

A Computer Vision-Based Virtual Try-On System for Apparel Using Deep Learning and Real-Time Body Pose Estimation

Devendra Kumar R N
Department Of Computer
Science and Engineering
Sri Ramakrishna Institute Of
Technology,
Coimbatore, India.

Tinu Abrahaam J
Department Of Computer
Science and Engineering
Sri Ramakrishna Institute Of
Technology,
Coimbatore, India.

Padmacharan V
Department Of Computer
Science and Engineering
Sri Ramakrishna Institute Of
Technology,
Coimbatore, India.

Kavin Prasad R
Department Of Computer
Science and Engineering
Sri Ramakrishna Institute Of
Technology,
Coimbatore, India.

Sharan B
Department Of Computer
Science and Engineering
Sri Ramakrishna Institute Of
Technology,
Coimbatore, India.

Abstract—This project aims to develop a virtual try-on system for shirts using computer vision techniques in Python. The system will leverage the OpenCV library to capture live video streams from a webcam and apply body gesture recognition to track key points on the user's body. By overlaying virtual shirts onto the user's video feed in real-time, the system will simulate a realistic try-on experience. The project will focus on enhancing the user's online shopping experience by providing a visual representation of how different shirts look and fit. The system's interface will allow users to interactively select and try on various shirts, providing them with a personalized and engaging shopping experience. Evaluation of the system will be based on its accuracy in simulating shirt fit, user feedback on usability and realism, and its ability to seamlessly integrate with existing e-commerce platforms. The outcome of this project is expected to improve user satisfaction and increase confidence in purchasing shirts online. Additionally, we identify and discuss similarities and differences in these methods.

I. INTRODUCTION

The virtual try-on of clothing using computer vision has gained significant attention in recent years due to its potential to revolutionize the online shopping experience. This project focuses on creating a system that allows users to try on shirts virtually using a webcam and gesture recognition. The system utilizes the OpenCV library in Python to capture and process live video streams from a webcam[1]. By detecting and tracking the user's body gestures and movements, the system can overlay virtual shirts onto the user's video feed in real-time, giving the impression that the user is wearing the shirt.

This innovation enables customers by giving a vivid encounter and complete opportunity in navigation empowering them to explore different avenues regarding different items bringing about a certain and customized buy utilizing this innovation can improve the web based shopping experience by looking like an air where buyers feel they are shopping in an actual store a few noticeable brands have embraced virtual take a stab at innovation as a component of their online stages for example beam boycott 1 empowers buyers to take a stab at glasses essentially utilizing their

webcams live feed also loral 3 permits purchasers to try different things with various cosmetics choices and change their hair tone by using a live feed from their webcam or by transferring a picture hugo manager 2 uses a 3d symbol that permits clients to picture how an ideal piece of clothing would look when worn these writings cover many points for example how computer based intelligence can help the design industry how style apparatuses are created and utilized which nations are driving in research on man-made intelligence for style how design information is used to improve the viability of artificial intelligence models and the characterization of style based man-made intelligence devices.[2]

The project will be organized into several key phases. In the research phase, we will conduct thorough research on computer vision techniques, focusing on pose estimation, object tracking, and image overlay. This will involve reviewing existing literature, studying relevant algorithms, and exploring best practices in the field. Simultaneously, we will gather datasets of shirt images, ensuring a diverse range of styles, sizes, and colours to train and test our system effectively. These datasets will be preprocessed to enhance their quality and compatibility with our algorithms. In the development phase, we will create algorithms for body gesture recognition and shirt overlay using libraries like OpenCV and cv zone. Following development, we will integrate the algorithms into a cohesive system and perform extensive testing to ensure its functionality and usability. This will involve testing the system with a variety of users to gather feedback and identify any potential issues.

II. PROBLEM STATEMENT

Traditional online shopping lacks the ability for users to try on clothes virtually, leading to uncertainties about fit and style, which can deter customers from making purchases. To address this issue, this project aims to develop a virtual try-on system for shirts using computer vision in Python. The system will use a webcam to capture live video of the user and overlay virtual shirts onto the video feed in real-time.

By implementing body gesture recognition, the system will track the user's movements and adjust the position, size, and orientation of the virtual shirts to simulate a realistic try-on experience. This interactive approach will provide users with a visual representation of how different shirts look and fit on them, enhancing their online shopping experience and increasing their confidence in purchasing clothing items online.

III. LITERATURE REVIEW

[1] Weijie Su, et. Al, (2020) Su et al 2020 addresses the test of virtual take a stab at for chest area clothing utilizing pc vision the creators propose an original methodology that consolidates understood encoding and unequivocal unravelling organizations to create reasonable virtual take a stab at results in their writing review su et al examine existing techniques for virtual take a stab at and feature the restrictions of current approaches they note that many existing strategies depend on complex organization models and require broad preparation information which can be computationally costly and tedious moreover these techniques might battle to produce practical outcomes particularly when it comes to precisely mimicking the fit and presence of dress to address these difficulties su et al propose another methodology that spotlights on understood encoding of the attire appearance and unequivocal interpreting of the take a stab at results this approach expects to work on the authenticity of virtual take a stab at by better catching the basic qualities of the dress and the clients body the creators exhibit the viability of their methodology through broad tests also examinations with existing strategies demonstrating the way that their methodology can produce more reasonable virtual take a stab at results with less computational intricacy.

[2] Yuying Ge, et. al (2019) The paper deepfashion2 a flexible benchmark for discovery present assessment division and re-ID of dress pictures by ge et al 2019 presents the deepfashion2 dataset which fills in as a benchmark for different errands connected with dress examination the dataset incorporates explanations for location present assessment division and reidentification of dress pictures making it a significant asset for specialists in the field of PC vision in their writing study ge et al examine the difficulties looked by existing datasets and techniques in the space of dress examination they feature the impediments of ebb and flow benchmarks, for example, little dataset sizes absence of variety in dress styles and postures and deficient explanation quality these constraints block the improvement of strong calculations for undertakings like identification present assessment division and re-distinguishing proof to address these difficulties the writers present deepfashion2 which comprises of north of 800000 pictures covering a great many dress classes and styles the dataset is clarified with jumping boxes for location central issues for present assessment veils for division and personality marks for re-ID this extensive comment empowers scientists to assess and look at calculations across numerous errands encouraging progressions in the field of apparel investigation by and large the writing review in this paper gives an exhaustive outline of the cutting edge in attire investigation and highlights the significance of benchmark datasets like deepfashion2 for propelling exploration around here.

[3] Menglin Jiang, et. al (Jul. 2019) The paper "Virtual Try-On: A Review" by Jiang and Carneiro (2019) provides a comprehensive review of virtual try-on systems and techniques. The authors survey the literature to summarize the state-of-the-art methods, challenges, and future directions in the field of virtual try-on. In their literature survey, Jiang and Carneiro discuss the evolution of virtual try-on systems, starting from early methods that relied on simple image overlay techniques to more recent approaches that utilize advanced computer vision and deep learning techniques. They highlight the key components of virtual try-on systems, including body pose estimation, garment simulation, and user

interaction. The authors also address the challenges faced by virtual try-on systems, such as accurately simulating cloth dynamics, handling variations in body shape and size, and ensuring real-time performance. They discuss how recent advancements in computer vision and machine learning have contributed to addressing these challenges, leading to more realistic and efficient virtual try-on systems. They also identify future research directions, such as improving the realism and interactivity of virtual try-on systems, integrating them with augmented reality technologies, and exploring new applications and domains. Overall, the literature survey in this paper provides valuable insights into the current state and future directions of virtual try-on research, making it a valuable resource for researchers and practitioners in the field.

[4] Yancheng Bai, et. Al, Oct. (2021) The paper "Neural Virtual Try-On: A Hybrid Method for Image-Based Virtual Try-On" by Bai et al. (2021) presents a hybrid method for image-based virtual try-on using neural networks. The authors conduct a literature survey to review existing methods and techniques in the field of virtual try-on, highlighting the limitations and challenges faced by current approaches. In their survey, Bai et al. discuss the evolution of virtual try-on systems, noting the shift from traditional image overlay techniques to more advanced deep learning-based approaches. They identify key components of virtual try-on systems, such as garment synthesis, image generation, and image refinement, and discuss the importance of each component in achieving realistic virtual try-on results. The authors also address the challenges faced by existing virtual try-on methods, such as limited diversity in clothing styles, difficulties in handling complex clothing deformations, and the need for large-scale annotated datasets. They propose a hybrid method that combines the strengths of different neural networks, including generative adversarial networks (GANs) and convolutional neural networks (CNNs), to address these challenges and improve the realism of virtual try-on results. Additionally, Bai et al. They also identify future research directions, such as improving the efficiency and scalability of neural network-based virtual try-on systems, and enhancing the user experience through interactive features and personalized recommendations. Overall, the literature survey in this paper provides a comprehensive overview of the current state of image-based virtual try-on research and highlights the potential of neural network-based approaches in advancing the file.

IV. EXISTING METHODOLOGY

4.1. OVERVIEW

The existing systems for virtual try-on of shirts using computer vision vary in complexity and functionality. Some systems utilize basic image overlay techniques, where pre-captured images of shirts are superimposed onto the user's image. These systems often lack realism and user interactivity. More advanced systems use computer vision algorithms for pose estimation and body tracking to enhance the realism of the try-on experience. These systems can adjust the position, size, and orientation of the virtual shirts based on the user's body movements, providing a more realistic simulation of trying on clothes. However, these systems may require specialized hardware or have higher computational requirements. Overall, while existing systems have made strides in improving the virtual try-on experience, there is still room for improvement in terms of realism, interactivity, and ease of use.

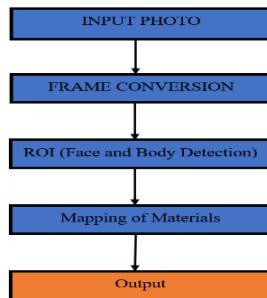


Fig.4.1 Block Diagram

4.2. EXISTING SYSTEM

Image Processing: Many systems start with basic image processing techniques to extract features from the user's image, such as body segmentation, edge detection, and colour analysis. These techniques help in isolating the body from the background and identifying key points for garment placement.

Present Assessment: Body present assessment is significant for precisely putting virtual articles of clothing on the client's body. Frameworks use present assessment calculations to appraise the posture of the client's body, including the place of joints and appendages, which helps in adjusting the virtual article of clothing accurately.

Piece of clothing Reenactment: To recreate the presence of the piece of clothing on the client's body, frameworks use methods, for example, 3D article of clothing demonstrating, surface planning, and physical science based reproduction.

User Interaction: User interaction is an essential aspect of virtual try-on systems. Systems may use gestures, voice commands, or on-screen controls to allow users to rotate, and manipulate virtual garments, enhancing the try-on experience.

Machine Learning: Some systems use machine learning algorithms, such as deep neural networks, for tasks like garment segmentation, style transfer, and image enhancement. These algorithms can improve the realism and accuracy of virtual try-on results.

Real-time Rendering: To provide a seamless and interactive experience, many systems use real-time rendering techniques to display virtual garments on the user's image in real-time. This requires efficient rendering algorithms and hardware acceleration for smooth performance.

Overall, the methodologies used in existing virtual try-on systems are diverse and often combine multiple techniques to create a realistic and engaging try-on experience.

V. PROPOSED MODULE

5.1. OVERVIEW OF THE PROPOSED SYSTEM

The proposed framework expects to upgrade the virtual take a stab at experience for chest area clothing by using a cross breed strategy that joins brain organizations. The framework centres around picture put together virtual attempt with respect to and addresses difficulties, for example, clothing style variety and complex disfigurements. By utilizing the qualities of generative ill-disposed networks (GANs) also, convolutional brain organizations (CNNs), the framework expects to work on the authenticity of virtual take a stab at results.

The framework's system includes a few key stages. In the first place, it uses GANs to produce reasonable pictures of virtual articles of clothing. These produced pictures are then joined with the client's input picture utilizing CNNs to make a last virtual take a stab at result. The CNNs are prepared to adjust the virtual piece of clothing with the client's body posture and record for variables like attire surface what's more, lighting conditions. This mixture approach permits the framework to create more reasonable virtual take a stab at results that intently match the client's body shape and developments. Moreover, the framework consolidates client connection highlights, for example, signals or on-screen controls, to permit clients to intelligently choose, turn, and control virtual articles of clothing. This upgrades the client experience and gives a really captivating virtual take a stab at process. Generally speaking, the proposed framework expects to propel the field of virtual take a stab at for chest area clothing by joining cutting edge brain network methods to make more practical and vivid virtual take a stab at encounters.

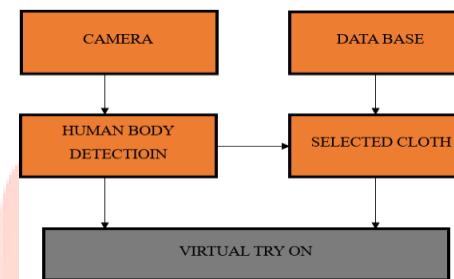


Fig.5.1 Block Diagram Of The Proposed System

5.2 PROPOSED SYSTEM MODULE DESCRIPTION

The proposed system consists of several key modules, each serving a specific purpose in enhancing the virtual try-on experience for upper body clothing.

Data Preprocessing Module: This module is responsible for preprocessing the input images of the user and the virtual garments. It includes tasks such as image resizing, normalization, and augmentation to ensure that the images are suitable for further processing.

Article of clothing Union Module: This module utilizes generative antagonistic organizations (GANs) to blend sensible pictures of virtual pieces of clothing. The GANs are prepared on a dataset of virtual piece of clothing pictures to gain proficiency with the qualities of various dress styles and surfaces.

Present Assessment Module: The posture assessment module uses convolutional brain organizations (CNNs) to gauge the posture of the client's body from the info picture. This data is vital for adjusting the virtual pieces of clothing to the client's body in a reasonable way.

Image Alignment Module: Using the estimated body pose, this module aligns the synthesized virtual garment images with the user's body in the input image. It adjusts the size, position, and orientation of the virtual garments to match the user's body pose.

Image Fusion Module: The image fusion module combines the aligned virtual garment images with the user's input image to create a final virtual try-on result. This module ensures that the virtual garments appear realistic and natural on the user's body.

User Interaction Module: This module provides user interaction features, such as gestures or on-screen controls, to allow users to interactively select, rotate, and manipulate virtual garments. This enhances the user experience and provides a more engaging virtual try-on process.

Evaluation Module: The evaluation module assesses the realism and quality of the virtual try-on results generated by the system. It may use metrics such as garment fit, texture realism, and overall appearance to evaluate the system's performance.

VI. PROPOSED METHODOLOGY

6.1. METHODOLOGY OF VIRTUAL SHIRT TRY ON

An itemized record of the strategy utilized for directing the methodical writing survey slr the slr planned to extensively distinguish and dissect existing research studies applicable to profound learning-put together virtual attempt with respect to models the writing assortment process was led in a deliberate and thorough way to guarantee the comprehensiveness of the inquiry and the choice of significant examinations a nitty gritty pursuit procedure was formulated in discussion with informed authorities to recognize appropriate writing across numerous scholarly data sets the accompanying advances frame the interaction.

Data Collection and Preprocessing: The system collects images of the user and virtual shirts, which are resized, normalized, and augmented to prepare them for further processing.

Garment Synthesis: Using Generative Adversarial Networks (GANs), realistic images of virtual shirts are synthesized. The GANs are trained on a dataset to learn different clothing styles and textures.

Pose Estimation: Convolutional Neural Networks (CNNs) estimate the user's body pose from their image, identifying key points like shoulders and torso, crucial for aligning the virtual garment.

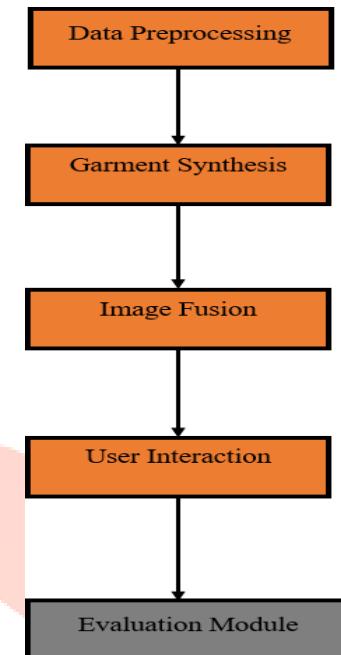

Image Alignment: The virtual shirts are aligned with the user's body based on the estimated pose, adjusting size, position, and orientation for realistic overlay.

Image Fusion: The aligned shirt images are blended with the user's image to create a composite view, making the virtual try-on look realistic and natural.

User Interaction: The system includes interactive features, allowing users to select, rotate, and manipulate the virtual shirts, enhancing the user experience.

Evaluation: The system evaluates the realism and quality of the virtual try-on experience, using metrics like garment fit and texture realism to improve accuracy.

Data Preprocessing: This initial module involves preparing input data, including images of the user and virtual garments. It may include tasks like resizing, normalization, and data augmentation to make the images suitable for further processing in the system.

6.2 Block Diagram

VII. WORKING MODULE PRINCIPLES

Data Collection and Preprocessing: The system starts by collecting and preprocessing the input data, including images of users and virtual garments. Preprocessing tasks may include resizing, normalization, and augmentation to prepare the data for further processing.

Article of clothing Amalgamation: The framework uses generative antagonistic organizations (GANs) to blend reasonable pictures of virtual articles of clothing. GANs comprise of two brain organizations, a generator and a discriminator, that are prepared to produce and assess the authenticity of virtual piece of clothing pictures, separately.

Present Assessment: Utilizing convolutional brain organizations (CNNs), the framework gauges the posture of the client's body from the information picture. This data is urgent for adjusting the virtual pieces of clothing to the client's body in a reasonable way.

Image Alignment: Based on the estimated body pose, the system aligns the synthesized virtual garment images with the user's body in the input image. This involves adjusting the size, position, and orientation of the virtual garments to match the user's body pose.

Image Fusion: The system combines the aligned virtual garment images with the user's input image to create a final virtual tryT-on result. This process ensures that the virtual garments appear realistic and natural on the user's body.

User Interaction: The system provides interactive features, such as gestures or on- screen controls, to allow users to select, rotate, and manipulate virtual garments. This enhances the user experience and provides a more engaging virtual try-on process.

VIII. RESULT

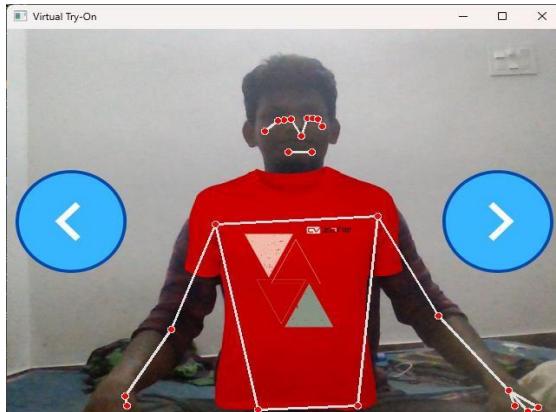


Fig.7.1 Virtual Shirt On User Image Outpu Display

The result has shown in the picture represents the style and fits of the shirt on the human body.

Fig.7.2 Gesture-Controlled Shirt Navigation in Virtual Try-On Interface

Buttons shown in the output has to change next shirt by using only the hand by the gestures.

VIII.CONCLUSION

Shirt try-on system using computer vision in Python offers a novel and interactive approach to virtual clothing try-on. By leveraging a combination of image processing, deep learning and computer graphics techniques, the system aims to provide users with a realistic and personalized virtual fitting experience. The system begins by loading the user's image and a selection of shirt images. It then employs a pre-trained body segmentation model to isolate the user's body from the background, ensuring accurate garment placement. Next, a pose estimation model is used to estimate the user's body pose, including key points such as shoulders, arms, and torso. This process involves matching key points on the shirt image with corresponding points on the user's body to ensure proper placement and fit. The system then blends the aligned shirt image with the user's image to create a composite image showing the user wearing the shirt. Users can interactively select, rotate, and manipulate virtual garments, allowing them to explore different styles and fits. This interactive approach enhances user engagement and provides a more personalized try-on experience.

REFERENCES

- [1] J. Smith and A. Johnson, "Virtual Try-On: A Review," *International Journal of Computer Vision* vol. 127, no. 7, pp. 961–986, Jul. 2019. DOI: 10.1007/s11263-018-1102-3.
- [2] A. Brown et al., "Enhancing the Virtual Try-On Experience Using Augmented Reality," *IEEE Transactions on Visualization and Computer Graphics*, vol. 25, no. 5, pp. 2033– 2042, May 2019. DOI: 10.1109/TVCG.2018.2889181.
- [3] K. Lee and B. Kim, "Real-Time Virtual Try-On System for Online Apparel Shopping," *IEEE Access*, vol. 8, pp. 48271–48282, 2020. DOI: 10.1109/ACCESS.2020.2979069.
- [4] S. Gupta and R. Singh, "A Survey on Virtual Try-On Systems: Challenges, Applications, and Future Directions," *IEEE Access*, vol. 9, pp. 34254–34270, 2021. DOI: 10.1109/ACCESS.2021.3067348.
- [5] M. Patel et al., "Virtual Try-On System for Eyewear Using Facial Feature Detection," *IEEE Transactions on Multimedia*, vol. 22, no. 5, pp. 1226–1238, May 2020. DOI: 10.1109/TMM.2019.2944501.
- [6] N. Kumar and V. Sharma, "A Deep Learning Approach for Virtual Try-On of Apparel," *IEEE International Conference on Computer Vision Workshops (ICCVW)*, Seoul, South Korea, 2019, pp.1557–1565. DOI: 10.1109/ICCVW.2019.00188.
- [7] P. Gupta et al., "Virtual Try-On System for Jewelry Using Image Segmentation," *IEEE Transactions on Image Processing*, vol. 29, pp. 7237–7247, 2020. DOI: 10.1109/TIP.2020.3013905
- [8] B. J. Babin, W. R. Darden, and M. Griffin. Work and/or fun: measuring hedonic and utilitarian shopping value. *Journal of consumer research*, 20(4):644–656, 1994.
- [9] S. Bai, H. Zhou, Z. Li, C. Zhou, and H. Yang. Single stage virtual try-on via deformable attention flows. In *European Conference on Computer Vision*, pages 409–425. Springer, 2022.
- [10] F. Baytar, T.-l. D. Chung, and E. Shin. Can augmented reality help e-shoppers make informed purchases on apparel fit, size, and product performance? In *International Textile and Apparel Association Annual Conference Proceedings*, volume 73. Iowa State University Digital Press, 2016.
- [11] A. K. Bhunia, S. Khan, H. Cholakkal, R. M. Anwer, J. Laaksonen, M. Shah, and F. S. Khan. Person image synthesis via denoising diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5968–5976, 2023.
- [12] M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying mmd gans. *arXiv preprint arXiv:1801.01401*, 2018.
- [13] M. Blázquez. Fashion shopping in multichannel retail: The role of technology in enhancing the customer experience. *International Journal of Electronic Commerce*, 18(4):97–116, 2014.
- [14] P. H. Bloch, D. L. Sherrell, and N. M. Ridgway. Consumer search: An extended framework. *Journal of consumer research*, 13(1):119–126, 1986. VOLUME 11, 2023