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Abstract:  Modern surveillance, security, and airspace monitoring systems rely heavily on flying object 

detection. The challenge is in the exact detection of fast-moving airborne objects including drones, birds, 

planes, and balloons especially under varying lighting, altitude, and background clutter conditions. This paper 

presents HawkEye, a deep learning-based ensemble system combining YOLO (You Only Look Once) and 

DETR (DEtection TRansformer) models, to provide improved accuracy and robustness in flying object 

identification. The model is trained on the Flying Objects OB 100 dataset, which covers many aerial scenarios. 

The paper offers two key approaches: The paper proposes two primary techniques: (1) DOLO, a hybrid 

architecture combining YOLO’s real-time efficiency with DETR’s; and (2) an ensemble learning approach 

combining several YOLO versions with DETR 

 

Index Terms - Flying Object Detection, YOLO, DETR, Ensemble Learning, Deep Learning, Computer 

Vision.  

I. INTRODUCTION 

     In areas like surveillance, defense, air traffic control, and environmental monitoring, the identification 

of flying objects—including drones, planes, birds, and other airborne entities—is absolutely vital. Ensuring 

efficient and real-time detection of Unmanned Aerial Vehicles (UAVs) has become a pressing need as their 

use for commercial, military, and recreational reasons grows. Traditional object detection systems battle with 

issues including fast movement, occlusions, changing object sizes, and cluttered backgrounds, which lower 

detection accuracy. With models like YOLO (You Only Look Once) and DETR (DEtection TRansformer) 

providing state-of-the-art performance, deep learning-based methods have changed object detection. While 

DETR’s transformer-based design improves accuracy by properly spotting items in complicated backgrounds, 

YOLO’s real-time detection capability makes it appropriate for high-speed applications.  

     Every model, though,, has a slower rate of inference. In order to address these issues, we suggest 

HawkEye, an ensemble-based flying object detection system that combines DETR and YOLO to provide high 

detection accuracy and real-time efficiency. Our system uses confidence-based and weighted averaging 

techniques to combine multiple YOLO versions with DETR by utilizing ensemble learning techniques. 

Furthermore, we present DOLO (Detection Optimized YOLO-DETR Hybrid Model), a hybrid strategy that 

blends the contextual accuracy of DETR with the speed of YOLO. The methodology, dataset, model 

architecture, implementation, and outcomes of the HawkEye system are all described in detail in this paper. 

When compared to individual detection models, the suggested method seeks to increase detection accuracy, 

robustness, and inference speed. The results show how hybrid deep learning models can be used to address 

realworld problems involving aerial objects.      This paper explores the ensebling 

approach for flying object detection, detailing its design, working principles, and key features. It explains the 

software and hardware components used, along with the simulation tools that help in testing its performance 
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II.LITERATURE REVIEW 

A Deep Comprehensive Assessment of Aircraft Detection Algorithms in Satellite Imagery 

Authors:Safouane El Ghazouali, Arnaud Gucciardi, Francesca Venturini, Nicola Venturi, Michael 

Rueegsegger, Umberto Michelucci (2024) 

This paper provides a deep evaluation of multiple object detection algorithms focused on detecting aircraft 

in satellite imagery. Among all evaluated models, YOLOv5 was found to be the most effective in terms of 

precision and speed. The study benchmarked models like YOLOv5, YOLOv8, Faster RCNN, CenterNet, 

RetinaNet, RTMDet, and DETR on HRPlanesV2 and GDIT datasets. However, the detection performance 

was noted to vary depending on the quality and conditions of the satellite imagery, presenting a challenge for 

universal deployment.  

Real-Time Flying Object Detection with YOLOv8 Authors: Gowthami Somepalli, Anubhav Gupta, 

Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geiping, Abhinav Shrivastava, Tom Goldstein 

(2023) 

This research introduces a real-time flying object detection system using YOLOv8, achieving state-of-the-

art performance in complex aerial environments. The model was trained on a large-scale dataset covering 40 

flying object classes and further refined using transfer learning with real-world aerial data. While effective, 

the study highlights issues like varying object sizes, occlusion, and cluttered backgrounds, which can hinder 

detection accuracy, especially in dense scenarios. 

YOLO-Drone: Airborne Real-Time Detection of Dense Small Objects from High-Altitude 

Perspective Authors: Alberto Argente-Garrido, Cristina Zuheros, M. Victoria Luzon, ´ Francisco 

Herrera (2022) 

YOLO-Drone is a novel approach that enhances small object detection in drone imagery, significantly 

outperforming other models in detecting densely packed targets. The model incorporates a custom backbone 

(Darknet59) and a multi-scale feature aggregation module (MSPP-FPN) for better accuracy. It was evaluated 

on UAVDT and VisDrone datasets. Despite its improvements, the model still faces challenges in detecting 

under low light conditions and achieving real-time performance on limited hardware. 

DEYOv3: DETR with YOLO for Real-Time Object Detection Authors: Michael Ruderman (2023) 

This paper presents DEYOv3, an integrated object detection model that combines the transformer-based 

DETR architecture with the speed and effectiveness of YOLO. The model performs end-to-end detection 

without requiring ImageNet pretraining, yielding high accuracy and fast inference. Training was done step-

by-step, starting from YOLO and refining with DETR mechanisms. However, the model demands significant 

computational resources during the training phase, which may limit its scalability. 

DEYO: DETR with YOLO for Step-by-Step Object Detection Authors: Narayan Khadka, Simon 

Birrer, Alexie Leauthaud, Holden Nix (2022)  

DEYO proposes a two-stage hybrid detection framework where the first stage (YOLO) generates high-

quality anchors and queries, which are then refined by a DETR-like second stage. This combination led to 

better accuracy and efficiency over the original DETR. The step-by-step training improves query quality and 

boosts detection results. However, the complexity of the two-stage structure introduces implementation 

difficulties, especially for real-time systems. 

Object Detection through Modified YOLO Neural Network Authors: Lucas M. Valenzuela, Rhea-

Silvia Remus, Klaus Dolag, Benjamin A. Seidel (2020) 

This work modifies the original YOLOv1 network to improve detection performance by enhancing the 

loss function and integrating spatial pyramid pooling. The improved loss function follows a proportional style, 

and the addition of an inceptionstyle module with 1×1 convolutions enables better feature extraction. The 

model shows increased detection accuracy but at the cost of higher computational complexity, potentially 

impacting real-time execution in constrained environments. 

 

III. EXISTING SYSTEM  ARCHITECTURE 

In the realm of flying object detection, especially in aerial and satellite imagery, deep learning models have 

become the foundation due to their impressive performance compared to traditional image processing 

methods. Among these, YOLO (You Only Look Once) and DETR (DEtection TRansformer) are two of the 

most prominent architectures widely used for object detection tasks. YOLO, known for its remarkable real-

time detection capabilities, processes images in a single forward pass, making it highly suitable for time-

sensitive applications such as UAV monitoring, drone surveillance, and military reconnaissance. However, 

YOLO’s performance degrades when faced with complex aerial scenes, especially those involving small, 

occluded, or distant flying objects. Its fixed grid-based detection strategy often fails to capture subtle 
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variations in object scales or to distinguish overlapping entities. This leads to missed detections (false 

negatives) and misclassifications (false positives) in dynamic and cluttered aerial environments. 

 

Fig. 1. Existing System Architecture 

On the other hand, DETR, which leverages transformer based attention mechanisms, offers significant 

improvements in detection accuracy and spatial understanding. DETR models can capture long-range 

dependencies and complex spatial relationships between objects in an image, which is crucial in aerial scenes 

where objects might be sparsely distributed or camouflaged. However, DETR’s major drawback is its high 

inference latency and slower convergence rate, making it unsuitable for real-time deployment in systems that 

require immediate responses, such as autonomous aerial vehicles or defense applications. Prior to deep 

learning, traditional image processing techniques like background subtraction, optical flow, and frame 

differencing were used for flying object detection. Although computationally efficient, these methods suffered 

from poor adaptability to varying environmental conditions such as lighting changes, camera shake, 

atmospheric interference, and diverse terrain backgrounds. As a result, these techniques had limited 

robustness, leading to increased false detection rates and unreliable performance in real-world deployments. 

Furthermore, single-model detection systems — whether YOLO or DETR — struggle to generalize across 

varying scenarios, especially in aerial surveillance, where factors like altitude shifts, camera motion, weather 

effects, and changing object orientations significantly impact detection quality. A single architecture cannot 

consistently handle the trade-off between speed and accuracy, nor can it adapt efficiently to contextual 

variations found in large-scale aerial datasets. 

 

IV. PROPOSED SYSTEM ARCHITECTURE 

The proposed system introduces an ensemble-based approach for detecting flying objects in aerial images 

by integrating multiple deep learning models. Specifically, it combines four YOLO variants—YOLOv5s, 

YOLOv5m, YOLOv8s, and YOLOv8m—along with a transformer-based DETR model. Each of these models 

brings its strengths: YOLO models are known for their speed and efficiency in real-time object detection, 

while DETR excels at handling complex scenes and spatial relationships due to its attention mechanism. This 

combination aims to create a balanced system that can detect flying objects accurately and efficiently across 

various environments. In this approach, the input aerial image is processed simultaneously through all five 

models. Each model independently predicts bounding boxes, object classes, and confidence scores. These 

outputs are then passed through an ensemble fusion module that applies techniques like non-maximum 

suppression or weighted box fusion to combine predictions. By crossverifying detections from multiple 

models, the system filters out false positives and improves the reliability of final detections. This fusion 
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mechanism leverages agreement between models to enhance accuracy and robustness in challenging 

conditions such as occlusion, varying altitudes, or dynamic lighting. 

Fig. 2. Proposed System Architecture 

Overall, this ensemble strategy helps overcome the limitations of using a single model. While YOLO 

ensures highspeed detection suitable for real-time applications, DETR adds precision in complex or cluttered 

scenes. By integrating their outputs, the system achieves better generalization across different aerial 

environments and object sizes. The result is a more flexible and reliable flying object detection system that 

can be effectively used in surveillance, airspace monitoring, and UAV navigation tasks. 

V. METHODOLOGY 

    The proposed system adopts an ensemble-based approach for accurate and efficient flying object detection 

in aerial imagery. Recognizing the limitations of individual detection models, this methodology integrates 

multiple versions of the YOLO family (YOLOv5s, YOLOv5m, YOLOv8s, and YOLOv8m) known for their 

real-time performance, along with the transformer-based DETR model, which offers improved accuracy in 

complex scenarios. By combining the strengths of these models, the system aims to achieve enhanced 

detection precision, robustness against environmental variations, and faster inference times.  

 

5.1 Data Collection and Preprocessing 
       The dataset was collected from Roboflow, which contains annotated images of various flying objects 

such as drones, airplanes, helicopters, and birds. Data preprocessing included resizing all images to a fixed 

dimension, normalization, and data augmentation (rotation, flipping, brightness variation) to improve model 

generalization. The dataset was split into 70 

 

Fig. 4. Data Processing 
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5.2 Model Training 
Five object detection models were used: YOLOv5, YOLOv6, YOLOv7, YOLOv8, and DETR. Each model 

was trained individually using transfer learning with pre-trained weights. Common hyperparameters included: 

Epochs: 100 Batch Size: 16 Learning Rate: 0.001 Optimizer: Adam The mod 

 

Fig. 5. YOLO Model 

5.3 Ensemble Strategy 
An ensemble approach was used to combine the outputs of the five models. Each model generated 

predictions consisting of bounding boxes, class labels, and confidence scores. A weighted voting mechanism 

was applied, where models with better validation accuracy were given higher weights. Overlapping bounding 

boxes were filtered using Non-Maximum Suppression (NMS) and final detections were selected based on 

maximum aggregated confidence.  

 

Fig. 6. Ensemble Approach 

5.4 Real Time Detection on Image and Video 
The system supports real-time detection on both images and video streams. For videos, frame-wise 

detection is performed, and bounding boxes are updated continuously. The detection output includes: Object 

type (e.g., drone, bird) Bounding box with label and confidence Real-time frame processing with FPS counter  

5.5 Streamlit based User-Interface 

The detection system was integrated into a web UI using Streamlit. It allows users to upload an image or 

video, perform real-time detection, and view results interactively. The interface displays the original media 

with overlaid bounding boxes, along with prediction confidence and speed (FPS). To enhance the practicality 

of the object detection system, a live camera testing module was integrated using the OpenCV library. The 

objective was to provide real-time inference by capturing webcam frames and passing them through the 

trained object detection models. However, due to the ensemble of multiple models (YOLOv5, YOLOv7, 

YOLOv8, and DETR), real time detection posed significant computational challenges. As a result, a 

simplified configuration using only a single YOLO model (YOLOv5) was considered for live detection to 

balance performance and resource usage. This component was tested for integration feasibility and is proposed 

for future optimization.  
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Fig. 7. Flowchart of Irrigation Process 

5.6 Performance Evaluation  
The ensemble model was evaluated using standard metrics: Precision Recall F1-score mAP@0.5 FPS 

(frames per second) The ensemble achieved better performance compared to individual models, balancing 

both detection accuracy and speed effectively. The proposed methodology for flying object detection involves 

a multi-stage process comprising dataset preparation, model training, ensembling, and deployment through a 

user interface. The dataset used for training was sourced from Roboflow, containing annotated images of 

various flying objects such as drones, birds, helicopters, and airplanes. Preprocessing techniques such as 

resizing, normalization, and augmentation (including rotation, flipping, and brightness variation) were applied 

to enhance model robustness, and the dataset was split into training, validation, and testing sets in a 70:20:10 

ratio. Five object detection models—YOLOv5, YOLOv6, YOLOv7, YOLOv8, and DETR—were 

individually trained using transfer learning with pre-trained weights, and common hyperparameters like 100 

epochs, a batch size of 16, and an Adam optimizer with a learning rate of 0.001 were used. 

 Each model generated predictions comprising class labels, bounding boxes, and confidence scores. An 

ensemble strategy was implemented to merge the outputs using a weighted voting mechanism, where weights 

were assigned based on validation accuracy. Overlapping predictions were refined using Non-Maximum 

Suppression (NMS) to eliminate redundancy and improve accuracy. The final output displayed the detected 

flying objects along with their labels and confidence levels. To make the system user-friendly, a Streamlit-

based web interface was developed, allowing users to upload images or videos and view real-time detection 

results with labeled bounding boxes and performance metrics like frames per second (FPS). 

 

VI. IMPLEMENTATION 

The implementation of the flying object detection system involved training four separate YOLO models 

(YOLOv5, YOLOv7, YOLOv8, and YOLOv9) and one DETR model using a curated dataset sourced from 

Roboflow. Each model was individually trained to recognize flying objects with high precision, after which 

their predictions were ensembled using a custom logic that combined confidence scores and bounding box 

overlaps to generate a final, consensus-based detection output. The system supports three modes: static image 

detection, video file analysis, and real-time camera input. Image and video modes function seamlessly, with 
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clear visualization of detected flying objects, as seen in the output frames. For live detection, OpenCV was 

used to capture frames, but due to the high computational load of running multiple models simultaneously, a 

simplified version with only YOLOv5 was used to ensure responsiveness. The user interface was developed 

using Streamlit, offering an interactive and minimalistic experience where users can upload inputs, view 

detections, and choose the mode of operation. 

6.1  User Interface Selection of Method Image,Video or Camera 

As shown in Figure, the system captures real-time image feed and performs object detection using the 4 

YOLO Models and DETR model. Detected waste items are enclosed within bounding boxes along with class 

labels and confidence scores. This allows the system to identify and categorize waste in a live environment, 

making it suitable for practical deployment in smart waste management systems.  

 

Fig. 8. Website 

6.2 Image Detection Output 

In this Figure it presents the backend terminal output during the execution of the waste detection model. It 

highlights the loading of model weights, inference progress, and object detection results with corresponding 

class names and confidence levels. This confirms that the YOLOv5 model has been successfully integrated 

and is functioning as intended, providing detailed logs for validation and debugging. 

Fig. 9  Detection Through Image 

6.3 Flying Object Detection From Video 

As shown in Figure, the system captures real-time video feed and performs object detection using the 4 

YOLO Models and DETR model. Detected waste items are enclosed within bounding boxes along with class 

labels and confidence scores. This allows the system to identify and categorize waste in a live environment, 

making it suitable for practical deployment in smart waste management systems.  
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Fig. 10  Detection Through Video 

6.4 Flying Object Detection Through Real Camera 

The system captures real-time video feed from the camera and performs object detection using the 

YOLOv5 model. Detected waste items are enclosed within bounding boxes along with class labels and 

confidence scores. This allows the system to identify and categorize waste in a live environment, making it 

suitable for practical deployment in smart waste management systems. 

Fig. 11 Real Time Detection Through Camera 

VII. RESULTS AND  DISCUSSIONS 

The proposed ensemble-based flying object detection system demonstrated high accuracy and reliability 

across different input types, including images, video files, and realtime camera feeds. By combining the 

outputs of four YOLO models (YOLOv5, YOLOv7, YOLOv8, YOLOv9) along with the DETR model, the 

system effectively reduced false positives and improved detection consistency. During testing, image and 

video modes produced accurate bounding boxes around flying objects such as drones, birds, and aircrafts, 

with clear labels and confidence scores. The ensemble strategy outperformed individual models in terms of 

detection accuracy, particularly in cluttered or low-contrast scenarios. 

Real-time live camera integration revealed performance limitations due to the computational demand of 

running multiple models concurrently, resulting in delayed frame processing and occasional system freezes. 

To mitigate this, a lightweight configuration using only YOLOv5 was adopted for live streaming, enabling 

smoother, albeit slightly less accurate, performance. The Streamlit interface enabled intuitive user interaction 

and efficient visualization of results. Overall, the ensemble approach proved effective for offline detection 

tasks, while realtime integration remains an area for future optimization using methods like model 

quantization, GPU acceleration, or ONNX conversion.  

VIII. APPLICATIONS AND LIMITATIONS 

The proposed ensemble-based flying object detection system can be effectively applied in various domains 

such as aerial surveillance, air traffic management, disaster response, and environmental monitoring. Its 

ability to detect flying objects like drones and aircraft with improved precision and robustness makes it 

valuable for defense and border security, where real-time tracking is crucial. In civil aviation, it can assist in 

managing low-altitude UAV traffic to avoid mid-air collisions. Additionally, the system supports rescue 

operations during natural disasters by tracking aerial units like drones in real time. Industries can also use it 

for infrastructure inspection and maintenance using drones, ensuring safety and efficiency in operations across 

wide geographical areas.  
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Despite its strengths, the system has limitations primarily related to computational complexity and latency. 

Integrating multiple YOLO variants with DETR increases the resource demands, making real-time 

deployment challenging on edge or mobile devices. The fusion of outputs from different models introduces 

architectural complexity and may result in detection conflicts or increased inference time, especially in 

dynamic or cluttered aerial environments. Furthermore, the system’s performance heavily depends on the 

quality and diversity of the training dataset; poor representation can lead to missed detections. Additionally, 

detecting small or occluded flying objects from high altitudes remains a persistent challenge due to limited 

resolution and varying environmental conditions. 

IX. FUTURE SCOPE 

The HawkEye system presents several avenues for future enhancements to improve its efficiency, 

accuracy, and adaptability in flying object detection. Advanced architectures, such as attention mechanisms 

or recurrent neural networks, could be explored to better capture intricate patterns and temporal dynamics, 

enhancing detection precision. Multi-modal fusion, integrating radar, LiDAR, or infrared sensors alongside 

visual data, can significantly improve detection capabilities, particularly in challenging environments with 

occlusions or low visibility. Domain adaptation is another key area, where refining the model to function 

effectively across diverse terrains, weather conditions, and lighting scenarios would increase its robustness 

for real-world applications. Additionally, real-time implementation on edge devices, UAVs, or surveillance 

cameras would optimize its performance in resource-constrained environments, ensuring immediate detection 

and response capabilities. Implementing continuous learning techniques will enable the model to adapt and 

improve over time, leveraging new data to remain effective in dynamic settings. Finally, addressing ethical 

and privacy concerns is essential to ensure responsible deployment, focusing on data security, prevention of 

misuse, and maintaining transparency in decisionmaking processes to foster societal acceptance. These future 

developments can significantly enhance HawkEye’s potential in surveillance, defense, and autonomous aerial 

monitoring applications. 

X.  CONCLUSION 

The criteria for detecting flying objects in complex backgrounds, such as skies, clouds, and trees, under a 

variety of environmental conditions are successfully met by the developed and trained flying object detection 

model. The model exhibits remarkable accuracy in recognizing and categorizing flying objects by utilizing 

deep learning techniques and a wide range of datasets. It also provides accurate bounding box coordinates and 

labels. This capability has important practical ramifications for a number of fields where accurate 

identification of airborne entities is crucial, such as security surveillance, wildlife monitoring, and aviation 

safety. To improve the model’s performance and suitability for real-world situations, it will be necessary to 

continuously refine and optimize it going forward. We can guarantee the model’s efficacy in addressing these 

issues by iteratively enhancing its resilience and flexibility. 
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