
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c517

Review On Brand New Categories Of

Cryptographic Hash Functions

1Urvashi Chaudhary, 2Dr. Amit Bhatnagar
1Research Scholar, 2Assistant Professor

Computer Science & Applications Department

IFTMU, Moradabad, Uttar Pradesh, India

Abstract:
Background and Objectives: Cryptographic hash functions are the linchpins of mobile services,
blockchains, and many other technologies. Designing cryptographic hash functions has been
approached by research communities from the physics, mathematics, computer science, and electrical
engineering fields. The emergence of new hash functions, new hash constructions, and new
requirements for application-specific hash functions, such as the ones of mobile services, have
encouraged us to make a comparison of different hash functions and propose a new classification.
Methods: Over 100 papers were surveyed and reviewed in detail. The research conducted in this paper
has included four sections; article selection, detailed review of selected articles, data collection, and
evaluation of results. Data were collected as new hash function properties, new hash function
constructions, new hash function categories, and existing hash function attacks which are used to
evaluate the results.
Results: This paper surveys seven categories of hash functions including block cipher-based functions,
algebraic-based functions, custom-designed functions, Memory-hard Functions (MHFs), Physical
Unclonable Functions (PUFs), quantum hash functions and optical hash functions. To the best of our
knowledge, the last four mentioned categories have not been sufficiently addressed in most existing
surveys. Furthermore this paper overviews hash-related adversaries and six hash construction variants.
In addition, we employed the mentioned adversaries as evaluation criteria to illustrate how different
categories of hash functions withstand the mentioned adversaries. Finally, the surveyed hash function
categories were evaluated against mobile service requirements.
Conclusion: In addition to new classification, our findings suggest using PUFs with polynomial-time
error correction or possibly bitwise equivalents of algebraic structures that belongs to post-quantum
cryptography as candidates to assist mobile service interaction requirements.

Index Terms - Optical Hash Function, Memory-Hard Function, Bandwidth-Hard Function, Physical

Unclonable Function, Quantum Hash Function

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c518

I. INTRODUCTION

A cryptographic hash function is an integral part of a variety of applications such as digital signatures

[1], authentication by static passwords, authentication by One-Time Passwords (OTP) [2], [3], data

integrity [4], holographic encryption [5], Elliptic Curve Integrated Encryption Scheme (ECIES) [6],

Merkle tree [7], WS- Security [8], [9], data anonymization [10], Blockchain [11]-

[13], cryptocurrencies [14], [15], video similarity search [16], and hash chain based strong password

authentication [17], to name a few. Nine uses of cryptographic hash functions have been reviewed by

messages.

Depending on the application, a hash function h may need to support some or all of the following

properties:

I.It maps arbitrary length input x to h(x) efficiently. An efficient implementation may be achieved in

software or hardware or both.

II. One-way property or pre-image resistant property: For any given 𝑦 in the image of ℎ, it is not

computationally feasible to find a message 𝑥 such that
𝑦 = ℎ(𝑥).

III. Second pre-image resistant property: For any given message 𝑥, it is not computationally feasible to find a

message 𝑥′ such that 𝑥 ≠ 𝑥′ and ℎ(𝑥) = ℎ(𝑥′).

IV. Collision resistant property: It is not computationally feasible to find a pair 𝑥 and 𝑥′ such that 𝑥 ≠ 𝑥′ and

ℎ(𝑥) = ℎ(𝑥′).

V. Second collision resistant property: An attacker should not be able to use a given collision ℎ(𝑥1) = ℎ(𝑥′)

to find another collision ℎ(𝑥2) = ℎ(𝑥′).

VI. Hiding property: Given ℎ(𝑟||𝑥) so that 𝑟 is chosen from a high min‐entropy probability distribution and

|| denotes concatenation of values, it is not computationally feasible to find [30]. This property is a variant

of one-way property and originates from blockchain terminology.

VII. Puzzle friendliness property: Given 𝑟 and ℎ(𝑟||𝑥) so that 𝑟 comes from a spread‐out set and ℎ is an

n-bit hash function, it is computationally infeasible to find 𝑥 in time significantly less than 2𝑛 [30]. Bitcoin

mining is a race to solve such a computational puzzle.

VIII. Chosen-Target-Forced-Prefix (CTFP) preimage resistance property: Committing a hash value ℎ, without

knowing the prefix of the message that will be hashed should be difficult [31], [32].

The first four properties are mentioned in many references, but the rest are more or less new. Property

I emphasizes that a hash function may be used by resource-constrained devices or to provide a fingerprint

for a possibly very large file. An example of this property is a parameter provided by SHA-3 hash

function to trade- off security and performance [20], [21]. As another example, some hash functions such

as MD-6 provide parallel implementation to speed up hashing a long message on multicore processors

[36].

A hash function that supports Properties I and II is called a one-way hash function [1], [37]. A

cryptographic hash function is a one-way hash function that provides second pre-image and collision

resistant properties.

 Since the introduction of cryptographic hash functions in the late 1970s, lots of hash functions have

emerged that support pre-image resistance and second pre-image resistance properties; providing collision

resistance, however, is more challenging. Fortunately, while few of hash function applications, such as

digital signature, rely on collision resistance, for others providing pre-image resistance and second pre-

image resistance properties is sufficient [2], [19].

Regarding the special ways that hash functions are employed in blockchain, hiding and puzzle

friendliness properties are defined. Properties VI and VII harden bitcoin mining by reducing its surface of

vulnerability, but as bitcoin lacks Property X, there are ASIC machines which speed up mining with

reduced cost per bitcoin mined. Properties VIII and IX are preventive criteria to resist against herding

attack (Section IV-A-4). Finally, Property XI focuses video hashing design on semantic content changes

[16], [35] extracted from segmented video structural elements such as video shots [39]. Illustrated with

UML class diagram, Fig. 1 depicts how hash functions, one-way hash functions, and cryptographic hash

functions are subsequently extended (denoted by UML Generalization relationship) by adding pre-image

property and both second pre-image and collision resistant properties, respectively. Fig. 1 further shows

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c519

how application-specific hash functions, such as blockchain specific and video hash functions, enrich the

required properties to satisfy application-specific requirements.
One may wonder whether a practical hash function without one-way property exists. Murmur hash

[40] is an example of a hash function which is not designed for one- wayness. Non-cryptographic hash
functions (NCHFs) [41] provide fast lookup capability. This paper concentrates on cryptographic hash
functions, referred to hereafter as hash functions.

CONSTRUCTIONS AND COMBINERS

Designing a hash function entails making important decision on how to mix input message bits all

together. While a large number of hash functions exists, they all have been designed based on a handful

of constructions.

Fig. 1: Hierarhy of hash functions.

Hash function constructions are important in combining all bits of arbitrary-length messages in a way

that holds properties such as collision resistance. These constructions split an arbitrary-length message into

equal-sized blocks and iterate through the blocks to combine block bits all together. Some constructions

combine block bits themselves, while others apply a compression function on each block and combine the

results.

A compression function is a one-way function which takes a fixed length block of message along with a

chaining variable as input, mixes the bits of input with each other, and returns a shorter, fixed-length

output.

The way that a hash function construction combines the results of its underlying compression function is

called domain extension [42]. For some domain extensions, if the underling compression function has a

security property such as collision resistance, that domain extension can produce hash functions that retain

that property. For example, it is proven that hash functions based on the Merkle-Damgård construction

(Section III-B-1) which use a fixed initial value along with an appropriate padding are collision resistant as

long as their corresponding compression function is collision resistant.

Moreover, some other domain extensions such as the Zipper hash construction [43] (Section III-B-3)

produce hash functions which hold properties such as collision resistance regardless of their underlying

compression function.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c520

This section reviews four iterative and two noniterative hash function constructions. The former

includes most common constructions such as Merkle- Damgård and Sponge, while the latter includes tree

style and graph-based hash function constructions. Other rarely used hash function constructions, such as

Wide- pipe and the Hash Iterated Framework, are not included in this survey. Both of the omitted

constructions aim to solve internal collision problems. The former uses output transformation, while the

latter uses a salt and a counter to achieve this goal [44].

Finally, this section reviews two hash function combiners (simply combiner henceforth). A combiner

combines the output of two hash functions or the output of the compression functions of two hash

functions [45]. As an example, bitcoin uses double SHA-256 (i.e. SHA- 256(SHA-256(message))) and a

combination of RIPEMD- 160 and SHA-256 (i.e. RIPEMD-160(SHA-256(message)))

that are examples of combining hash functions in a sequential order. As another example, a

combination of MD-5 and SHA-1 was used by SSL/TLS [46]. Concatenation combiners and XOR

combiners are also used [45]. Merkle tree and Zipper hash combiners are reviewed in this section. The

former combines the outputs of a hash function in tree style, while the latter combines the outputs of two

different compression functions in reverse order.

A. Noniterative Constructions

This section first reviews Merkle tree and then discusses tree- and graph-based constructions.

These constructions map arbitrary-length input to tree leaves or graph walks and process the resulting tree

or graph.

1. Merkle Tree: Merkle tree [7] is a combiner and uses a binary tree structure to allow the integrity of

large data sets to be verified quickly. One of its recent applications is bitcoin. Fig. 2 depicts an example of

a Merkle tree [14]. The tree’s leaves are data blocks we want to hash. The hash of each leaf node is stored

in its immediate parent node. Then, the hash of each pair of nodes is concatenated and hashed together,

until there is one root hash known as the Merkle root [14]. Data integrity of a block is verified by checking

hashes from that block to the root node (Fig. 3 [14], [30]). A tree consisting of 𝑛 nodes requires verifying

about log 𝑛 items [30], including verifying hash of that data block and its sibling-node (if it exists), and

then proceeds upward until it reaches the top.

MD-6 Tree style construction: MD-6 [36] uses a 4-ary tree structure to achieve parallelism along with

alternative sequential mode. As a source of parallelism, each round of its compression function

uses 16 parallelizable loops. Moreover, it parallelizes a quaternary Merkle tree-like structure with a

height adjustment parameter (L). Regarding L, there are three modes of operation:

 L = 64 as the default and means fully tree-based mode.

 L = 0 means sequential mode and uses a Merkle- Damgård construction.

 Specifying a number greater than 0 and less than 64 means hybrid mode. First using L level tree, and

then sequential mode.

Fig. 4 shows an example of an MD-6 tree [36]. MD-6 uses a 4-to-1 compression function at each

internal node of the tree. Tree leaves store blocks of data to be hashed, and internal nodes store the results

of applying compression function on the concatenated data of four child nodes. The compression function

at the root node is flagged to return truncated result as a MD-6 hash value.

MD-6 was submitted to the SHA-3 competition, but due to an error found in its security proof against

differential attacks [19], it did not proceed to the second round of that competition.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c521

Fig. 2: An example of a Merkle tree construction [14].

Fig. 3: Verifying hashes from a block to the root node [14], [30].

Fig. 4: An example of an MD-6 tree construction [36].

1. Graph based constructions: There are a number of hash functions defined based on Cayley graphs which

are expanders too. A Cayley graph is one that encodes a group based on its generator set. An expander

graph is a sparse but highly connected graph, so that each small set of vertices has many neighbors.

Cayley graphs which map non-Abelian finite groups and are expanders were used to design hash functions.

An example is the elliptic curves- based graph hash function defined by Charles et al. [47]. Regarding the

hardness of finding cycles in an expander graph, this graph hash function used the input message to walk

around an expander graph and defined collision- resistancy as equivalent to finding a cycle in such a

highly connected graph.

In addition, the preimage resistance of some graph hash functions depends on the hardness of the

Factorization problem in non- Abelian groups [48].

B. Iterative Constructions

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c522

These constructions iterate through an arbitrary- length input to compute bitwise operations such as

XOR on fixed-length blocks of that input. Each iteration mixes an input block with either an initial value

or the output of its previous iteration. The input message will be padded if its length is not an integer

multiple of the block size. Hash functions based on such constructions are known as iterated

cryptographic hash functions [49].

1. Merkle-Damgård construction: Merkle-Damgård construction [50], [51] was used by known

hash functions MD-5, SHA-1, and SHA-2. It allows the construction of collision-resistant hash functions

from collision-resistant compression functions when fixed initial values are used and the length of the

input message is appended to it [19]. The same, however, is not true about pre-image resistance and

second pre-image resistance properties [52]. Fig. 5 represents this construction [28]; Mi labelled boxes

represent message blocks, F labelled trapezoids represent compression functions, solid lines represent

dataflows, and other symbols intuitively represent initial value and output digest. This notation is

common in cryptography literature with some exceptions that are considered irrelevant.

Fig. 5: Merkle-Damgård construction [28].

2) Shoup construction: The Shoup construction aims to achieve pre-image resistance and is depicted in

Fig. 6 [53], [54]. It is similar to the Merkle-Damgård construction along with some mask bits that are

XORed with the results of the compression function at each iteration [53], [54]. Bitwise XOR operations

are represented by the ⊕ symbol.

3) Zipper hash construction: Zipper hash combines the results of two different compression functions

in reverse order. Hence, it is a hash function combiner and a hash function construction as well.

Regarding the second collision-resistant property, this construction aims to prevent the use of a successful

attack on a compression function to attack a hash function which applies it.

Fig. 6: Shoup construction [53], [54].

The output transformation function is represented by a g labelled trapezoid.

A second pre-image attack on Zipper hash was introduced [42], although the time complexity of this

attack was not much better than the time complexity of the brute force attack (i.e. O (2n)). In addition,

Herding attack (Section IV.A.4) was extended to attack the Zipper hash and other hash function

constructions which process each message block more than once [55].

4: Sponge construction: The Sponge construction [20],

[21] is used by the Keccak hash function which won the SHA-3 competition. This construction takes

the padding algorithm as input and adds zero initiated bits which are called capacity (c) to the processing

bits of each iteration which are called bit-rate (r). The ratio of capacity bits to bit-rate determines the

balance between security and performance [21].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c523

Accomplishing such iteration through all blocks is called the absorbing phase which processes b= r +

c bits at each iteration. In addition, the Sponge construction allows users to customize the output size. If

the length of required output (l) is not greater than b, then the first l bit of b is returned as output; if l>b,

however, then the squeezing phase begins, so that the first r bit of the output of all squeezing iterations

are concatenated and returned as output. Fig. 8(b) shows the squeezing phase [21].

Fig. 7: Zipper hash construction [43].

A. Generic Attacks

Generic attacks are slow, but they apply to all hash functions, regardless of their algorithms and

corresponding implementations. Thus, these attacks define a lower band for the output length of

secure hash functions [56]. These attacks call a hash function or its compression function a number of

times and seek relationships between the results. As a generic attack uses the black box model, it

may cause exponential time complexity in the form of (2(𝑛−𝑘)/𝑎), where n is output length of hash

function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and

herding attack), and k is the order reduction achieved in the cost of (2𝑘) space (herding attack and rainbow

tables). See Table 2.
1: Brute force attacks:
A brute force attack on an n-bit hash function evaluates that function on 𝜃(2𝑛) distinct input values to find
(second) pre-images; considering multiple targets, say 𝜃(2𝑡) targets, the cost can be reduced to 𝜃(2𝑛−𝑡),
while this degradation can be answered by parameterization of the hash function [19]. Furthermore, in
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash
values, may accelerate these attacks and trade increased space usage with decreased time. But random
salting [57] and automatic padding [58] prevent such lookup table creations.

A brute force attack shows the worst case to find a pre- image or second pre-image on an n-bit hash

function. It determines a lower bound for the output length of hash function to resist pre-image and

second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash

function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and

SHA-3 hash functions.

2: Birthday attacks: These algorithms find a collision based on the so-called birthday paradox in the

cost of

(2𝑛/2) with a probability greater than ½.

Seemingly unintuitive, the birthday paradox states that

23 people are sufficient to have a shared birthday occurrence with ½ probability, i.e. the probability of

finding a shared birthday (i.e. collision) for 𝑡 people whose birthdays are independently distributed among

the n = 365 days of a non-leap year is 𝜃(𝑡2/𝑛) if 𝑡 < 𝑛1/2 and is a constant value otherwise [56]; the exact

value is computed by the possibility that each investigated person does not share their birthday with

previously investigated persons and subtracting that product value from 1 [1]; this probability is denoted

in (1).

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c524

Fig. 8: Sponge construction, (a) input padding (b) squeezing output [21].

ATTACKS AND ADVERSARIES

How a hash function resists different attacks is the most important criterion for gaining wide acceptance.

Loosely speaking, there are four categories of approaches to make an attack on a hash function: generic

attacks, cryptanalysis attacks, quantum adversaries, and implementation specific adversaries. This section

briefly describes these categories, and Table 1 depicts the target, method, and complexity of each attack

category. The parameter n used in the last column of Table 1 denotes the length of input message which

will be hashed.

Generic Attacks:Generic attacks are slow, but they apply to all hash functions, regardless of their

algorithms and corresponding implementations. Thus, these attacks define a lower band for the output

length of secure hash functions [56]. These attacks call a hash function or its compression function a

number of times and seek relationships between the results. As a generic attack uses the black box

model, it may cause exponential time complexity in the form of (2(𝑛−𝑘)/𝑎), where n is output length of

hash function, a indicates the possible order reduction by statistical methods (e.g., birthday attack and

herding attack), and k is the order reduction achieved in the cost of (2𝑘) space (herding attack and rainbow

tables). See Table 2.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c525

𝑖=0

 1: Brute force attacks:
A brute force attack on an n-bit hash function evaluates that function on 𝜃(2𝑛) distinct input values to find
(second) pre-images; considering multiple targets, say 𝜃(2𝑡) targets, the cost can be reduced to 𝜃(2𝑛−𝑡),
while this degradation can be answered by parameterization of the hash function [19]. Furthermore, in
some cases such as password hashing, rainbow tables, which are cached tables of precomputed hash
values, may accelerate these attacks and trade increased space usage with decreased time. But random
salting [57] and automatic padding [58] prevent such lookup table creations.

A brute force attack shows the worst case to find a pre- image or second pre-image on an n-bit hash

function. It determines a lower bound for the output length of hash function to resist pre-image and

second pre-image attacks (Similarly, birthday attack defines a lower bound for the output length of hash

function to resist against collision attacks). For example, 224 bits is the lower bound used by SHA-2 and

SHA-3 hash functions.

2: Birthday attacks:

These algorithms find a collision based on the so-called birthday paradox in the cost of (2𝑛/2) with a

probability greater than ½.Seemingly unintuitive, the birthday paradox states that 23 people are sufficient

to have a shared birthday occurrence with ½ probability, i.e. the probability of finding a shared birthday

(i.e. collision) for 𝑡 people whose birthdays are independently distributed among the n = 365 days of a

non-leap year is 𝜃(𝑡2/𝑛) if 𝑡 < 𝑛1/2 and is a constant value otherwise [56]; the exact value is computed by

the possibility that each investigated person does not share their birthday with previously investigated

persons and subtracting that product value from 1 [1]; this probability is denoted in (1).

𝑝 = 1 − ∏𝑡−1(365 − 𝑖)/365. (1)

This attack stores (2𝑛/2) values, and it may be possible to trade off required time against memory as

described by Katz and Lindell [56].

Table 1: Categories of Attacks on Hash Functions; Targets and Methods. n, a, k, b, c, d and e present

output length of hash function, possible order reduction by statistical methods, order reduction achieved

in the cost of 𝑥(2𝑥) space, polynomial time constant value, polynomial time constant value, polynomial

time constant value, sub-exponential time constant value, and , polynomial time constant value

respectively

Category Target Method Elements Time Complexity
Generic attacks The output of hash function

(hash value) or the output of

compression function

Statistical methods

and probability

theory

𝜃(2(𝑛−𝑘)/𝑎); where

k and a are

constant values

Cryptanalysis Steps of
algorithm

 Detecting no

 random

behavior in parts of

a hash
algorithm

From 𝜃(𝑛𝑏) to

𝜃(2𝑛), where b is

a constant
value

Quantum
adversaries

Steps of
algorithm

 Quantum solution

for classically non-

polynomial steps of

algorithm, such as

Integer

Factorization and
Discrete Logarithm.

From 𝜃(𝑛𝑐) to

𝜃(2𝑛/𝑑), where c is

a constant value

Implementation

specific attacks

Physical

security

attacks

Dependency of

Time and

 pow

er

consumption

to executed

operations and

processed data.

Electromagnetic

Time measurements

to verify the

correlation between

a partial key value

and the expected

running time, power

traces, and also

measuring near- and

far- field of

(𝑛𝑒), where e is a

constant value –

few declared

 tim

e complexities.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c526

fields which

 are

emitted

 by
processors.

processors

 Software

implementatio

n attacks

Steps of

algorithm

implemented

in a vulnerable

programming

language or in

a
vulnerable
manner.

For example, buffer

overflow for

algorithms

implemented in C

language

 witho

ut boundary

checking

To counter this attack, one may use Universal One- Way Hash Functions (UOWHF), which are a class

of hash functions that are indexed by a parameter (key) and select function instance based on selected

challenge input [2].

3: Meet-in-the-middle attacks: These attacks apply to multiple encryption schemes such as double DES

and find matches between encrypted values of one scheme and decrypted values of another scheme [59].

Derived from encryption, these attacks were applied for finding pre- images of reduced variants of

common hash functions such as MD4 [60], [61], MD-5 [61], SHA-1 [62], [63] and SHA-2 [60], [64]. For

example, Aoki et al. [64] divided the steps of the compression function and used a pre-image of the

compression function to gain a pre-image of the hash function. As another example, Knellwolf and

Khovratovich [62] employed the meet-in-the-middle technique along with differential cryptanalysis

(differential cryptanalysis is discussed in section IV-B-3) to attack SHA-1.

4: Herding attack: A herding attack, aka the Nostradamus attack, finds (second) pre-images on a hash

function by searching collisions among precomputed compression functions.

It uses the birthday paradox to find the mentioned collisions and constitutes a diamond-shaped network

of these collisions to determine a hash value that can be declared as a commitment to some predictions

about the future.

At a point in the future, a second pre-image of that value which includes some happened events will be

published as evidence to support that assertion [65], [66]. This attack finds a suffix that can be appended

to a message, so that the concatenated message results in a hash value which is equal to the hash value

claimed by attacker.

Mennink [32] improved the flexibility of the attack by adjusting trade-off between the speed of attack

and the length of the (second) pre-image.

The herding attack was designed to target hash functions based on the Merkle–Damgard construction.

Moreover, Andreeva et al. [55] showed the success of herding attacks on four other hash function

constructions, namely concatenated, zipper, hash-twice, and tree hash constructions. constructions.

A. Cryptanalysis

Cryptanalysis exploits logical weaknesses in a hash algorithm to invert or forge hash values [67].

These attacks are generally more efficient than generic attacks, but their applicability is limited to either a

specific hash function or a specific implementation of a hash function.

This section overviews four attacks in this category: length extension attack, algebraic cryptanalysis,

differential cryptanalysis, and rebound attack.

The first exploits the lack of output transformations, and the second breaks codes by solving equivalent

equations. The others detect primitives that hold properties leading to a non-random behavior through a

number of rounds. Some cryptanalysis attacks operate in polynomial time (e.g., length extension attack and

differential cryptanalysis), while others operate in exponential time and space complexity (e.g., rebound

attack). See Table 2.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c527

1: Length Extension Attack: Some hash function constructions, such as the known Merkle–Damgård

one, process subsequent blocks, mix the results subsequently, and provide the internal state of the

processed blocks as a hash value.

Exposure of the internal state makes the hash function vulnerable to length extension attack.

Message authentication is an example of an application which is susceptible to length extension attack.

Applications may authenticate messages by prepending a secret value to the message and computing the

hash of the concatenated message at both sides (i.e. sender and receiver) [67].

Such applications are susceptible to length extension attack if they use a vulnerable hash algorithm and

the attacker has access to the message and its hash value, and they know or guess the length of the secret,

although they do not know the secret itself.

This attack is implemented by initiating the hash algorithm with a given internal state, which is the hash

value of a secret prepended to a message, and appending attacker data as subsequent blocks by

subsequently feeding the algorithm.

Next, the attacker will submit the computed hash value along with a concatenated message that involves

the original message, padding of the original algorithm, and attacker data to the receiver.

Output transformation is a solution to resist length extension attack [19] that is employed by hash

functions such as Modular Arithmetic Secure Hash (MASH) [2] and MD-6 [36].

2: Algebraic Cryptanalysis: Algebraic cryptanalysis is a method for attacking hash functions by solving

polynomial systems of equations [68]. Some hash functions are reduced to instances of a satisfiability

problem [69]. Such encoding of cryptographic algorithms and the subsequent reasoning is called logical

cryptanalysis [70]. There are many examples of this type of attack to find second pre-images on round

reduced variants of MD-4 [71], MD-5 [71] and SHA-1 [71], pre- images on a round reduced variant of

MD-4 [72], and Keccak [73], [74].

3: Differential Cryptanalysis: Differential cryptanalysis seeks the relation between input differences

and corresponding output differences. It is quite common to see eXclusive OR (XOR) as the difference

operator. In addition, operators such as modular subtraction have been used to successfully attack MD-5

[75] and SHA-1 [76] hash functions.

A. Quantum Adversaries

This section discusses quantum adversaries. Companies such as IBM, Google, D-Wave, and Microsoft

have developed quantum computers using various types of qubits. D-Wave practical quantum devices

have attracted research interest [77]. While up to eight trapped-ion qubits, about ten nuclear magnetic

resonance qubits, and about ten optic qubits were considered as the maximum number of qubits in 2010

[78], in 2017, D-Wave announced and shipped its new commercial quantum computer equipped with

2000 qubits [79] (D-Wave uses Adiabatic quantum computation instead of gate-based quantum

computation).

In 2019, D-Wave announced a new 5000 qubit device too. Moreover, Microsoft announced that the

company is going to offer a full-fledged topological quantum computing system which includes

hardware, software, and programming languages, so that a free preview of the programming language

which supports simulation of up to 30 logical qubits on personal computers (or up to 40 logical qubits on

Azure) would be released by the end of the 2017 [80]. Microsoft Quantum Development Kit including

Q# programming language is a released part of this stack.

Moreover, programming languages and software development kits (SDKs) such as Google qsim [81],

IBM Qiskit [82], D-Wave Ocean [83], Scaffold [84], Quipper [85], and Microsoft LIQUi|> [86] facilitate

the transition from high-level quantum algorithms to low-level gate representation, different

architectures, error correction, and so on.

The emergence of these commercial quantum computers (D-Wave and in future Microsoft) connoted

the existence of both opportunity of quantum cryptography schemes and threat of quantum adversaries.

Tackling the latter is referred to as post-quantum cryptography.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c528

Table 2: Categories of Hash Functions – Analysis and applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c529

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2:

Categori

es of

Hash

Function

s –

Analysis

and

applicabi

lity of

attacks

Table 2:

Categories of

Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories

of Hash Functions –

Analysis and

applicability of

attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

Table 2: Categories of

Hash Functions –

Analysis and

applicability of attacks

In brief, quantum computing upsides include:

I. Significant speedup: There are quantum algorithms for some computationally hard problems such as

Factoring and Ground State Estimation that are exponentially faster than the best classical algorithms for

those problems [87]. Such problems belong to the Bounded-error Quantum Polynomial (BQP)

computational complexity class which can be solved efficiently on a quantum computer with a bounded

probability of error [88].
Their disadvantages include:

I.Error correction: Resisting communication channel noise errors such as bit-flip errors and phase errors,

and tolerating computational faults such as faulty logic gates are necessary and are achieved through error

correction techniques such as employing redundant qubits [88].

II. Scalability problems: Existence of noise and entanglement phenomena cause scalability problems [89].

Shor [90] introduced polynomial time algorithms for Factorization and Discrete Logarithms on quantum

computers. Grover’s quantum searching algorithm [91], [92] can find a 256-bit AES key in about 2128

quantum operations [93] and is used to find hash pre-images [94]. Furthermore, there are quantum attacks

to find hash collisions [95].In contrast to problems such as Factorization and Discrete Logarithms which

have polynomial time quantum algorithms [90], post-quantum cryptography [96] tends to introduce

problems that cannot be solved by quantum computers in polynomial time. Watrous [97] proved that

problems such as Graph Isomorphism and Graph 3-coloring are zero-knowledge against general quantum

attacks. Kashefi and Kerenidis [98] defined several quantum one-way functions such as Graph Non-

Isomorphism, Approximate Closest Lattice Vector, and Group Non-Membership and generalize their

results for any hard instance of Circuit Quantum Sampling problem as a candidate quantum one-way

function.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c530

B. Physical Security: Side Channel Attacks

Classical cryptanalysis views steps of algorithms as transformation of inputs to outputs. Conversely,

physical security views specific characteristics imposed by an implementation of those steps which are

running on a specific processor in a specific environment. Physical attacks may or may not depackage the

chip; such situations are called invasive or noninvasive attacks, respectively. In addition, physical attacks

may or may not try to tamper with the proper functioning of the device and are called active or passive

attacks, respectively [2]. Side-channel attacks, or environmental attacks, exploit dependency of

information such as running time, power consumption, and electromagnetic emissions of operated data

and performing instructions to (statistically) learn about an algorithm’s internal state [2], [99] or expose

the device’s secrets. The SHA-3 finalists were evaluated against three variants of side channel attack:

timing attack, power analysis, and electromagnetic analysis. The evaluation declared the sufficient

security margin of all finalists and found collisions on the round reduced variant of Keccak [99].

Cryptographic algorithms prevent such attacks by avoiding the use of data-dependent or power-

dependent operations such as multiplications, data- dependent rotations, and table lookups.

PUFs (See Section V-D) are tamper resistant variants of hash functions, but there are polynomial time

side channel attacks on PUFs [100] that enable the attacker to read the generated output value.

In addition to physical security, there are adversaries which consider an implementation of a security

primitive from the viewpoint of software and programming language flaws. The buffer overflow found

on the C language implementation of MD-6 is an instance of such software implementation attacks [19].

HASH FUNCTION CATEGORIES

This section describes cryptographic hash functions in seven categories and analyses the strengths and

vulnerabilities of each category (See Table 2). The proposed seven-category classification includes hash

functions based on a block cipher, hash functions based on algebraic structures, custom-designed hash

functions, PUFs, quantum hash functions, MHFs, and optical hash functions. To the best of our

knowledge, the last four mentioned categories have not been sufficiently addressed in most existing

surveys [18], [19], [26]-[29].

A. Hash Functions Based on Block Ciphers

Developed mostly based on DES and AES, these hash functions reuse underlying block ciphers to

achieve a compact implementation. The main challenges of these hash functions lie in designing a

noninvertible construction based on an invertible block cipher. The SHA-3 finalist BLAKE [101] and

Russian standard hash Streebog [24] are two known hash functions of this category.

B. Hash Functions Based on Algebraic Structures

Most hash functions in this category use computationally hard problems such as Factorization, Discrete

Logarithm, Knapsack, Lattice Problems, and Elliptic Curves and prove their security by reduction [102].

Some of these hash functions, though, allow the insertion of trapdoors to construct collisions by the person

who chooses the design parameters [2]. The functions based on modular arithmetic suffer from being slow.

There are many attacks for specific instances of hard problems, such as RSA [103]. As an example,

collision resistancy of Very Smooth Hash (VHA) [104] is reduced to find nontrivial modular square

roots, but this function is not pre-image resistant [105]. Modular Arithmetic Secure Hash (MASH) was

published as an International Organization for Standardization (ISO) standard on December 1998 and was

reviewed and re-confirmed as current version of standard in 2022 [106]. It has strong output transformation

but its security is not supported by a mathematical proof. Finite field is used to define some hash functions

[107]. A recent survey on hash functions based on computational problems defined on lattices was provided

by Mishra et al [108]. Furthermore, hash functions based on Cellular Automata [109] are newly introduced

members of this category.

Finally, another important family of hash functions comprises chaos-based hash functions. A chaotic

system behaves in an unpredictable but deterministic manner and is highly sensitive to initial conditions, so

a very small change in its initial state may have a large effect on its later state. A chaotic map is a

mathematical function which states such a chaotic behavior in one- or multi- dimensions. As an example,

Teh et al. [110] presented a compression function based on a one-dimensional chaotic map and used

Merkle–Damgard construction to process arbitrary-length messages.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c531

A. Custom-Designed Hash Functions

Known cryptographic hash functions including MD-2, MD-4, SHA-1, SHA-2, and SHA-3 (Keccak) are

instances of this category. These algorithms are designed independent from other security primitives.

Although these hash functions do not provide provable security and their security depends on confusion

and diffusion, the use of bitwise operations such as XOR, AND, and circular shifts leads to low processing

time and partial security against side channel attacks, even though there are some reports of such attacks

[111].

B. Physical Unclonable Functions (PUFs)

PUFs are hardware based security primitives and provide challenge response behavior based on

manufacturing variations that occur on a small scale. Their intrinsic unpredictablity stems from random

elements (e.g., various gate delay) in their manufacturing process [112], [2]. Depending on the usage, this

challenge response behavior may be provided in an invertible or non-invertible manner [113]. An

individual PUF device, however, cannot be practically cloned or copied, even with access to the exact

manufacturing process that produced it in the first place. This intrinsic randomness reduces computational

costs, thus making PUFs a candidate for the security of resource-constrained devices such as embedded

systems [114], and IoT [113].

There are two notable PUF types: Weak PUFs and Strong PUFs; the former accepts one or a few

challenges and is employed as a secret key for device specific encryption, while the latter accepts,

possibly, an exponential number of challenges and is considered as a physical hash function [115].

SRAM PUFs and their variants are the most popular implementation of Weak PUFs and Arbiter PUFs,

and their variants are the most popular implementation of electrically Strong PUFs. Weak PUFs suffer

from cloning and invasive attacks (e.g., Helfmeier et al. [116] created a physical clone of a SRAM PUF

using Focused Ion). Cloning and invasive attacks are hardly applicable on Strong PUFs. The most

common attacks on Strong PUFs are modeling attacks [117], side channel attacks [118], and the

combination of both [100], [119].

To conclude, PUFs benfit from the following advantages:

I.Instead of storing a hash value or a sectret key on the device that includes both security consideration

and additional device memory cost, the PUF response is derived when needed [115].

II. Most types of PUFs are tamper-resistant [115], but there are some side channel attacks enhanced by

machine learning [100].

and suffer from the following disadvantages:

I.PUFs are prone to error and need to employ an error correction mechanism. Depending on PUF type,

error correction may be executed on a PUF holding device or on a communication server [115].

II. In contrast to non-physical approaches, PUFs are prone to aging [115].

In essence, PUFs are maps between fixed length inputs and fixed length outputs, while arbitrary length

input is desired. Therefore, PUFs are widely used for authentication and rarely used for integrity checks

(a common application of hash functions).

Finally, PUFs based on nanotechnology are the recently reported trend of PUF design [120].

A. Quantum Hash Functions

There are two sub-categories of quantum hash functions, i.e. hard problems which belong to

postquantum cryptography and hash functions based on quantum state. The former was described in

Section 4.3, and the latter is discussed in the current section. In addition to the mentioned subcategories,

there are quantum hash functions which operate on classical inputs and produce classical outputs [121].

Ziiatdinov [122] and Yang et al. [121] attributed the first state-based quantum hash function to Buhrman

et al. [123], who introduced the notion of quantum fingerprinting. Ablayev and Vasiliev [124], [125]

introduced quantum hash functions that map input data to quantum states so that the functions have pre-

image resistance (sampling property), second pre-image resistance, and collision resistance properties.

Ablayev et al. [126] discussed the reverse relation between the pre- image resistance and collision

resistance properties of quantum hash functions and introduced a construction to build balanced quantum

hash functions.

C. Memory-Hard Functions

There are cases such as cryptocurrency mining and password hashing in which a hash function without

an efficient input-to-output mapping property (Property I in Section 2) is desired. In contrast to the design

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c532

goals of distributed electronic payment systems such as Bitcoin, multicore CPUs, GPUs, and dedicated

ASIC modules are used to accelerate cryptocurrency mining at a low cost. This consolidates the computing

power of the network. Some ASIC miners are roughly 200,000 times faster and 40,000 times more energy

efficient than a modern multi- core CPU [127]. Dictionary attacks on hashed password databases are

further examples of such parallel computation.

The ASIC resistance property (Property X in Section II) aims to reduce attackers’ massively parallel

advantage. To this end, MHFs [128] and BHFs [127] were introduced to increase the hardware capital cost

and energy consumption, respectively. Percival [128] put forward the MHFs idea that with an increase in

the size of a hash derivation circuit, the number of possible circuits on a given area of silicon will decrease.

Furthermore, he introduced the scrypt hash function [128], [129] as the first instance of MHF.

Input-independent memory addressing, input- dependent memory addressing, and number of passes over

the memory are major considerations in designing an MHF. For example, Argon2 hash function [22]

includes the following tree variants:

I.Argon2d: It uses data-dependent memory access and targets the design of cryptocurrency Proof-of-Work

(PoW).

II. Argon2i: It uses data-independent memory access to resist side channel attacks and includes more passes

over the memory in comparison with Argon2d. Argon2i aims to secure password hashing.

III. Argon2id: It is not a part of Argon2 hash function proposal [22] and use a sequential composition of data-

depending and data-independent memory accesses. First half pass uses data-independent memory access

and the second half uses data- dependent memory access.

As a last example of MHFs, Zamanov et al. [34] evaluated the memory demand of Equihash and Ethash

algorithms. The former increases PoW memory usage based on the birthday problem, while the latter fills a

huge amount of memory and searches within it.

Although MHFs incur additional capital costs, ASICs require far less energy than CPUs. To this end,

BHFs define a large number of planned memory accesses to avoid the energy saving of ASIC hash

engines [127].

A. Optical Hash Functions

Because of physical properties of light such as velocity and its parallel nature, light-based computing is

promising and has been shown to outperform electronic computing in some cases [130]. Optical hash

functions are photoelectric systems which encode blocks into images known as the “information plane”

[131] and replace computations of a compression function with “confusion” and “diffusion” of modulated

light [132]. Amplitude-only spatial light modulator, phase-only spatial light modulator, charge coupled

devices along with lenses [131], half mirrors [131], and/or scattering media [132] are the basic

constituents of such systems. As an example, Wen-Qi et al. [132] proposed an optical hash function which

is based on scattering media and provides the avalanche effect and collision resistance. As another

example, He and Peng [131] proposed two optical hash functions based on phase-truncated Fourier

transform and interference phenomena (i.e. two beam interference). Last but not least on our list of

examples, as noise inherent in free space setup can affect the security and performance of beam

interference and phase truncation-based hash functions, Kumar et al. [133] proposed an optical hash

function based on superposition.

MOBILE SERVICE REQUIREMENTS

Mobile devices can consume some services and also provide some other services, but they have several

constraints on their resources which may jeopardize the Quality of Service (QoS). On the other hand, as

mobile devices roam between environments, they are exposed to more attacks than stationary computers.

Hence, lightweight but not less secure cryptographic hash functions which secure interactions of

resource- constrained devices are urgently needed. Mobile service requirements are as follows:

I.Roaming may cause inaccessibility of some resources and accessibility to some others. To aid service

continuity, hash functions are used to identify identical alternative resources and mutual authentication

of the mobile device and remote servers [134].

II. Most mobile devices have low processing power in comparison with desktop computers.

III. Most mobile devices have small memory size in comparison with desktop computers.

IV. Limited battery capacity makes energy consumption an important consideration for mobile devices. Not

only does WS-Security hash computation required by service invocation consume energy, but also the

battery usage of hash computation is important to avoid power analysis side channel attacks [135].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c533

Mobile device bandwidth is limited by the network interfaces of that device and by the network being

used. This limit mediated mobile WS-Security solutions usage [136], [137].

IV. From time to time, mobile devices undergo connection intermittence caused not only by roaming, but also

by things such as other wireless devices, microwave ovens, and other devices with poorly shielded

cabling.

V. Some mobile devices have multiple network interfaces such as Wi-Fi, Bluetooth, NFC, and GPRS (in

addition to LoRaWAN and ZigBee for IoT). To benefit from multi-homed architectures, authentication

and integrity achieved by hash functions are urgent needs for mobile service communications [138].

Hence, low processor usage, thrifty memory usage, and limited battery usage are urgent needs of

application- specific hash functions for mobile services. In addition, due to connection intermittence and

bandwidth limitation, mobile security-related computations such as hash computation can hardly be

delegated to servers that are available through wireless connections. For simplicity, the application-specific

hash function for mobile services will be referred to hereafter as mobile hash functions.

Such mobile hash functions need to cope with the mentioned limitations, and it is desirable that they

benefit from multi-homed architectures. Table 3 shows the appropriateness of each hash function category

for satisfying mobile service requirements. As Table 3 outlines, optical hash functions and state-based

quantum hash functions are not applicable for mobile devices. Algebraic-based functions benefit from

provable security but have high computational costs. Bitwise equivalent of algebraic structures that

belongs to post-quantum cryptography seemed like a good idea, but we could not find such algebraic-based

hash functions in practice. PUFs have very low computational costs and communicate just challenge-

responses. In addition, PUFs are available for IoT nodes [139]. Hence, we suggest PUFs with polynomial-

time error correction for mobile service hashing.

APPLICATION SCENARIOS

All applications do not have the same requirements for security and performance. There are a number of

application scenarios for cryptographic hash functions. Four scenarios and their corresponding analysis to

select appropriate cryptographic hash functions are presented in Table 4. The first scenario benefits from

the parallel processing capability of hash functions such as MD-6. The second scenario uses the intrinsic

randomness of PUFs to lighten hash computation load for resource constrained sensor nodes. The third

shows the usage of hash chains for process authentication. Finally, the last scenario shows the need for

output transformation in the lack of encryption.

CONCLUSION

Massive usage, significant competitions such as the SHA-3 competition, the Password Hashing

competition and the NIST lightweight competition, and nationwide hash standards [20], [21], [23]-[25]

have led to the introduction of new hash functions and new hash function constructions. To the best of

our knowledge, recent research and competitions make the following futuristic trends possible: Resource

constrained devices are used in IoT solutions such as smart farming and smart cities. Security plays a

crucial role in the success such systems so that employing hash functions need to be both resource efficient

and side-channel resistant [141]. Hence, lightweight hash functions received great attention in recent

years so that IoT specific hash functions emerged and NIST lightweight competition is ongoing since

2018 [142]-[144]. In contrast to the lightweight design of these hash functions, it is important that a hash

function cannot be computed too fast on massively parallel computers and quantum computers. Hence,

evaluation of hash functions on quantum computers is a recent measure to avoid brute force attacks [145].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c534

Table 3: Appropriateness of each Hash Function category for satisfying mobile service requirements

Row

Hash Function Category

Mobile Service Hash Consideration

Processing Memory Battery Security Applicability

1 Hash functions based on a block
cipher

High

2 Hash functions based on algebraic
structures

High Proven

3 Custom-designed hash functions Low

4 Physical unclonable functions Very low None or
very low

(depending
on PUF
type)

5 Quantu
m hash
functio
ns

Quantum states No reported work (have not found yet) Not
applicable

Post-quantum
cryptography

High

6 Memory-hard functions High

7 Optical hash functions No reported work (have not found yet) Not
applicable

Table 4: Application scenarios – selecting appropriate Hash Function
Row Scenario Name Scenario Analysis

1 A file server
on a
multiprocessor
host

A multiprocessor file server stores
some large multimedia files. This
server needs to provide the hash
value of each file as a checksum.
Users can download files along
with corresponding checksums. To
ensure a file has not been
tampered with after the checksum
was created, user computes the
hash of the downloaded file and
compares it
with the checksum.

Computing hash for large files
connotes the need for fast
computation. It may be obtained by
using a fast hash function such as
BLAKE [101], [140] (BLAKE 2 or 3) or
a multiprocessing support hash
function such as MD-6 [36]. The
multiprocessor server indicates the
latter function as choice.

2 Message
authentication
in a sensor
network

A sensor network sends monitored
data to a server. A hash function is
used for message authentication.
Each sensor node has limited
memory and limited processing
speed. More importantly, each
sensor node operates with limited
battery energy and will die as
its
energy is consumed.

Resource constraints of sensor
nodes and the reverse relationship
between energy consumption and
node lifetime suggest the use of
intrinsic properties of sensors
instead of running a hash algorithm
on these nodes. Hence, PUFs [139]
are appropriate for this
scenario.

3 One-
time
passwor
ds

In a geographically distributed
organization, it is required that
two processes hosted on different
servers authenticate and
communicate with each other.
There is no deployed
authentication (or encryption)

This scenario may benefit from one-
time passwords that are a hash
chain made by consecutive
computation of hash values and
using the hash values in descending
order (using last value first). Any
hash function that supports the one-

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c535

facilities such as Primary Key
Infrastructure (KPI).

way property is appropriate for this
scenario, so that an eavesdropper
cannot use an observed password
to compute the next
valid password.

4 Authentication
and
 integr
ity without
encryption

A key is shared between sender
and receiver. To send a message,
the sender hashes that message
prepended by the shared key.
Then the message along with the
hash value is transmitted to the
receiver. Having the shared key,
the receiver will hash the received
message prepended by the shared
key and compares it with the
received hash value.

This scenario is prone to length
extension attack (Section 4.2.1). It
allows the attacker to forge
messages with the same prefix.
Hence, both authentication and
integrity will be lost. Section
4.2.1 pointed out that exposure of
the internal state of the hash
function causes this vulnerability.
Hence, hash functions benefitting
from output transformation such as
SHA-3 (Keccak) and MASH
(section 5.2) are
appropriate for this scenario.

As mentioned, PUFs based on nanotechnology are the recently reported trend of PUF design [120]. Last

but not least, optical computing has a long history to trace back and was introduced 60-year ago [146], but

optical hash functions were introduced in recent years are among the futuristic trend of hash functions. In

addition, application- specific properties have been defined for applications such as cryptocurrency and

video hashing. In this article, we discussed 11 properties of hash functions (Section 2), overviewed the

concepts of compression function and domain extension, and outlined four iterative and three noniterative

hash function constructions and combiners (Section 3). The current research also investigated those hash

functions and proposed a seven-category classification (Section 5). To the best of our knowledge, four out

of seven categories have not been sufficiently addressed in most existing surveys [18], [19], [26]-[29]. In

addition, this article discussed some attacks affecting each category (Table 2) and summarized what

effective attacks entail (Section 4).

Furthermore, considering the prevalence of mobile devices, this paper discussed mobile service

requirements on hash functions (Section 6), outlined how each hash function category fits these

requirements (Table 3), and suggested (strong) PUFs with polynomial-time error correction for mobile

service hashing. In addition, the bitwise equivalent of algebraic structures that belong to post-quantum

cryptography seemed like a good idea, but we could not find such algebraic-based hash functions in

practice. Finally, to clarify the usage, four application scenarios and their corresponding analysis to select

appropriate cryptographic hash functions were presented (Table 4). The authors aim to extend this work

by extracting patterns which fulfill the 11 properties discussed in second section. This extension, along

with the other mentioned benefits, can assist design, choice, and analysis of hash functions.

AUTHOR CONTRIBUTIONS

Second and third authors supervised this research by sketching roadmap, and evaluating the results at

each step. First author searched in authentic journals and research repositories to gather all relevant papers,

and read the selected papers in details. In addition, he made a comparison of investigated hash functions.

All authors discussed and analyzed the results and cooperatively summed up the work.

ACKNOWLEDGMENT

The authors gratefully thank the anonymous reviewers and the editor of JECEI.

CONFLICT OF INTEREST

The authors declare no potential conflict of interest regarding the publication of this work. In addition,

the ethical issues including plagiarism, informed consent, misconduct, data fabrication and, or falsification,

double publication and, or submission, and redundancy have been completely witnessed by the authors.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c536

ABBREVIATIONS

MHF Memory-hard Functions
BHF Bandwidth-hard Functions
PUF Physical Unclonable Function
SHA Secure Hash Algorithm
UOWHF Universal One-Way Hash

Functions
WS-Security Web Services Security

References

[1] J. Hoffstein, J. Pipher, J. H. Silverman, An introduction to mathematical cryptography. New York:

Springer, 2008.

[2] H. C. A. van Tilborg, S. Jajodia, Eds., Encyclopedia of cryptography and security. Springer

Science+Business Media, 2011.

[3] J. Keller and S. Wendzel, “Reversible and plausibly deniable covert channels in one-time passwords

based on hash chains,” Appl. Sci., 11(2): 731, 2021.

[4] W. Stallings, Cryptography and network security: principles and practice, sixth ed. Pearson Education,

2014.

[5] C. Wang, S. J. Li, D. Wang, Q. H. Wang, “P-28: A method of holographic encryption based on hash

function,” Dig. Tech. Pap., 47(1): 1228–1230, 2016.

[6] L. C. Washington, Elliptic curves: number theory and cryptography, second ed. Boca Raton, Fl: Chapman

& Hall/Crc, 2008.

[7] R. C. Merkle, “A certified digital signature,” in Proc. Conf. on the Theory and Application of

Cryptology: 218-238, 1989.

[8] J. Rosenberg, D. L. Remy, Securing web services with WS-security: demystifying WS-security, WS-

policy, SAML, XML signature, and XML encryption. Indianapolis, Ind.: Sams, 2004.

[9] A. Nadalin, C. Kaler, R. Monzillo, P. Hallam-Baker, Eds., Web services security: SOAP message

security 1.1. OASIS, 2006. Last accessed: Jan. 7, 2023.

[10] L. Demir, A. Kumar, M. Cunche, C. Lauradoux, “The pitfalls of hashing for privacy,” IEEE Commun.

Surv. Tutor., 20(1): 551-565, 2018.

[11] M. Wang, M. Duan, J. Zhu, “Research on the security criteria of hash functions in the blockchain,” in

Proc. the 2nd ACM Workshop on Blockchains, Cryptocurrencies, and Contracts: 47-55, 2018.

[12] S. Abed, R. Jaffal, B. J. Mohd, M. Al-Shayeji, “An analysis and evaluation of lightweight hash functions

for blockchain-based IoT devices,” Cluster Comput., 24(4): 3065-3084, 2021.

[13] A. Kuznetsov, I. Oleshko, V. Tymchenko, K. Lisitsky, M. Rodinko, A. Kolhatin, “Performance analysis
of cryptographic hash functions suitable for use in blockchain,” Int. j. comput. netw. inf. secur., 13(2): 1-
15, 2021.A. M. Antonopoulos, Mastering bitcoin: Programming the open
blockchain, 2nd ed. O’Reilly Media, 2017.

[14] J. Garay, A. Kiayias, N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in

Proc. Annu. Int. Conf. on the Theory and Applications of Cryptographic Techniques: 281-310, 2015.

[15] G. Wu, J. Han, Y. Guo, L. Liu, G. Ding, Q. Ni, L. Shao, “Unsupervised deep video hashing via balanced

code for large-scale video retrieval,” IEEE Trans. Image Process., 28(4): 1993-2007, 2019.

[16] M. S. Jan, M. Afzal, “Hash chain based strong password authentication scheme,” in Proc. 13th Int.

Bhurban Conf. on Applied Sciences and Technology (IBCAST): 355-360, 2016.

[17] A. A. Alkandari, I. F. Al-Shaikhli, M. A. Alahmad, “Cryptographic hash function: A high level view,”

in Proc. 2013 Int. Conf. on Informatics and Creative Multimedia: 128-134, 2013.

[18] B. Preneel, “The First 30 Years of Cryptographic Hash Functions and the NIST SHA-3 Competition,” in

Proc. Cryptographers’ track at the RSA Conf.: 1-14, 2010.

[19] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, “Keccak,” in Proc. 32nd Annu. Int. Conf. on the

Theory and Applications of Cryptographic Techniques: 313-314, 2013.

[20] W. Stallings, “Inside SHA-3,” IEEE Potentials, 32(6): 26-31, 2013.

[21] A. Biryukov, D. Dinu, D. Khovratovich, “Argon2: new generation of memory-hard functions for

password hashing and other applications,” in Proc. 2016 IEEE European Symposium on Security and

Privacy (EuroS&P), Saarbruecken, Germany: 292-302, 2016.

[22] S. Shen, X. Lee, R. Tse, W. Wong, Y. Yang, “The SM3 cryptographic hash function,” draft-sca-cfrg-

sm3-02, 2018.
[23] V. Dolmatov, A. Degtyarev, “GOST R 34.11-2012: hash function,”

http://www.ijcrt.org/
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://link.springer.com/book/10.1007/978-0-387-77993-5
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=UuNKmgv70lMC&oi=fnd&pg=PR1&ots=X9DgnLGhi4&sig=gv4ChlRoB5FCtuIgiURMSV2Eq9Y%23v%3Donepage&q&f=false
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.mdpi.com/2076-3417/11/2/731
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://www.amazon.com/Cryptography-Network-Security-Principles-Practice/dp/0133354695
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://sid.onlinelibrary.wiley.com/doi/abs/10.1002/sdtp.10850
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://www.taylorfrancis.com/books/mono/10.1201/9781420071474/elliptic-curves-lawrence-washington
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://link.springer.com/chapter/10.1007/0-387-34805-0_21
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.amazon.com/Securing-Web-Services-WS-Security-Demystifying/dp/0672326515
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://ieeexplore.ieee.org/abstract/document/8023740
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://dl.acm.org/doi/abs/10.1145/3205230.3205238
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://link.springer.com/article/10.1007/s10586-021-03324-1
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.mecs-press.org/ijcnis/ijcnis-v13-n2/IJCNIS-V13-N2-1.pdf
https://www.oreilly.com/library/view/mastering-bitcoin-2nd/9781491954379/
https://www.oreilly.com/library/view/mastering-bitcoin-2nd/9781491954379/
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://link.springer.com/chapter/10.1007/978-3-662-46803-6_10
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/8540456
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/7429902
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://ieeexplore.ieee.org/abstract/document/6702796
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_1
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://link.springer.com/chapter/10.1007/978-3-642-38348-9_19
https://ieeexplore.ieee.org/abstract/document/6651669
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://ieeexplore.ieee.org/abstract/document/7467361
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://datatracker.ietf.org/doc/draft-sca-cfrg-sm3/
https://www.rfc-editor.org/rfc/rfc6986

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c537

RFC 6986, 2013.

[24] R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev, O. Kuznetsov, Y. Gorbenko, A. Boiko, O.

Dyrda, V. Dolgov, A. Pushkaryov, “A new standard of Ukraine: The Kupyna hash function,”

Cryptology ePrint Archive, DSTU 7564: 2014, 2015.

[25] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, “Cryptographic hash functions: A survey,” Department of

Computer Science, University of Wollongong, Technical Report 95-09, Jul. 1995.

[26] J. Delvaux, R. Peeters, D. Gu, I. Verbauwhede, “A survey on lightweight entity authentication with

strong PUFs,” ACM Comput. Surv., 48(2): 1-42, 2015.
[27] I. Mironov, “Hash functions: Theory, attacks, and applications,”

Microsoft Research, Silicon Valley Campus, 1-22, Nov. 2005.

[28] R. Purohit, U. Mishra, A. Bansal, "A survey on recent cryptographic hash function designs," Int. J.

Emerging Trends & Technology in Computer Science (IJETTCS), 2(1): 2278-6856, 2013.

[29] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, S. Goldfeder, Bitcoin and cryptocurrency

technologies: A comprehensive introduction. Princeton, NJ: Princeton University Press, 2016.
[30] M. Rjaško, “On chosen target forced prefix preimage resistance,”

Tatra Mt. Math. Publ., 47(1): 115-135, 2010.
[31] B. Mennink, “Increasing the flexibility of the herding attack,” Inf.

Process. Lett., 112(3): 98-105, 2012.

[32] E. Andreeva, B. Mennink, “Provable chosen-target-forced-midfix preimage resistance,” in Int.

Workshop on Selected Areas in Cryptography: 37-54, 2011.

[33] A. R. Zamanov, V. A. Erokhin, P. S. Fedotov, “ASIC-resistant hash functions,” in Proc. 2018 IEEE

Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus): 394-396,

2018.

[34] H. Chen, Y. Wo, G. Han, “Multi-granularity geometrically robust video hashing for tampering

detection,” Multimed. Tools Appl., 77(5): 5303-5321, 2017.

[35] R. L. Rivest, B. Agre, D. V. Bailey, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan, J.

Krishnamurthy, Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, Y. L. Yin, “The MD6

hash function– a proposal to NIST for SHA-3,” Submission to NIST, 2(3), 2008.

[36] R. Reischuk, M. Hinkelmann, “One-way functions - mind the trap - escape only for the initiated,” in

Proc. Algorithms Unplugged, Berlin, Heidelberg: Springer Berlin Heidelberg, 131-139, 2011.

[37] O. Goldreich, S. Goldwasser, S. Halevi, “Collision-free hashing from lattice problems,” in Proc. Studies in

Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation,

Berlin, Heidelberg: Springer Berlin Heidelberg, 30- 39, 2011.

[38] W. Hu, N. Xie, L. Li, X. Zeng, S. Maybank, “A survey on visual content-based video indexing and

retrieval,” IEEE Trans. Syst. Man Cybern. C Appl. Rev., 41(6): 797-819, 2011.

[39] A. Appleby, Murmurhash 3.0, 2016. Last accessed: Aug. 25, 2022.

[40] C. Estébanez, Y. Saez, G. Recio, P. Isasi, “Performance of the most common non-cryptographic hash

functions,” Softw. Pract. Exp., 44(6): 681-698, 2014.
[41] S. Chen and C. Jin, “A second preimage attack on zipper hash,”

Secur. Commun. Netw.,. 8(16): 2860–2866, 2015.

[42] M. Liskov, “Constructing an ideal hash function from weak ideal compression functions,” in Proc. 13th

Int. Workshop on Selected Areas in Cryptography: 358-375, 2006.

[43] B. Denton, R. Adhami, “Modern hash function construction,” in Proc. the Int. Conf. on Security and

Management (SAM): 479-483, 2011.

[44] Z. Bao, I. Dinur, J. Guo, G. Leurent, L. Wang, “Generic attacks on hash combiners,” J. Cryptology,

33(3): 742-823, 2019.

[45] M. Fischlin, A. Lehmann, D. Wagner, “Hash function combiners in TLS and SSL,” in Proc.

Cryptographers’ Track at the RSA Conf.: 268– 283, 2010.

[46] D. X. Charles, K. E. Lauter, E. Z. Goren, “Cryptographic hash functions from expander graphs,” J.

Cryptology, 22(1): 93-113, 2009.

[47] C. Petit, J. J. Quisquater, “Cryptographic hash functions and expander graphs: The end of the story?,” in

Proc. The New Codebreakers, Berlin, Heidelberg: Springer Berlin Heidelberg: 304– 311, 2016.

[48] B. A. Forouzan, Cryptography & network security. Maidenhead, England: McGraw Hill Higher

Education, 2007.

[49] R. C. Merkle, “One way hash functions and DES,” in Proc. Conf. on the Theory and Application of

Cryptology: 428-446, 1989.

[50] I. B. Damgård, “A design principle for hash functions,” in Conf. on the Theory and Application of

http://www.ijcrt.org/
https://www.rfc-editor.org/rfc/rfc6986
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://eprint.iacr.org/2015/885
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=07748b0e0a9c601169929a427a327a19ba478101
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://dl.acm.org/doi/abs/10.1145/2818186
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2005/11/hash_survey.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7223a289315f1df906b3dde23b1775b30e70d9a7
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://books.google.com/books?hl=en&lr&id=fW-YDwAAQBAJ&oi=fnd&pg=PR9&ots=2UHoCyQR3O&sig=QB8bKfCaEhdk7Xtcwm5A4CBgEOo%23v%3Donepage&q&f=false
https://www.sav.sk/journals/uploads/0317155007rjasko.pdf
https://www.sav.sk/journals/uploads/0317155007rjasko.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0020019011002857
https://www.sciencedirect.com/science/article/abs/pii/S0020019011002857
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://link.springer.com/chapter/10.1007/978-3-642-28496-0_3
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://ieeexplore.ieee.org/abstract/document/8317115
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://link.springer.com/article/10.1007/s11042-017-4434-2
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://exse.eyewated.com/fls/4407e57dc61c235e.pdf
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-15328-0_14
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://link.springer.com/chapter/10.1007/978-3-642-22670-0_5
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://ieeexplore.ieee.org/abstract/document/5729374
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/spe.2179
https://dl.acm.org/doi/abs/10.1002/sec.1210
https://dl.acm.org/doi/abs/10.1002/sec.1210
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
https://link.springer.com/chapter/10.1007/978-3-540-74462-7_25
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
http://worldcomp-proceedings.com/proc/p2011/SAM3059.pdf
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/article/10.1007/s00145-019-09328-w
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/chapter/10.1007/978-3-642-11925-5_19
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/article/10.1007/s00145-007-9002-x
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://link.springer.com/chapter/10.1007/978-3-662-49301-4_19
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://www.amazon.com/Cryptography-Security-McGraw-Hill-Forouzan-Networking/dp/0073327530
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_40
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://link.springer.com/chapter/10.1007/0-387-34805-0_39

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c538

Cryptology: 416-427, 1989.

[51] E. Andreeva, G. Neven, B. Preneel, T. Shrimpton, “Seven-property- preserving iterated hashing: ROX,”

in Proc. 13th Int. Conf. on the Theory and Application of Cryptology and Information Security: 130-146,

2007.

[52] V. Shoup, “A composition theorem for universal one-way hash functions,” in Int. Conf. on the Theory

and Applications of Cryptographic Techniques: 445-452, 2000.

[53] I. Mironov, “Hash functions: From merkle-damgård to shoup,” in Proc. Int. Conf. on the Theory and

Applications of Cryptographic Techniques: 166-181, 2001.

[54] E. Andreeva, C. Bouillaguet, O. Dunkelman, J. Kelsey, “Herding, second preimage and trojan message

attacks beyond Merkle- Damgård,” in Proc. 16th Int. Workshop on Selected Areas in Cryptography: 393-

414, 2009.

[55] J. Katz, Y. Lindell, Introduction to modern cryptography, 2nd ed. Philadelphia, PA: Chapman &

Hall/CRC, 2014.

[56] K. Malvoni, J. Knezovic, “Are your passwords safe: Energy-Efficient Bcrypt Cracking with Low-Cost

Parallel Hardware,” in Proc. 8th USENIX Workshop on Offensive Technologies (WOOT 14): 1-7, 2014.

[57] H. J. Mun, S. Hong, J. Shin, “A novel secure and efficient hash function with extra padding against

rainbow table attacks,” Cluster Computing, 21(1): 1161-1173, 2017.

[58] E. Conrad, S. Misenar, J. Feldman, Cissp Study Guide, 2nd ed. Waltham, MA, USA: Syngress

Publishing, 2012.

[59] J. Guo, S. Ling, C. Rechberger, H. Wang, “Advanced meet-in-the- middle preimage attacks: First results

on full Tiger, and improved results on MD4 and SHA-2,” in 16th Int. Conf. on the Theory and

Application of Cryptology and Information Security: 56-75, 2010.

[60] K. Aoki, Y. Sasaki, “Preimage attacks on one-block MD4, 63-step MD5 and more,” in Proc. 15th Annu.

Int. workshop on selected areas in cryptography: 103-119, 2008.

[61] S. Knellwolf, D. Khovratovich, “New preimage attacks against reduced SHA-1,” in Proc. 32nd Annu.

Cryptology Conf.: 367-383, 2012.

[62] K. Aoki, Y. Sasaki, “Meet-in-the-middle preimage attacks against reduced SHA-0 and SHA-1,” in Proc.

29th Annu. Int. Cryptology Conf.: 70-89, 2009.

[63] K. Aoki, J. Guo, K. Matusiewicz, Y. Sasaki, L. Wang, “Preimages for step-reduced SHA-2,” in Proc.

15th Int. Conf. on the Theory and Application of Cryptology and Information Security: 578-597, 2009.

[64] J. Kelsey, T. Kohno, “Herding hash functions and the Nostradamus attack,” in Proc. Annu. Int. Conf. on

the Theory and Applications of Cryptographic Techniques: 183-200, 2006.

[65] M. Stamp, R. M. Low, Applied cryptanalysis: breaking ciphers in the real world. Hoboken, N.J.: Wiley-

Interscience, 2007.

[66] W. Stallings, Network security essentials: Applications and standards, 4th ed. Prentice Hall, 2010.

[67] G. V. Bard, Algebraic Cryptanalysis. Springer, 2009.
[68] D. Jovanović, P. Janičić, “Logical analysis of hash functions,” in 5thInt. Workshop on Frontiers of

Combining Systems: 200-215, 2005.
[69] F. Massacci, L. Marraro, “Logical cryptanalysis as a SAT problem,”

J. Automated Reasoning, 24(1): 165-203, 2000.

[70] F. Legendre, G. Dequen, M. Krajecki, “Encoding hash functions as a sat problem,” in Proc. 2012 IEEE

24th Int. Conf. on Tools with Artificial Intelligence, 1: 916-921, 2012.

[71] D. De, A. Kumarasubramanian, R. Venkatesan, “Inversion attacks on secure hash functions using SAT

solvers,” in 10th Int. Conf. on Theory and Applications of Satisfiability Testing: 377-382, 2007.

[72] P. Morawiecki, M. Srebrny, “A SAT-based preimage analysis of reduced Keccak hash functions,” Inf.

Process. Lett., 113(10-11): 392-397, 2013.

[73] E. Homsirikamol, P. Morawiecki, M. Rogawski, M. Srebrny, “Security margin evaluation of SHA-3

contest finalists through SAT- based attacks,” in Proc. 11th IFIP Int. Conf. on Computer Information

Systems and Industrial Management: 56-67, 2012.

[74] X. Wang, H. Yu, “How to break MD5 and other hash functions,” in Proc. 24th Annu. Int. Conf. on the

Theory and Applications of Cryptographic Techniques: 19-35, 2005.
[75] X. Wang, Y. L. Yin, H. Yu, “Finding collisions in the full SHA-1,” in

Proc. 25th Annu. Int. Cryptology Conf.: 17-36, 2005.

[76] W. Vinci, T. Albash, A. Mishra, P. A. Warburton, D. A. Lidar, “Distinguishing classical and quantum

models for the d-wave device,” Cornell University Library, 2014.

[77] E. Knill, “Quantum computing,” Nature, 463(7280): 441-443, 2010.

http://www.ijcrt.org/
https://link.springer.com/chapter/10.1007/0-387-34805-0_39
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/978-3-540-76900-2_8
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-45539-6_32
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/3-540-44987-6_11
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://link.springer.com/chapter/10.1007/978-3-642-05445-7_25
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.taylorfrancis.com/books/mono/10.1201/b17668/introduction-modern-cryptography-jonathan-katz-yehuda-lindell
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://www.usenix.org/conference/woot14/workshop-program/presentation/malvani
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://link.springer.com/article/10.1007/s10586-017-0886-4
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://www.amazon.com/CISSP-Study-Guide-Eric-Conrad/dp/1597499617/ref%3Dsr_1_1?keywords=9781597499682&linkCode=qs&qid=1673387163&s=books&sr=1-1
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-17373-8_4
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-04159-4_7
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_22
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-03356-8_5
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/978-3-642-10366-7_34
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://link.springer.com/chapter/10.1007/11761679_12
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Applied-Cryptanalysis-Breaking-Ciphers-World/dp/047011486X
https://www.amazon.com/Network-Security-Essentials-Applications-Standards/dp/0136108059
https://www.amazon.com/Network-Security-Essentials-Applications-Standards/dp/0136108059
https://link.springer.com/book/10.1007/978-0-387-88757-9
https://link.springer.com/chapter/10.1007/11559306_11
https://link.springer.com/chapter/10.1007/11559306_11
https://link.springer.com/chapter/10.1007/11559306_11
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://ieeexplore.ieee.org/document/6495142
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://link.springer.com/chapter/10.1007/978-3-540-72788-0_36
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://www.sciencedirect.com/science/article/abs/pii/S0020019013000811
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/978-3-642-33260-9_4
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11426639_2
https://link.springer.com/chapter/10.1007/11535218_2
https://link.springer.com/chapter/10.1007/11535218_2
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
http://qserver.usc.edu/blog/2014/03/distinguishing-classical-and-quantum-models-for-the-d-wave-device/
https://www.nature.com/articles/463441a

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c539

[78] “D-Wave announces first order for 2000Q quantum computer,” ID Quantique, 24-Feb-2017. Last

accessed: Jan. 10, 2023. Available at: D-Wave Announces D-Wave 2000Q Quantum Computer and First

System Order — D-Wave Government (dwavefederal.com).

[79] “With new Microsoft breakthroughs, general purpose quantum computing moves closer to reality,”

Stories, Sep. 25, 2017. Last accessed: Jan. 10, 2023.

[80] “Quantum simulator,” Google Quantum AI. Last accessed: Jan. 10, 2023.

[81] “qiskit.org,” Qiskit.org. Last accessed: Jan. 10, 2023.
[82] “D-wave ocean software documentation — ocean documentation

5.3.0 documentation,” Dwavesys.com. Last accessed: Jan. 10, 2023.

[83] A. J. Abhari et al., “Scaffold: Quantum programming language,” Princeton univ NJ dept of computer

science, Rep. TR-934-12, 2012. Last accessed: Jan. 10, 2023.

[84] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, “Quipper: a scalable quantum

programming language,” in Proc. the 34th ACM SIGPLAN Conf. on Programming language design and

implementation: 333-342, 2013.

[85] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, B. Valiron, “Quipper: a scalable quantum

programming language,” in Proc. the 34th ACM SIGPLAN Conf. on Programming language design and

implementation: 333-342, 2013.

[86] “Language-Integrated Quantum Operations: LIQUi|>,” MicrosoftResearch. Last accessed: Jan. 10, 2023.

[87] S. Patil, A. JavadiAbhari, C. F. Chiang, J. Heckey, M. Martonosi, F. T. Chong, “Characterizing the

performance effect of trials and rotations in applications that use Quantum Phase Estimation,” in Proc.

2014 IEEE Int. Symposium on Workload Characterization (IISWC): 181-190, 2014.

[88] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10Th Anniversary

Edition. Cambridge, England: Cambridge University Press, 2010.
[89] S. Imre, “Quantum computing and communications – Introductionand challenges,” Comput. Electr. Eng.,

40(1): 134-141, 2014.

[90] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and factoring,” in Proc. 35th

Annu. Symposium on Foundations of Computer Science: 124-134, 1994.

[91] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proc. the twenty-eighth

Annu. ACM symposium on Theory of computing: 212-219, 1996.

[92] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett.,

79(2): 325-328, 1997.
[93] D. J. Bernstein, “Grover vs. mceliece,” in Third Int. Workshop onPost-Quantum Cryptography: 73-80,

2010.

[94] P. Wang, S. Tian, Z. Sun, N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., 2(2):

2020.

[95] X. Dong, S. Sun, D. Shi, F. Gao, X. Wang, L. Hu, “Quantum collision attacks on AES-like hashing with

low quantum random access memories,” in Proc. 26th Int. Conf. on the Theory and Application of

Cryptology and Information Security: 727-757, 2020.

[96] D. J. Bernstein, “Introduction to post-quantum cryptography,” in Post-Quantum Cryptography, Berlin,

Heidelberg: Springer Berlin Heidelberg, 1-14, 2009.
[97] J. Watrous, “Zero-Knowledge against Quantum Attacks,” SIAM j.comput., 39(1): 25-58, 2009.
[98] E. Kashefi, I. Kerenidis, “Statistical Zero Knowledge and quantumone-way functions,” Theor. Comput.

Sci., 378(1): 101-116, 2007.

[99] S. J. Chang et al., “Third-round report of the SHA-3 cryptographic hash algorithm competition,” National

Institute of Standards and Technology, Gaithersburg, MD, Rep. 7896, Nov. 2012.

[100] U. Rührmair et al., “Efficient Power and Timing Side Channels for Physical Unclonable

Functions,” in Proc. 16th Int. Workshop on Cryptographic Hardware and Embedded Systems, 476-492,

2014.

[101] J. P. Aumasson, W. Meier, R. C. W. Phan, L. Henzen, The hash function BLAKE. Springer-Verlag

Berlin Heidelberg, 2014.
[102] A. Bauer, E. Jaulmes, E. Prouff, J.-R. Reinhard, J. Wild, “Horizontalcollision correlation attack on elliptic

curves: - Extended Version -
,” Cryptogr. Commun., 7(1): 91-119, 2015.

[103] S. Y. Yan, Cryptanalytic attacks on RSA. Springer, 2008. S. Contini, A. K. Lenstra, R. Steinfeld, “VSH,

an efficient and provable collision-resistant hash function,” in Proc. 25th Int. Conf. on the Theory and

Applications of Cryptographic Techniques: 165- 182, 2006.

[104] M. J. O. Saarinen, “Security of VSH in the real world,” in Proc. 7th Int. Conf. on Cryptology in

India: 95–103, 2006.

http://www.ijcrt.org/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://dwavefederal.com/d-wave-announces-d-wave-2000q-quantum-computer-first-system-order/
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://news.microsoft.com/features/new-microsoft-breakthroughs-general-purpose-quantum-computing-moves-closer-reality
https://quantumai.google/qsim
https://quantumai.google/qsim
https://qiskit.org/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://docs.ocean.dwavesys.com/en/stable/
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://www.cs.princeton.edu/techreports/2012/934.pdf
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://dl.acm.org/doi/abs/10.1145/2491956.2462177
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui
https://www.microsoft.com/en-us/research/project/language-integrated-quantum-operations-liqui
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://ieeexplore.ieee.org/abstract/document/6983057
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://www.sciencedirect.com/science/article/abs/pii/S0045790613002565
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://ieeexplore.ieee.org/abstract/document/365700
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://dl.acm.org/doi/pdf/10.1145/237814.237866
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.325
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://link.springer.com/chapter/10.1007/978-3-642-12929-2_6
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://onlinelibrary.wiley.com/doi/abs/10.1002/que2.36
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-030-64834-3_25
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://link.springer.com/chapter/10.1007/978-3-540-88702-7_1
https://www.proquest.com/openview/732967640b8b00499bc6d034bdd614be/1?pq-origsite=gscholar&cbl=666313
https://www.proquest.com/openview/732967640b8b00499bc6d034bdd614be/1?pq-origsite=gscholar&cbl=666313
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://www.sciencedirect.com/science/article/pii/S030439750700182X
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3d5636d18a0ec469bb385a4a926f5ec2c85b3d3d
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/chapter/10.1007/978-3-662-44709-3_26
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/book/10.1007/978-3-662-44757-4
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/article/10.1007/s12095-014-0111-8
https://link.springer.com/book/10.1007/978-0-387-48742-7
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11761679_11
https://link.springer.com/chapter/10.1007/11941378_8
https://link.springer.com/chapter/10.1007/11941378_8
https://link.springer.com/chapter/10.1007/11941378_8

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505286 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c540

[105] ISO/IEC 10118-4:1998 Information technology — Security techniques — Hash-functions — Part

4: Hash-functions using modular arithmetic, ISO/IEC 10118-4:1998, Dec. 1998.

[106] S. Kölbl, E. Tischhauser, P. Derbez, A. Bogdanov, “Troika: a ternary cryptographic hash function,”

Des. Codes Cryptogr., 88(1): 91-117, 2020.

[107] N. Mishra, S. H. Islam, S. Zeadally, “A comprehensive review on collision-resistant hash functions

on lattices,” J. Inf. Secur. Appl., 58: 102782, 2021.

[108] V. Manuceau, “About a fast cryptographic hash function using cellular automata ruled by far-off

neighbours,” Int. j. eng. trends technol., 69(2): 39-41, 2021.

[109] J. S. Teh, K. Tan, M. Alawida, “A chaos-based keyed hash function based on fixed point

representation,” Cluster Comput., 22(2): 649- 660, 2018.

http://www.ijcrt.org/
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://www.iso.org/standard/25429.html
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://link.springer.com/article/10.1007/s10623-019-00673-2
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://www.sciencedirect.com/science/article/abs/pii/S2214212621000296
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://hal.science/hal-03146570/
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z
https://link.springer.com/article/10.1007/s10586-018-2870-z

