this
attack was not much better than the time complexity of the brute force attack (i.e. O (2")). In addition,
Herding attack (Section IV.A.4) was extended to attack the Zipper hash and other hash function
constructions which process each message block more than once [55].

4: Sponge construction: The Sponge construction [20],

[21] is used by the Keccak hash function which won the SHA-3 competition. This construction takes
the padding algorithm as input and adds zero initiated bits which are called capacity (c) to the processing
bits of each iteration which are called bit-rate (r). The ratio of capacity bits to bit-rate determines the
balance between security and performance [21].

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c522

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Accomplishing such iteration through all blocks is called the absorbing phase which processes b=r +
¢ bits at each iteration. In addition, the Sponge construction allows users to customize the output size. If
the length of required output (1) is not greater than b, then the first | bit of b is returned as output; if 1>b,
however, then the squeezing phase begins, so that the first r bit of the output of all squeezing iterations
are concatenated and returned as output. Fig. 8(b) shows the squeezing phase [21].

M M2 M3 M

| £
Initial _ f/f’l 1" ...
s i —

Value

Fig. 7: Zipper hash construction [43].

. Generic Attacks

Generic attacks are slow, but they apply to all hash functions, regardless of their algorithms and
corresponding implementations. Thus, these attacks define a lower band for the output length of
secure hash functions [56]. These attacks call a hash function or its compression function a number of
times and seek relationships between the results. As a generic attack uses the black box model, it
may cause exponential time complexity in the form of (2(—k/a), where n is output length of hash
function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and
herding attack), and k is the order reduction achieved in the cost of (2¥) space (herding attack and rainbow

tables). See Table 2.

1: Brute force attacks:

A brute force attack on an n-bit hash function evaluates that function on 8(2n) distinct input values to find
(second) pre-images; considering multiple targets, say 6(2¢) targets, the cost can be reduced to 8(27%),
while this degradation can be answered by %arameterization of the hash function [19]. Furthermore, in
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash
values, may accelerate these attacks and trade increased space usage with decreased time. But random
salting [57] and automatic padding [58] prevent such lookup table creations.

A brute force attack shows the worst case to find a pre- image or second. pre-image on an n-bit hash
function. It determines a lower bound for the output length of hash function to resist pre-image and
second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash
function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and
SHA-3 hash functions.

2: Birthday attacks: These algorithms find a collision based on the so-called birthday paradox in the
cost of

(27/2) with a probability greater than %2.

Seemingly unintuitive, the birthday paradox states that

23 people are sufficient to have a shared birthday occurrence with ¥ probability, i.e. the probability of
finding a shared birthday (i.e. collision) for t people whose birthdays are independently distributed among
the n = 365 days of a non-leap year is 6(t2/n) if t < nl/2and is a constant value otherwise [56]; the exact
value is computed by the possibility that each investigated person does not share their birthday with
previously investigated persons and subtracting that product value from 1 [1]; this probability is denoted
in (1).

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c523

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

b
-+
r C
- 4 ——
r c or Oc
-+ i
Po e
T
-]
P Oc
f
S
) 4
P2 \ O«
v
PL 1 \ Oc L
h 4
f
5
@)
b
B
r C
e e
L
r
e E—
ﬁ——
(b)

Fig. 8: Sponge construction, (a) input padding (b) squeezing output [21].

ATTACKS AND ADVERSARIES

How a hash function resists different attacks is the most important criterion for gaining wide acceptance.
Loosely speaking, there are four categories of approaches to make an attack on a hash function: generic
attacks, cryptanalysis attacks, quantum adversaries, and implementation specific adversaries. This section
briefly describes these categories, and Table 1 depicts the target, method, and complexity of each attack

category. The parameter n used in the last column of Table 1 denotes the length of input message which
will be hashed.

Generic Attacks:Generic attacks are slow, but they apply to all hash functions, regardless of their
algorithms and corresponding implementations. Thus, these attacks define a lower band for the output
length of secure hash functions [56]. These attacks call a hash function or its compression function a
number of times and seek relationships between the results. As a generic attack uses the black box
model, it may cause exponential time complexity in the form of (2(»—%)/a), where n is output length of
hash function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and
herding attack), and k is the order reduction achieved in the cost of (2k) space (herding attack and rainbow
tables). See Table 2.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c524

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

1: Brute force attacks:
A brute force attack on an n-bit hash function evaluates that function on 6(2n) distinct input values to find
(second) pre-images; considering multiple targets, say 6(2¢) targets, the cost can be reduced to (27,
while this degradation can be answered by %arameterization of the hash function [19]. Furthermore, in
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash
values, may accelerate these attacks and trade increased space usage with decreased time. But random
salting [57] and automatic padding [58] prevent such lookup table creations.

A brute force attack shows the worst case to find a pre- image or second pre-image on an n-bit hash
function. It determines a lower bound for the output length of hash function to resist pre-image and
second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash
function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and
SHA-3 hash functions.

2: Birthday attacks:

These algorithms find a collision based on the so-called birthday paradox in the cost of (27/2) with a
probability greater than %2.Seemingly unintuitive, the birthday paradox states that 23 people are sufficient
to have a shared birthday occurrence with ¥ probability, i.e. the probability of finding a shared birthday
(i.e. collision) for t people whose birthdays are independently distributed among the n = 365 days of a
non-leap year is 6(t2/n) if t < nl/2and is a constant value otherwise [56]; the exact value is computed by
the possibility that each investigated person does not share their birthday with previously investigated
persons and subtracting that product value from 1 [1]; this probability is denoted in (1).

p =1—[]t1(365 — i)/365. 1) i=0

This attack stores (27/2) values, and it may be possible to trade off required time against memory as
described by Katz and Lindell [56].

Table 1: Categories of Attacks on Hash Functions; Targets and Methods. n, a, k, b, ¢, d and e present
output length of hash function, possible order reduction by statistical methods, order reduction achieved
in the cost of [J(2[1) space, polynomial time constant value, polynomial time constant value, polynomial
time constant value, sub-exponential time constant value, and , polynomial time constant value
respectively

Category Target Method Elements Time Complexity
Genericattacks The output of hash function Statistical methods @(2(-k/a); where
(hash value) or the output of and probability k ~and a are
compression function theory constant values
Cryptanalysis Steps of Detecting no From 6(nb) to
algorithm random 8(2%), where b is
behaviorin parts of a constant
a hash value
algorithm
Quantum Steps of Quantum solution From 8(n¢) to
adversaries algorithm

for classically non- 8(2%/4), where c is
polynomial steps of a constant value
algorithm, such as

Integer

Factorization and
Discrete Logarithm.

Implementation Physical Dependency of Time measurements (n¢), where e is a
specific attacks security Time and to verify the constant value —
attacks pow correlation between few declared
er a partial key value tim
consumption and the expected e complexities.
to executed running time, power

operationsand traces, and also
processed data. measuring near- and
Electromagnetic far- field of

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c525

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

fields which processors
are
emitted
by
processors.
Software Steps of For example, buffer
implementatio algorithm overflow for
n attacks implemented algorithms

in avulnerable implemented in C
programming language

language or in witho
a ut boundary
vulnerable checking

manner.

To counter this attack, one may use Universal One- Way Hash Functions (UOWHF), which are a class
of hash functions that are indexed by a parameter (key) and select function instance based on selected
challenge input [2].

3: Meet-in-the-middle attacks: These attacks apply to multiple encryption schemes such as double DES
and find matches between encrypted values of one scheme and decrypted values of another scheme [59].
Derived from encryption, these attacks were applied for finding pre- images of reduced variants of
common hash functions such as MD4 [60], [61], MD-5 [61], SHA-1 [62], [63] and SHA-2 [60], [64]. For
example, Aoki et al. [64] divided the steps of the compression function and used a pre-image of the
compression function to gain a pre-image of the hash function. As another example, Knellwolf and
Khovratovich [62] employed the meet-in-the-middle technique along with differential cryptanalysis
(differential cryptanalysis is discussed in section IV-B-3) to attack SHA-1.

4: Herding attack: A herding attack, aka the Nostradamus attack, finds (second) pre-images on a hash
function by searching collisions among precomputed compression functions.

It uses the birthday paradox to find the mentioned collisions and constitutes a diamond-shaped network
of these collisions to determine a hash value that can be declared as a commitment to some predictions
about the future.

At a point in the future, a second pre-image of that value which includes some happened events will be
published as evidence to support that assertion [65], [66]. This attack finds a suffix that can be appended
to a message, so that the concatenated message results in a hash value which is equal to the hash value
claimed by attacker.

Mennink [32] improved the flexibility of the attack by adjusting trade-off between the speed of attack
and the length of the (second) pre-image.

The herding attack was designed to target hash functions based on the Merkle—Damgard construction.
Moreover, Andreeva et al. [55] showed the success of herding attacks on four other hash function
constructions, namely concatenated, zipper, hash-twice, and tree hash constructions. constructions.

. Cryptanalysis

Cryptanalysis exploits logical weaknesses in a hash algorithm to invert or forge hash values [67].

These attacks are generally more efficient than generic attacks, but their applicability is limited to either a
specific hash function or a specific implementation of a hash function.

This section overviews four attacks in this category: length extension attack, algebraic cryptanalysis,
differential cryptanalysis, and rebound attack.

The first exploits the lack of output transformations, and the second breaks codes by solving equivalent
equations. The others detect primitives that hold properties leading to a non-random behavior through a
number of rounds. Some cryptanalysis attacks operate in polynomial time (e.g., length extension attack and
differential cryptanalysis), while others operate in exponential time and space complexity (e.g., rebound
attack). See Table 2.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c526

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

1: Length Extension Attack: Some hash function constructions, such as the known Merkle-Damgard
one, process subsequent blocks, mix the results subsequently, and provide the internal state of the
processed blocks as a hash value.

Exposure of the internal state makes the hash function vulnerable to length extension attack.

Message authentication is an example of an application which is susceptible to length extension attack.
Applications may authenticate messages by prepending a secret value to the message and computing the
hash of the concatenated message at both sides (i.e. sender and receiver) [67].

Such applications are susceptible to length extension attack if they use a vulnerable hash algorithm and
the attacker has access to the message and its hash value, and they know or guess the length of the secret,
although they do not know the secret itself.

This attack is implemented by initiating the hash algorithm with a given internal state, which is the hash
value of a secret prepended to a message, and appending attacker data as subsequent blocks by
subsequently feeding the algorithm.

Next, the attacker will submit the computed hash value along with a concatenated message that involves
the original message, padding of the original algorithm, and attacker data to the receiver.

Output transformation is a solution to resist length extension attack [19] that is employed by hash
functions such as Modular Arithmetic Secure Hash (MASH) [2] and MD-6 [36].

2: Algebraic Cryptanalysis: Algebraic cryptanalysis is a method for attacking hash functions by solving
polynomial systems of equations [68]. Some hash functions are reduced to instances of a satisfiability
problem [69]. Such encoding of cryptographic algorithms and the subsequent reasoning is called logical
cryptanalysis [70]. There are many examples of this type of attack to find second pre-images on round
reduced variants of MD-4 [71], MD-5 [71] and SHA-1 [71], pre- images on a round reduced variant of
MD-4 [72], and Keccak [73], [74].

3: Differential Cryptanalysis: Differential cryptanalysis seeks the relation between input differences
and corresponding output differences. It is quite common to see eXclusive OR (XOR) as the difference
operator. In addition, operators such as modular subtraction have been used to successfully attack MD-5
[75] and SHA-1 [76] hash functions.

. Quantum Adversaries

This section discusses quantum adversaries. Companies such as IBM, Google, D-Wave, and Microsoft
have developed quantum computers using various types of qubits. D-Wave practical quantum devices
have attracted research interest [77]. While up to eight trapped-ion qubits, about ten nuclear magnetic
resonance qubits, and about ten optic qubits were considered as the maximum number of qubits in 2010
[78], in 2017, D-Wave announced and shipped its new commercial quantum computer equipped with
2000 qubits [79] (D-Wave uses Adiabatic quantum computation instead of gate-based quantum
computation).

In 2019, D-Wave announced a new 5000 qubit device too. Moreover, Microsoft announced that the
company is going to offer a full-fledged topological quantum computing system which includes
hardware, software, and programming languages, so that a free preview of the programming language
which supports simulation of up to 30 logical qubits on personal computers (or up to 40 logical qubits on
Azure) would be released by the end of the 2017 [80]. Microsoft Quantum Development Kit including
Q# programming language is a released part of this stack.

Moreover, programming languages and software development kits (SDKSs) such as Google gsim [81],
IBM Qiskit [82], D-Wave Ocean [83], Scaffold [84], Quipper [85], and Microsoft LIQUi|> [86] facilitate
the transition from high-level quantum algorithms to low-level gate representation, different
architectures, error correction, and so on.

The emergence of these commercial quantum computers (D-Wave and in future Microsoft) connoted
the existence of both opportunity of quantum cryptography schemes and threat of quantum adversaries.

Tackling the latter is referred to as post-quantum cryptography.

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c527

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Table 2: Categories of Hash Functions — Analysis and applicability of attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of ~ Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c528

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

Table 2: Table 2: Table 2: Categories Table 2: Categories of ~ Table 2: Categories of

Categori Categories of of Hash Functions— Hash Functions — Hash Functions —
esof Hash Functions— Analysis and Analysis and Analysis and
Hash Analysis and applicability of applicability of attacks applicability of attacks

Function applicability of attacks

S— attacks

Analysis
and

applicabi
lity of

attacks

In brief, quantum computing upsides include:

I. Significant speedup: There are quantum algorithms for some computationally hard problems such as
Factoring and Ground State Estimation that are exponentially faster than the best classical algorithms for
those problems [87]. Such problems belong to the Bounded-error Quantum Polynomial (BQP)
computational complexity class which can be solved efficiently on a quantum computer with a bounded
probability of error [88].

Their disadvantages include:

I.LError correction: Resisting communication channel noise errors such as bit-flip errors and phase errors,
and tolerating computational faults such as faulty logic gates are necessary and are achieved through error
correction techniques such as employing redundant qubits [88].

I.Scalability problems: Existence of noise and entanglement phenomena cause scalability problems [89].
Shor [90] introduced polynomial time algorithms for Factorization and Discrete Logarithms on quantum
computers. Grover’s quantum searching algorithm [91], [92] can find a 256-bit AES key in about 2128
guantum operations [93] and is used to find hash pre-images [94]. Furthermore, there are quantum attacks
to find hash collisions [95].In contrast to problems such as Factorization and Discrete Logarithms which
have polynomial time quantum algorithms [90], post-quantum cryptography [96] tends to introduce
problems that cannot be solved by quantum computers in polynomial time. Watrous [97] proved that
problems such as Graph Isomorphism and Graph 3-coloring are zero-knowledge against general quantum
attacks. Kashefi and Kerenidis [98] defined several quantum one-way functions such as Graph Non-
Isomorphism, Approximate Closest Lattice Vector, and Group Non-Membership and generalize their
results for any hard instance of Circuit Quantum Sampling problem as a candidate quantum one-way
function.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c529

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
. Physical Security: Side Channel Attacks

Classical cryptanalysis views steps of algorithms as transformation of inputs to outputs. Conversely,
physical security views specific characteristics imposed by an implementation of those steps which are
running on a specific processor in a specific environment. Physical attacks may or may not depackage the
chip; such situations are called invasive or noninvasive attacks, respectively. In addition, physical attacks
may or may not try to tamper with the proper functioning of the device and are called active or passive
attacks, respectively [2]. Side-channel attacks, or environmental attacks, exploit dependency of
information such as running time, power consumption, and electromagnetic emissions of operated data
and performing instructions to (statistically) learn about an algorithm’s internal state [2], [99] or expose
the device’s secrets. The SHA-3 finalists were evaluated against three variants of side channel attack:
timing attack, power analysis, and electromagnetic analysis. The evaluation declared the sufficient
security margin of all finalists and found collisions on the round reduced variant of Keccak [99].
Cryptographic algorithms prevent such attacks by avoiding the use of data-dependent or power-
dependent operations such as multiplications, data- dependent rotations, and table lookups.

PUFs (See Section V-D) are tamper resistant variants of hash functions, but there are polynomial time
side channel attacks on PUFs [100] that enable the attacker to read the generated output value.

In addition to physical security, there are adversaries which consider an implementation of a security
primitive from the viewpoint of software and programming language flaws. The buffer overflow found
on the C language implementation of MD-6 is an instance of such software implementation attacks [19].

HASH FUNCTION CATEGORIES

This section describes cryptographic hash functions in seven categories and analyses the strengths and
vulnerabilities of each category (See Table 2). The proposed seven-category classification includes hash
functions based on a block cipher, hash functions based on algebraic structures, custom-designed hash
functions, PUFs, quantum hash functions, MHFs, and optical hash functions. To the best of our
knowledge, the last four mentioned categories have not been sufficiently addressed in most existing
surveys [18], [19], [26]-[29].

. Hash Functions Based on Block Ciphers

Developed mostly based on DES and AES, these hash functions reuse underlying block ciphers to
achieve a compact implementation. The main challenges of these hash functions lie in designing a
noninvertible construction based on an invertible block cipher. The SHA-3 finalist BLAKE [101] and
Russian standard hash Streebog [24] are two known hash functions of this category.

. Hash Functions Based on Algebraic Structures

Most hash functions in this category use computationally hard problems such as Factorization, Discrete
Logarithm, Knapsack, Lattice Problems, and Elliptic Curves and prove their security by reduction [102].
Some of these hash functions, though, allow the insertion of trapdoors to construct collisions by the person
who chooses the design parameters [2]. The functions based on modular arithmetic suffer from being slow.
There are many attacks for specific instances of hard problems, such as RSA [103]. As an example,
collision resistancy of Very Smooth Hash (VHA) [104] is reduced to find nontrivial modular square
roots, but this function is not pre-image resistant [105]. Modular Arithmetic Secure Hash (MASH) was
published as an International Organization for Standardization (ISO) standard on December 1998 and was
reviewed and re-confirmed as current version of standard in 2022 [106]. It has strong output transformation
but its security is not supported by a mathematical proof. Finite field is used to define some hash functions
[107]. A recent survey on hash functions based on computational problems defined on lattices was provided
by Mishra et al [108]. Furthermore, hash functions based on Cellular Automata [109] are newly introduced
members of this category.

Finally, another important family of hash functions comprises chaos-based hash functions. A chaotic
system behaves in an unpredictable but deterministic manner and is highly sensitive to initial conditions, so
a very small change in its initial state may have a large effect on its later state. A chaotic map is a
mathematical function which states such a chaotic behavior in one- or multi- dimensions. As an example,
Teh et al. [110] presented a compression function based on a one-dimensional chaotic map and used
Merkle—Damgard construction to process arbitrary-length messages.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c530

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
A. Custom-Designed Hash Functions

Known cryptographic hash functions including MD-2, MD-4, SHA-1, SHA-2, and SHA-3 (Keccak) are
instances of this category. These algorithms are designed independent from other security primitives.
Although these hash functions do not provide provable security and their security depends on confusion
and diffusion, the use of bitwise operations such as XOR, AND, and circular shifts leads to low processing
time and partial security against side channel attacks, even though there are some reports of such attacks
[111].

8. Physical Unclonable Functions (PUFs)

PUFs are hardware based security primitives and provide challenge response behavior based on
manufacturing variations that occur on a small scale. Their intrinsic unpredictablity stems from random
elements (e.g., various gate delay) in their manufacturing process [112], [2]. Depending on the usage, this
challenge response behavior may be provided in an invertible or non-invertible manner [113]. An
individual PUF device, however, cannot be practically cloned or copied, even with access to the exact
manufacturing process that produced it in the first place. This intrinsic randomness reduces computational
costs, thus making PUFs a candidate for the security of resource-constrained devices such as embedded
systems [114], and IoT [113].

There are two notable PUF types: Weak PUFs and Strong PUFs; the former accepts one or a few
challenges and is employed as a secret key for device specific encryption, while the latter accepts,
possibly, an exponential number of challenges and is considered as a physical hash function [115].
SRAM PUFs and their variants are the most popular implementation of Weak PUFs and Arbiter PUFs,
and their variants are the most popular implementation of electrically Strong PUFs. Weak PUFs suffer
from cloning and invasive attacks (e.g., Helfmeier et al. [116] created a physical clone of a SRAM PUF
using Focused lon). Cloning and invasive attacks are hardly applicable on Strong PUFs. The most
common attacks on Strong PUFs are modeling attacks [117], side channel attacks [118], and the
combination of both [100], [119].

To conclude, PUFs benfit from the following advantages:

l.Instead of storing a hash value or a sectret key on the device that includes both security consideration
and additional device memory cost, the PUF response is derived when needed [115].

I.Most types of PUFs are tamper-resistant [115], but there are some side channel attacks enhanced by
machine learning [100].

and suffer from the following disadvantages:

I.PUFs are prone to error and need to employ an error correction mechanism. Depending on PUF type,
error correction may be executed on a PUF holding device or on a communication server [115].
Il.In contrast to non-physical approaches, PUFs are prone to-aging [115].

In essence, PUFs are maps between fixed length inputs and fixed length outputs, while arbitrary length
input is desired. Therefore, PUFs are widely used for authentication and rarely used for integrity checks
(a common application of hash functions).

Finally, PUFs based on nanotechnology are the recently reported trend of PUF design [120].

A. Quantum Hash Functions

There are two sub-categories of quantum hash functions, i.e. hard problems which belong to
postquantum cryptography and hash functions based on quantum state. The former was described in
Section 4.3, and the latter is discussed in the current section. In addition to the mentioned subcategories,
there are quantum hash functions which operate on classical inputs and produce classical outputs [121].

Ziiatdinov [122] and Yang et al. [121] attributed the first state-based quantum hash function to Buhrman
et al. [123], who introduced the notion of quantum fingerprinting. Ablayev and Vasiliev [124], [125]
introduced quantum hash functions that map input data to quantum states so that the functions have pre-
image resistance (sampling property), second pre-image resistance, and collision resistance properties.
Ablayev et al. [126] discussed the reverse relation between the pre- image resistance and collision
resistance properties of quantum hash functions and introduced a construction to build balanced quantum
hash functions.

¢. Memory-Hard Functions

There are cases such as cryptocurrency mining and password hashing in which a hash function without
an efficient input-to-output mapping property (Property | in Section 2) is desired. In contrast to the design

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c531

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
goals of distributed electronic payment systems such as Bitcoin, multicore CPUs, GPUs, and dedicated
ASIC modules are used to accelerate cryptocurrency mining at a low cost. This consolidates the computing
power of the network. Some ASIC miners are roughly 200,000 times faster and 40,000 times more energy
efficient than a modern multi- core CPU [127]. Dictionary attacks on hashed password databases are
further examples of such parallel computation.

The ASIC resistance property (Property X in Section Il) aims to reduce attackers’ massively parallel
advantage. To this end, MHFs [128] and BHFs [127] were introduced to increase the hardware capital cost
and energy consumption, respectively. Percival [128] put forward the MHFs idea that with an increase in
the size of a hash derivation circuit, the number of possible circuits on a given area of silicon will decrease.
Furthermore, he introduced the scrypt hash function [128], [129] as the first instance of MHF.

Input-independent memory addressing, input- dependent memory addressing, and number of passes over
the memory are major considerations in designing an MHF. For example, Argon2 hash function [22]
includes the following tree variants:

ILArgon2d: It uses data-dependent memory access and targets the design of cryptocurrency Proof-of-Work
(PoW).
ILArgon2i: It uses data-independent memory access to resist side channel attacks and includes more passes
over the memory in comparison with Argon2d. Argon2i aims to secure password hashing.
m.Argon2id: It is not a part of Argon2 hash function proposal [22] and use a sequential composition of data-
depending and data-independent memory accesses. First half pass uses data-independent memory access
and the second half uses data- dependent memory access.

As a last example of MHFs, Zamanov et al. [34] evaluated the memory demand of Equihash and Ethash
algorithms. The former increases POW memory usage based on the birthday problem, while the latter fills a
huge amount of memory and searches within it.

Although MHFs incur additional capital costs, ASICs require far less energy than CPUs. To this end,
BHFs define a large number of planned memory accesses to avoid the energy saving of ASIC hash
engines [127].

A. Optical Hash Functions

Because of physical properties of light such as velocity and its parallel nature, light-based computing is
promising and has been shown to outperform electronic computing in some cases [130]. Optical hash
functions are photoelectric systems which encode blocks into images known as the “information plane”
[131] and replace computations of a compression function with “confusion” and “diffusion” of modulated
light [132]. Amplitude-only spatial light modulator, phase-only spatial light modulator, charge coupled
devices along with lenses [131], half mirrors [131], and/or scattering media [132] are the basic
constituents of such systems. As an example, Wen-Qi et al. [132] proposed an optical hash function which
is based on scattering media and provides the avalanche effect and collision resistance. As another
example, He and Peng [131] proposed two optical hash functions based on phase-truncated Fourier
transform and interference phenomena (i.e. two beam interference). Last but not least on our list of
examples, as noise inherent in free space setup can affect the security and performance of beam
interference and phase truncation-based hash functions, Kumar et al. [133] proposed an optical hash
function based on superposition.

MOBILE SERVICE REQUIREMENTS

Mobile devices can consume some services and also provide some other services, but they have several
constraints on their resources which may jeopardize the Quality of Service (QoS). On the other hand, as
mobile devices roam between environments, they are exposed to more attacks than stationary computers.
Hence, lightweight but not less secure cryptographic hash functions which secure interactions of
resource- constrained devices are urgently needed. Mobile service requirements are as follows:

I.LRoaming may cause inaccessibility of some resources and accessibility to some others. To aid service
continuity, hash functions are used to identify identical alternative resources and mutual authentication
of the mobile device and remote servers [134].

I.Most mobile devices have low processing power in comparison with desktop computers.

1.Most mobile devices have small memory size in comparison with desktop computers.

Iv.Limited battery capacity makes energy consumption an important consideration for mobile devices. Not
only does WS-Security hash computation required by service invocation consume energy, but also the
battery usage of hash computation is important to avoid power analysis side channel attacks [135].

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c532

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Mobile device bandwidth is limited by the network interfaces of that device and by the network being
used. This limit mediated mobile WS-Security solutions usage [136], [137].

Iv.From time to time, mobile devices undergo connection intermittence caused not only by roaming, but also
by things such as other wireless devices, microwave ovens, and other devices with poorly shielded
cabling.

v. Some mobile devices have multiple network interfaces such as Wi-Fi, Bluetooth, NFC, and GPRS (in
addition to LoRaWAN and ZigBee for 10T). To benefit from multi-homed architectures, authentication
and integrity achieved by hash functions are urgent needs for mobile service communications [138].

Hence, low processor usage, thrifty memory usage, and limited battery usage are urgent needs of
application- specific hash functions for mobile services. In addition, due to connection intermittence and
bandwidth limitation, mobile security-related computations such as hash computation can hardly be
delegated to servers that are available through wireless connections. For simplicity, the application-specific
hash function for mobile services will be referred to hereafter as mobile hash functions.

Such mobile hash functions need to cope with the mentioned limitations, and it is desirable that they
benefit from multi-homed architectures. Table 3 shows the appropriateness of each hash function category
for satisfying mobile service requirements. As Table 3 outlines, optical hash functions and state-based
quantum hash functions are not applicable for mobile devices. Algebraic-based functions benefit from
provable security but have high computational costs. Bitwise equivalent of algebraic structures that
belongs to post-quantum cryptography seemed like a good idea, but we could not find such algebraic-based
hash functions in practice. PUFs have very low computational costs and communicate just challenge-
responses. In addition, PUFs are available for 10T nodes [139]. Hence, we suggest PUFs with polynomial-
time error correction for mobile service hashing.

APPLICATION SCENARIOS

All applications do not have the same requirements for security and performance. There are a number of
application scenarios for cryptographic hash functions. Four scenarios and their corresponding analysis to
select appropriate cryptographic hash functions are presented in Table 4. The first scenario benefits from
the parallel processing capability of hash functions such as MD-6. The second scenario uses the intrinsic
randomness of PUFs to lighten hash computation load for resource constrained sensor nodes. The third
shows the usage of hash chains for process authentication. Finally, the last scenario shows the need for
output transformation in the lack of encryption.

CONCLUSION

Massive usage, significant competitions such as the SHA-3 competition, the Password Hashing
competition and the NIST lightweight competition, and nationwide hash standards [20], [21], [23]-[25]
have led to the introduction of new hash functions and new hash function constructions. To the best of
our knowledge, recent research and competitions make the following futuristic trends possible: Resource
constrained devices are used in 10T solutions such as smart farming and smart cities. Security plays a
crucial role in the success such systems so that employing hash functions need to be both resource efficient
and side-channel resistant [141]. Hence, lightweight hash functions received great attention in recent
years so that loT specific hash functions emerged and NIST lightweight competition is ongoing since
2018 [142]-[144]. In contrast to the lightweight design of these hash functions, it is important that a hash
function cannot be computed too fast on massively parallel computers and quantum computers. Hence,
evaluation of hash functions on quantum computers is a recent measure to avoid brute force attacks [145].

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c533

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Table 3: Appropriateness of each Hash Function category for satisfying mobile service requirements

Mobile Service Hash Consideration

Row [Hash Function Category Processing| Memory |Battery |Security |Applicability

1 Hash functions based on a block High
cipher

2 Hash functions based on algebraic High Proven
structures

3 Custom-designed hash functions Low
Physical unclonable functions Very low | Noneor

very low
(depending
on PUF
type)

5 Quantu Quantum states No reported work (have not found yet) Not
m hash applicable
functio Post-quantum High
ns cryptography

6 Memory-hard functions High
Optical hash functions No reported work (have not found yet) Not

applicable
Table 4: Application scenarios — selecting appropriate Hash Function
Row Scenario Name Scenario Analysis
1 A file server A multiprocessor file server stores Computing hash for large files
on a some large multimedia files. This connotes the need for fast
multiprocessor server needs to provide the hash computation. It may be obtained by
host value of each file as a checksum. using a fast hash function such as

Users can download files along BLAKE [101], [140] (BLAKE 2 or 3) or
with corresponding checksums. To a multiprocessing support hash
ensure a file has not been function such as MD-6 [36]. The
tampered with after the checksum multiprocessor server indicates the
was created, user computes the latter function as choice.

hash of the downloaded file and

compares it
with the checksum.

2 Message A sensor network sends monitored Resource constraints of sensor
authentication data to a server. A hash function is nodes and the reverse relationship
in a sensor used for message authentication. between energy consumption and
network Each sensor node has limited node lifetime suggest the use of

memory and limited processing intrinsic properties of sensors
speed. More importantly, each instead of running a hash algorithm
sensor node operates with limited on these nodes. Hence, PUFs [139]
battery energy and will die as are appropriate for this

its scenario.
energy is consumed.

3 One- In a geographically distributed This scenario may benefit from one-
time organization, it is required that time passwords that are a hash
passwor two processes hosted on different chain made by consecutive
ds servers authenticate and computation of hash values and

communicate with each other. using the hash values in descending
There is no deployed order (using last value first). Any

authentication (or encryption) hash function that supports the one-

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c534

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
facilities such as Primary Key way property is appropriate for this
Infrastructure (KPI). scenario, so that an eavesdropper
cannot use an observed password

to compute the next
valid password.

4 Authentication A key is shared between sender This scenario is prone to length

and and receiver. To send a message, extension attack (Section 4.2.1). It

integr the sender hashes that message allows the attacker to forge
ity without prepended by the shared key. messages with the same prefix.
encryption Then the message along with the Hence, both authentication and

hash value is transmitted to the integrity will be lost. Section
receiver. Having the shared key, 4.2.1 pointed out that exposure of
the receiver will hash the received the internal state of the hash
message prepended by the shared function causes this vulnerability.
key and compares it with the Hence, hash functions benefitting
received hash value. from output transformation such as
SHA-3 (Keccak) and MASH

(section 5.2) are
appropriate for this scenario.

As mentioned, PUFs based on nanotechnology are the recently reported trend of PUF design [120]. Last
but not least, optical computing has a long history to trace back and was introduced 60-year ago [146], but
optical hash functions were introduced in recent years are among the futuristic trend of hash functions. In
addition, application- specific properties have been defined for applications such as cryptocurrency and
video hashing. In this article, we discussed 11 properties of hash functions (Section 2), overviewed the
concepts of compression function and domain extension, and outlined four iterative and three noniterative
hash function constructions and combiners (Section 3). The current research also investigated those hash
functions and proposed a seven-category classification (Section 5). To the best of our knowledge, four out
of seven categories have not been sufficiently addressed in most existing surveys [18], [19], [26]-[29]. In
addition, this article discussed some attacks affecting each category (Table 2) and summarized what
effective attacks entail (Section 4).

Furthermore, considering the prevalence of mobile devices, this paper discussed mobile service
requirements on hash functions (Section 6), outlined how each hash function category fits these
requirements (Table 3), and suggested (strong) PUFs with polynomial-time error correction for mobile
service hashing. In addition, the bitwise equivalent of algebraic structures that belong to post-quantum
cryptography seemed like a good idea, but we could not find such algebraic-based hash functions in
practice. Finally, to clarify the usage, four application scenarios and their corresponding analysis to select
appropriate cryptographic hash functions were presented (Table 4). The authors aim to extend this work
by extracting patterns which fulfill the 11 properties discussed in second section. This extension, along
with the other mentioned benefits, can assist design, choice, and analysis of hash functions.

AUTHOR CONTRIBUTIONS

Second and third authors supervised this research by sketching roadmap, and evaluating the results at
each step. First author searched in authentic journals and research repositories to gather all relevant papers,
and read the selected papers in details. In addition, he made a comparison of investigated hash functions.

All authors discussed and analyzed the results and cooperatively summed up the work.

ACKNOWLEDGMENT
The authors gratefully thank the anonymous reviewers and the editor of JECEI.
CONFLICT OF INTEREST

The authors declare no potential conflict of interest regarding the publication of this work. In addition,
the ethical issues including plagiarism, informed consent, misconduct, data fabrication and, or falsification,
double publication and, or submission, and redundancy have been completely witnessed by the authors.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c535

http://www.ijcrt.org/

(1]

(2]

3]

[4]

(5]

(6]

7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

ABBREVIATIONS

MHF Memory-hard Functions

BHF Bandwidth-hard Functions

PUF Physical Unclonable Function

SHA Secure Hash Algorithm

UOWHF Universal One-Way Hash
Functions

WS-Security Web Services Security
References

J. Hoffstein, J. Pipher, J. H. Silverman, An introduction to mathematical cryptography. New York:
Springer, 2008.

H. C. A. van Tilborg, S. Jajodia, Eds., Encyclopedia of cryptography and security. Springer
Science+Business Media, 2011.

J. Keller and S. Wendzel, “Reversible and plausibly deniable covert channels in one-time passwords
based on hash chains,” Appl. Sci., 11(2): 731, 2021.

W. Stallings, Cryptography and network security: principles and practice, sixth ed. Pearson Education,
2014,

C. Wang, S. J. Li, D. Wang, Q. H. Wang, “P-28: A method of holographic encryption based on hash
function,” Dig. Tech. Pap., 47(1): 1228-1230, 2016.

L. C. Washington, Elliptic curves: number theory and cryptography, second ed. Boca Raton, Fl: Chapman
& Hall/Crc, 2008.

R. C. Merkle, “A certified digital signature,” in Proc. Conf. on the Theory and Application of
Cryptology: 218-238, 1989.

J. Rosenberg, D. L. Remy, Securing web services with WS-security: demystifying WS-security, WS-
policy, SAML, XML signature, and XML encryption. Indianapolis, Ind.: Sams, 2004.

A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Eds., Web services security: SOAP message
security 1.1. OASIS, 2006. Last accessed: Jan. 7, 2023,

L. Demir, A. Kumar, M. Cunche, C. Lauradoux, “The pitfalls of hashing for privacy,” IEEE Commun.
Surv. Tutor., 20(1): 551-565, 2018.

M. Wang, M. Duan, J. Zhu, “Research on the security criteria of hash functions-in the blockchain,” in
Proc. the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts: 47-55, 2018.

S. Abed, R. Jaffal, B. J. Mohd, M. Al-Shayeji, “An analysis and evaluation of lightweight hash functions
for blockchain-based 10T devices,” Cluster Comput., 24(4): 3065-3084, 2021.

A. Kuznetsov, I. Oleshko, V. Tymchenko, K. Lisitsky, M. Rodinko, A. Kolhatin, “Performance analysis
of c&ydpto%(aphlc hash functions’ suitable for use in blockchain,” Int. j. comput. netw. inf. secur., 13(2): 1-
15, 2021.A. M. Antonopoulos, M_astermg bitcoin: Programming the open

blockchain, 2nd ed. O’Reilly Media, 2017.

J. Garay, A. Kiayias, N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in
Proc. Annu. Int. Conf. on the Theory and Applications of Cryptographic Techniques: 281-310, 2015.

G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, L. Shao, “Unsupervised deep video hashing via balanced
code for large-scale video retrieval,” IEEE Trans. Image Process., 28(4): 1993-2007, 2019.

M. S. Jan, M. Afzal, “Hash chain based strong password authentication scheme,” in Proc. 13th Int.
Bhurban Conf. on Applied Sciences and Technology (IBCAST): 355-360, 2016.

A. A. Alkandari, I. F. Al-Shaikhli, M. A. Alahmad, “Cryptographic hash function: A high level view,”
in Proc. 2013 Int. Conf. on Informatics and Creative Multimedia: 128-134, 2013.

B. Preneel, “The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3 Competition,” in
Proc. Cryptographers’ track at the RSA Conf.: 1-14, 2010.

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, “Keccak,” in Proc. 32nd Annu. Int. Conf. on the
Theory and Applications of Cryptographic Techniques: 313-314, 2013.

W. Stallings, “Inside SHA-3,” IEEE Potentials, 32(6): 26-31, 2013.

A. Biryukov, D. Dinu, D. Khovratovich, “Argon2: new generation of memory-hard functions for
password hashing and other applications,” in Proc. 2016 IEEE European Symposium on Security and
Privacy (EuroS&P), Saarbruecken, Germany: 292-302, 2016.

S. Shen, X. Lee, R. Tse, W. Wong, Y. Yang, “The SM3 cryptographic hash function,” draft-sca-cfrg-
sm3-02, 2018.

V. Dolmatov, A. Degtyarev, “GOST R 34.11-2012: hash function,”

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c536

http://www.ijcrt.org/
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.oreilly.com/library/view/mastering-bitcoin-2nd/9781491954379/
https://www.oreilly.com/library/view/mastering-bitcoin-2nd/9781491954379/
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://ieeexplore.ieee.org/abstract/document/6651669
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://www.rfc-editor.org/rfc/rfc6986

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

(39]
[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

RFC 6986, 2013.

R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev, O. Kuznetsov, Y. Gorbenko, A. Boiko, O.
Dyrda, V. Dolgov, A. Pushkaryov, “A new standard of Ukraine: The Kupyna hash function,”
Cryptology ePrint Archive, DSTU 7564: 2014, 2015.

S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, “Cryptographic hash functions: A survey,” Department of
Computer Science, University of Wollongong, Technical Report 95-09, Jul. 1995.

J. Delvaux, R. Peeters, D. Gu, I. Verbauwhede, “A survey on lightweight entity authentication with

strong PUFs,” ACM Comput. Surv., 48(2): 1-42, 2015.

I. Mironov, “Hash functions: Theor attacks, and applications,”
Microsoft Research, Silicon Valley Campus, 1-22, Nov. 2005.

R. Purohit, U. Mishra, A. Bansal, "A survey on recent cryptographic hash function designs,” Int. J.
Emerging Trends & Technology in Computer Science (JETTCS), 2(1): 2278-6856, 2013.
A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, S. Goldfeder, Bitcoin and cryptocurrency

technologies: A comprehensive introduction. Princeton, NJ: Princeton University Press, 2016.

M. Rjasko, “On chosen target forced preflx preimage resistance,”
Tatra Mt. Math Publ., 47(% 115-135, 2

B. Mennink, ¢ ‘Increasing the erX|b|I|ty of the herding attack,” Inf.
Process. Lett., 112(3): 98-105, 2012.

E. Andreeva, B. Mennink, “Provable chosen-target-forced-midfix preimage resistance,” in Int.
Workshop on Selected Areas in Cryptography: 37-54, 2011.

A. R. Zamanov, V. A. Erokhin, P. S. Fedotov, “ASIC-resistant hash functions,” in Proc. 2018 IEEE
Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): 394-396,
2018.

H. Chen, Y. Wo, G. Han, “Multi-granularity geometrically robust video hashing for tampering
detection,” Multimed. Tools Appl., 77(5): 5303-5321, 2017.

R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan, J.
Krishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, Y. L. Yin, “The MD6
hash function— a proposal to NIST for SHA-3,” Submission to NIST, 2(3), 2008.

R. Reischuk, M. Hinkelmann, “One-way functions - mind the trap - escape only for the initiated,” in
Proc. Algorithms Unplugged, Berlin, Heidelberg: Springer Berlin Heidelberg, 131-139, 2011.

O. Goldreich, S. Goldwasser, S. Halevi, “Collision-free hashing from lattice problems,” in Proc. Studies in
Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation,
Berlin, Heidelberg: Springer Berlin Heidelberg, 30- 39, 2011.

W. Hu, N. Xie, L. Li, X. Zeng, S. Maybank, “A survey on visual content-based video indexing and
retrieval,” IEEE Trans. Syst. Man Cybern. C Appl. Rev., 41(6): 797-819, 2011.

A. Appleby, Murmurhash 3.0, 2016. Last accessed: Aug. 25, 2022.

C. Estébanez, Y. Saez, G. Recio, P. Isasi, “Performance of the most common non-cryptographic hash

functions,” Softw. Pract. Exp., 44(6): 681-698, 2014.

S. Chen and C. Jin, “A second preimage attack on zipper hash,”
Secur. Commun. Netw.,. 8(16): 28602 66 2015.

M. Liskov, “Constructing an ideal hash function from weak ideal compression functions,” in Proc. 13th
Int. Workshop on Selected Areas in Cryptography: 358-375, 2006.

B. Denton, R. Adhami, “Modern hash function construction,” in Proc. the Int. Conf. on Security and
Management (SAM): 479-483, 2011.

Z. Bao, 1. Dinur, J. Guo, G. Leurent, L. Wang, “Generic attacks on hash combiners,” J. Cryptology,
33(3): 742-823, 2019.

M. Fischlin, A. Lehmann, D. Wagner, “Hash function combiners in TLS and SSL,” in Proc.
Cryptographers’ Track at the RSA Conf.: 268— 283, 2010.

D. X. Charles, K. E. Lauter, E. Z. Goren, “Cryptographic hash functions from expander graphs,” J.
Cryptology, 22(1): 93-113, 2009.

C. Petit, J. J. Quisquater, “Cryptographic hash functions and expander graphs: The end of the story?,” in
Proc. The New Codebreakers, Berlin, Heidelberg: Springer Berlin Heidelberg: 304— 311, 2016.

B. A. Forouzan, Cryptography & network security. Maidenhead, England: McGraw Hill Higher
Education, 2007.

R. C. Merkle, “One way hash functions and DES,” in Proc. Conf. on the Theory and Application of
Cryptology: 428-446, 1989.

I. B. Damgard, “A design principle for hash functions,” in Conf. on the Theory and Application of

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c537

http://www.ijcrt.org/
https://www.rfc-editor.org/rfc/rfc6986
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://www.sav.sk/journals/uploads/0317155007rjasko.pdf
https://www.sav.sk/journals/uploads/0317155007rjasko.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0020019011002857
https://www.sciencedirect.com/science/article/abs/pii/S0020019011002857
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/sec.1210
https://dl.acm.org/doi/abs/10.1002/sec.1210
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://link.springer.com/chapter/10.1007/0-387-34805-0_39

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

(62]

(63]

[64]

[65]

(66]
[67]

[70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

Cryptology: 416-427, 1989.

E. Andreeva, G. Neven, B. Preneel, T. Shrimpton, “Seven-property- preserving iterated hashing: ROX,”

in Proc. 13th Int. Conf. on the Theory and Application of Cryptology and Information Security: 130-146,

2007.

V. Shoup, “A composition theorem for universal one-way hash functions,” in Int. Conf. on the Theory

and Applications of Cryptographic Techniques: 445-452, 2000.

I. Mironov, “Hash functions: From merkle-damgard to shoup,” in Proc. Int. Conf. on the Theory and

Applications of Cryptographic Techniques: 166-181, 2001.

E. Andreeva, C. Bouillaguet, O. Dunkelman, J. Kelsey, “Herding, second preimage and trojan message

attacks beyond Merkle- Damgard,” in Proc. 16th Int. Workshop on Selected Areas in Cryptography: 393-

414, 2009.

J. Katz, Y. Lindell, Introduction to modern cryptography, 2nd ed. Philadelphia, PA: Chapman &

Hall/CRC, 2014.

K. Malvoni, J. Knezovic, “Are your passwords safe: Energy-Efficient Bcrypt Cracking with Low-Cost

Parallel Hardware,” in Proc. 8th USENIX Workshop on Offensive Technologies (WOOT 14): 1-7, 2014.
H. J. Mun, S. Hong, J. Shin, “A novel secure and efficient hash function with extra padding against

rainbow table attacks,” Cluster Computing, 21(1): 1161-1173, 2017.

E. Conrad, S. Misenar, J. Feldman, Cissp Study Guide, 2nd ed. Waltham, MA, USA: Syngress

Publishing, 2012.

J. Guo, S. Ling, C. Rechberger, H. Wang, “Advanced meet-in-the- middle preimage attacks: First results

on full Tiger, and improved results on MD4 and SHA-2,” in 16th Int. Conf. on the Theory and

Application of Cryptology and Information Security: 56-75, 2010.

K. Aoki, Y. Sasaki, “Preimage attacks on one-block MD4, 63-step MDS5 and more,” in Proc. 15th Annu.
Int. workshop on selected areas in cryptography: 103-119, 2008.

S. Knellwolf, D. Khovratovich, “New preimage attacks against reduced SHA-1,” in Proc. 32nd Annu.
Cryptology Conf.: 367-383, 2012.

K. Aoki, Y. Sasaki, “Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1,” in Proc.
29th Annu. Int. Cryptology Conf.: 70-89, 2009.

K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang, “Preimages for step-reduced SHA-2,” in Proc.
15th Int. Conf. on the Theory and Application of Cryptology and Information Security: 578-597, 2009.
J. Kelsey, T. Kohno, “Herding hash functions and the Nostradamus attack,” in Proc. Annu. Int. Conf. on
the Theory and Applications of Cryptographic Techniques: 183-200, 2006.

M. Stamp, R. M. Low, Applied cryptanalysis: breaking ciphers in the real world. Hoboken, N.J.: Wiley-
Interscience, 2007.

W. Stallings, Network security essentials: Applications and standards, 4th ed. Prentice Hall, 2010.

G. V. Bard, Algebraic Cryptanalysis. Springer, 2009.

681 D. Jovanovié, P. Janici¢, “Logical analysis of hash functions,” in 5thint. Workshop on Frontiers of
Combining Systems: 200-215, 2005.

) 169 F. Massacci, L. Marraro, “Logical cryptanalysis as a SAT problem,”
J. Automated Reasoning, 24(1): 165-203, 2000.

F. Legendre, G. Dequen, M. Krajecki, “Encoding hash functions as a sat problem,” in Proc. 2012 IEEE
24th Int. Conf. on Tools with Artificial Intelligence, 1: 916-921, 2012.

D. De, A. Kumarasubramanian, R. Venkatesan, “Inversion attacks on secure hash functions using SAT
solvers,” in 10th Int. Conf. on Theory and Applications of Satisfiability Testing: 377-382, 2007.

P. Morawiecki, M. Srebrny, “A SAT-based preimage analysis of reduced Keccak hash functions,” Inf.
Process. Lett., 113(10-11): 392-397, 2013.

E. Homsirikamol, P. Morawiecki, M. Rogawski, M. Srebrny, “Security margin evaluation of SHA-3
contest finalists through SAT- based attacks,” in Proc. 11th IFIP Int. Conf. on Computer Information
Systems and Industrial Management: 56-67, 2012.

X. Wang, H. Yu, “How to break MD5 and other hash functions,” in Proc. 24th Annu. Int. Conf. on the

Theory and Applications of Cryptographic Techniques: 19-35, 2005.

X. War%% Y. L. Yin, H. Yu, “Finding collisions in the full SHA-1,” in
Proc. 25th Annu. Int. Cryptology Conf.: 17-36, 2005.

W. Vinci, T. Albash, A. Mishra, P. A. Warburton, D. A. Lidar, “Distinguishing classical and quantum
models for the d-wave device,” Cornell University Library, 2014.
E. Knill, “Quantum computing,” Nature, 463(7280): 441-443, 2010.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c538

http://www.ijcrt.org/
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Network-Security-Essentials-Applications-Standards/dp/0136108059
https://www.amazon.com/Network-Security-Essentials-Applications-Standards/dp/0136108059
https://link.springer.com/book/10.1007/978-0-387-88757-9
https://link.springer.com/chapter/10.1007/11559306_11
https://link.springer.com/chapter/10.1007/11559306_11
https://link.springer.com/chapter/10.1007/11559306_11
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11535218_2
https://link.springer.com/chapter/10.1007/11535218_2
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
https://www.nature.com/articles/463441a

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

(781 “D-Wave announces first order for 2000Q quantum computer,” ID Quantique, 24-Feb-2017. Last
accessed: Jan. 10, 2023. Available at: D-Wave Announces D-Wave 2000Q Quantum Computer and First
System Order — D-Wave Government (dwavefederal.com).

(791 “With new Microsoft breakthroughs, general purpose quantum computing moves closer to reality,”
Stories, Sep. 25, 2017. Last accessed: Jan. 10, 2023.

is0] “Quantum simulator,” Google Quantum Al. Last accessed: Jan. 10, 2023.

is1] “qiskit.org,” Qiskit.org. Last accessed: Jan. 10, 2023.

1821 “D-wave ocean software documentation — ocean documentation
5.3.0 documentation,” Dwavesys.com. Last accessed: Jan. 10, 2023.

1831 A. J. Abhari et al., “Scaffold: Quantum programming language,” Princeton univ NJ dept of computer
science, Rep. TR-934-12, 2012. Last accessed: Jan. 10, 2023.

841 A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, “Quipper: a scalable quantum
programming language,” in Proc. the 34th ACM SIGPLAN Conf. on Programming language design and
implementation: 333-342, 2013.

ss] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, “Quipper: a scalable quantum
programming language,” in Proc. the 34th ACM SIGPLAN Conf. on Programming language design and
implementation: 333-342, 2013.

is6] “Language-Integrated Quantum Operations: LIQUi[>,” MicrosoftResearch. Last accessed: Jan. 10, 2023.

871 S. Patil, A. JavadiAbhari, C. F. Chiang, J. Heckey, M. Martonosi, F. T. Chong, “Characterizing the
performance effect of trials and rotations in applications that use Quantum Phase Estimation,” in Proc.
2014 IEEE Int. Symposium on Workload Characterization (IISWC): 181-190, 2014.

8s] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10Th Anniversary

Edition. Cambridge, England: Cambridge University Press, 2010.

S. Imre, “Quantum computing and communications — Introductionand challenges,” Comput. Electr. Eng.,

40(1): 134-141, 2014.

o] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proc. 35th
Annu. Symposium on Foundations of Computer Science: 124-134, 1994,

01 L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. the twenty-eighth
Annu. ACM symposium on Theory of computing: 212-219, 1996.

[92] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett.,
79(2): 325-328, 1997.

[93] 5)(.)1%). Bernstein, “Grover vs. mceliece,” in Third Int. Workshop onPost-Quantum Cryptography: 73-80,

(89]

041 P. Wang, S. Tian, Z. Sun, N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., 2(2):
2020.

es] X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, L. Hu, “Quantum collision attacks on AES-like hashing with
low quantum random access memories,” in Proc. 26th Int. Conf. on the Theory and Application of
Cryptology and Information Security: 727-757, 2020.

6] D. J. Bernstein, “Introduction to post-quantum cryptography,” in Post-Quantum Cryptography, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1-14, 2009.

1971 J. Watrous, “Zero-Knowledge against Quantum Attacks,” SIAM j.comput., 39(1): 25-58, 2009.

18] E. Kashefi, 1. Kerenidis, “Statistical Zero Knowledge and quantumone-way functions,” Theor. Comput.
Sci., 378(1): 101-116, 2007.

91 S.J. Chang et al., “Third-round report of the SHA-3 cryptographic hash algorithm competition,” National
Institute of Standards and Technology, Gaithersburg, MD, Rep. 7896, Nov. 2012.

[100] U. Rithrmair et al., “Efficient Power and Timing Side Channels for Physical Unclonable
Functions,” in Proc. 16th Int. Workshop on Cryptographic Hardware and Embedded Systems, 476-492,
2014,

[101] J. P. Aumasson, W. Meier, R. C. W. Phan, L. Henzen, The hash function BLAKE. Springer-Verlag

Berlin Heidelberg, 2014.

1021 A. Bauer, E. Jaulmes, E. Prouff, J.-R. Reinhard, J. Wild, “Horizontalcollision correlation attack on elliptic
curves: - Extended Version -

,” Cryptogr. Commun., 7(1): 91-119, 2015.

11031S. Y. Yan, Cryptanalytic attacks on RSA. Springer, 2008. S. Contini, A. K. Lenstra, R. Steinfeld, “VSH,
an efficient and provable collision-resistant hash function,” in Proc. 25th Int. Conf. on the Theory and
Applications of Cryptographic Techniques: 165- 182, 2006.

[104] M. J. O. Saarinen, “Security of VSH in the real world,” in Proc. 7th Int. Conf. on Cryptology in
India: 95-103, 2006.

IJCRT2505286 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c539

http://www.ijcrt.org/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://quantumai.google/qsim
https://quantumai.google/qsim
https://qiskit.org/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://www.proquest.com/openview/732967640b8b00499bc6d034bdd614be/1?pq-origsite=gscholar&cbl=666313
https://www.proquest.com/openview/732967640b8b00499bc6d034bdd614be/1?pq-origsite=gscholar&cbl=666313
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/book/10.1007/978-0-387-48742-7
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11941378_8
https://link.springer.com/chapter/10.1007/11941378_8
https://link.springer.com/chapter/10.1007/11941378_8

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

[105] ISO/IEC 10118-4:1998 Information technology — Security techniques — Hash-functions — Part
4: Hash-functions using modular arithmetic, ISO/IEC 10118-4:1998, Dec. 1998.

[106] S. Kolbl, E. Tischhauser, P. Derbez, A. Bogdanov, “Troika: a ternary cryptographic hash function,”
Des. Codes Cryptogr., 88(1): 91-117, 2020.

[107] N. Mishra, S. H. Islam, S. Zeadally, “A comprehensive review on collision-resistant hash functions
on lattices,” J. Inf. Secur. Appl., 58: 102782, 2021.

[108] V. Manuceau, “About a fast cryptographic hash function using cellular automata ruled by far-off
neighbours,” Int. j. eng. trends technol., 69(2): 39-41, 2021.

[109] J. S. Teh, K. Tan, M. Alawida, “A chaos-based keyed hash function based on fixed point

representation,” Cluster Comput., 22(2): 649- 660, 2018.

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c540

http://www.ijcrt.org/
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z

