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Abstract: Modern surveillance, security, and airspace monitoring systems rely heavily on flying object
detection. The challenge is in the exact detection of fast-moving airborne objects including drones, birds,
planes, and balloons especially under varying lighting, altitude, and background clutter conditions. This paper
presents HawkEye, a deep learning-based ensemble system combining YOLO (You Only Look Once) and
DETR (DEtection TRansformer) models, to provide improved accuracy and robustness in flying object
identification. The model is trained on the Flying Objects OB 100 dataset, which covers many aerial scenarios.
The paper offers two key approaches: The paper proposes two primary techniques: (1) DOLO, a hybrid
architecture combining YOLO’s real-time efficiency with DETR’s; and (2) an ensemble learning approach
combining several YOLO versions with DETR

Index Terms - Flying Object Detection, YOLO, DETR, Ensemble Learning, Deep Learning, Computer
Vision.

|. INTRODUCTION

In areas like surveillance, defense, air traffic control, and environmental monitoring, the identification
of flying objects—including drones, planes, birds, and other airborne entities—is absolutely vital. Ensuring
efficient and real-time detection of Unmanned Aerial Vehicles (UAVSs) has become a pressing need as their
use for commercial, military, and recreational reasons grows. Traditional object detection systems battle with
issues including fast movement, occlusions, changing object sizes, and cluttered backgrounds, which lower
detection accuracy. With models like YOLO (You Only Look Once) and DETR (DEtection TRansformer)
providing state-of-the-art performance, deep learning-based methods have changed object detection. While
DETR’s transformer-based design improves accuracy by properly spotting items in complicated backgrounds,
YOLO'’s real-time detection capability makes it appropriate for high-speed applications.

Every model, though,, has a slower rate of inference. In order to address these issues, we suggest
HawkEye, an ensemble-based flying object detection system that combines DETR and YOLO to provide high
detection accuracy and real-time efficiency. Our system uses confidence-based and weighted averaging
techniques to combine multiple YOLO versions with DETR by utilizing ensemble learning techniques.
Furthermore, we present DOLO (Detection Optimized YOLO-DETR Hybrid Model), a hybrid strategy that
blends the contextual accuracy of DETR with the speed of YOLO. The methodology, dataset, model
architecture, implementation, and outcomes of the HawkEye system are all described in detail in this paper.
When compared to individual detection models, the suggested method seeks to increase detection accuracy,
robustness, and inference speed. The results show how hybrid deep learning models can be used to address
realworld problems involving aerial objects. This paper explores the ensebling
approach for flying object detection, detailing its design, working principles, and key features. It explains the
software and hardware components used, along with the simulation tools that help in testing its performance
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I1.LITERATURE REVIEW

A Deep Comprehensive Assessment of Aircraft Detection Algorithms in Satellite Imagery
Authors:Safouane ElI Ghazouali, Arnaud Gucciardi, Francesca Venturini, Nicola Venturi, Michael
Rueegsegger, Umberto Michelucci (2024)

This paper provides a deep evaluation of multiple object detection algorithms focused on detecting aircraft
in satellite imagery. Among all evaluated models, YOLOv5 was found to be the most effective in terms of
precision and speed. The study benchmarked models like YOLOV5, YOLOvVS8, Faster RCNN, CenterNet,
RetinaNet, RTMDet, and DETR on HRPlanesVV2 and GDIT datasets. However, the detection performance
was noted to vary depending on the quality and conditions of the satellite imagery, presenting a challenge for
universal deployment.

Real-Time Flying Object Detection with YOLOvV8 Authors: Gowthami Somepalli, Anubhav Gupta,
Kamal Gupta, Shramay Palta, Micah Goldblum, Jonas Geiping, Abhinav Shrivastava, Tom Goldstein
(2023)

This research introduces a real-time flying object detection system using YOLOVS, achieving state-of-the-
art performance in complex aerial environments. The model was trained on a large-scale dataset covering 40
flying object classes and further refined using transfer learning with real-world aerial data. While effective,
the study highlights issues like varying object sizes, occlusion, and cluttered backgrounds, which can hinder
detection accuracy, especially in dense scenarios.

YOLO-Drone: Airborne Real-Time Detection of Dense Small Objects from High-Altitude
Perspective Authors: Alberto Argente-Garrido, Cristina Zuheros, M. Victoria Luzon, = Francisco
Herrera (2022)

YOLO-Drone is a novel approach that enhances small object detection in drone imagery, significantly
outperforming other models in detecting densely packed targets. The model incorporates a custom backbone
(Darknet59) and a multi-scale feature aggregation module (MSPP-FPN) for better accuracy. It was evaluated
on UAVDT and VisDrone datasets. Despite its improvements, the model still faces challenges in detecting
under low light conditions and achieving real-time performance on limited hardware.

DEYOv3: DETR with YOLO for Real-Time Object Detection Authors: Michael Ruderman (2023)

This paper presents DEYOv3, an integrated object detection model that combines the transformer-based
DETR architecture with the speed and effectiveness of YOLO. The model performs end-to-end detection
without requiring ImageNet pretraining, yielding high accuracy and fast inference. Training was done step-
by-step, starting from YOLO and refining with DETR mechanisms. However, the model demands significant
computational resources during the training phase, which may limit its scalability.

DEYO: DETR with YOLO for Step-by-Step Object Detection Authors: Narayan Khadka, Simon
Birrer, Alexie Leauthaud, Holden Nix (2022)

DEYO proposes a two-stage hybrid detection framework where the first stage (YOLO) generates high-
quality anchors and queries, which are then refined by a DETR-like second stage. This combination led to
better accuracy and efficiency over the original DETR. The step-by-step training improves query quality and
boosts detection results. However, the complexity of the two-stage structure introduces implementation
difficulties, especially for real-time systems.

Object Detection through Modified YOLO Neural Network Authors: Lucas M. Valenzuela, Rhea-
Silvia Remus, Klaus Dolag, Benjamin A. Seidel (2020)

This work modifies the original YOLOvV1 network to improve detection performance by enhancing the
loss function and integrating spatial pyramid pooling. The improved loss function follows a proportional style,
and the addition of an inceptionstyle module with 1x1 convolutions enables better feature extraction. The
model shows increased detection accuracy but at the cost of higher computational complexity, potentially
impacting real-time execution in constrained environments.

I1.EXISTING SYSTEM ARCHITECTURE

In the realm of flying object detection, especially in aerial and satellite imagery, deep learning models have
become the foundation due to their impressive performance compared to traditional image processing
methods. Among these, YOLO (You Only Look Once) and DETR (DEtection TRansformer) are two of the
most prominent architectures widely used for object detection tasks. YOLO, known for its remarkable real-
time detection capabilities, processes images in a single forward pass, making it highly suitable for time-
sensitive applications such as UAV monitoring, drone surveillance, and military reconnaissance. However,
YOLO’s performance degrades when faced with complex aerial scenes, especially those involving small,
occluded, or distant flying objects. Its fixed grid-based detection strategy often fails to capture subtle
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variations in object scales or to distinguish overlapping entities. This leads to missed detections (false
negatives) and misclassifications (false positives) in dynamic and cluttered aerial environments.
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Fig. 1. Existing System Architecture

On the other hand, DETR, which leverages transformer based attention mechanisms, offers significant
improvements in detection accuracy and spatial understanding. DETR models can capture long-range
dependencies and complex spatial relationships between objects in an image, which is crucial in aerial scenes
where objects might be sparsely distributed or camouflaged. However, DETR’s major drawback is its high
inference latency and slower convergence rate, making it unsuitable for real-time deployment in systems that
require immediate responses, such as autonomous aerial vehicles or defense applications. Prior to deep
learning, traditional image processing techniques like background subtraction, optical flow, and frame
differencing were used for flying object detection. Although computationally efficient, these methods suffered
from poor adaptability to varying environmental conditions such as lighting changes, camera shake,
atmospheric interference, and diverse terrain backgrounds. As a result, these techniques had limited
robustness, leading to increased false detection rates and unreliable performance in real-world deployments.
Furthermore, single-model detection systems — whether YOLO or DETR — struggle to generalize across
varying scenarios, especially in aerial surveillance, where factors like altitude shifts, camera motion, weather
effects, and changing object orientations significantly impact detection quality. A single architecture cannot
consistently handle the trade-off between speed and accuracy, nor can it adapt efficiently to contextual
variations found in large-scale aerial datasets.

1V.PROPOSED SYSTEM ARCHITECTURE

The proposed system introduces an ensemble-based approach for detecting flying objects in aerial images
by integrating multiple deep learning models. Specifically, it combines four YOLO variants—YOLOV5s,
YOLOv5m, YOLOVSs, and YOLOv8m—along with a transformer-based DETR model. Each of these models
brings its strengths: YOLO models are known for their speed and efficiency in real-time object detection,
while DETR excels at handling complex scenes and spatial relationships due to its attention mechanism. This
combination aims to create a balanced system that can detect flying objects accurately and efficiently across
various environments. In this approach, the input aerial image is processed simultaneously through all five
models. Each model independently predicts bounding boxes, object classes, and confidence scores. These
outputs are then passed through an ensemble fusion module that applies techniques like non-maximum
suppression or weighted box fusion to combine predictions. By crossverifying detections from multiple
models, the system filters out false positives and improves the reliability of final detections. This fusion
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mechanism leverages agreement between models to enhance accuracy and robustness in challenging
conditions such as occlusion, varying altitudes, or dynamic lighting.
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Fig. 2. Proposed System Architecture

Overall, this ensemble strategy helps overcome the limitations of using a single model. While YOLO
ensures highspeed detection suitable for real-time applications, DETR adds precision in complex or cluttered
scenes. By integrating their outputs, the system achieves better generalization across different aerial
environments and object sizes. The result is a more flexible and reliable flying object detection system that
can be effectively used in surveillance, airspace monitoring, and UAV navigation tasks.

V.METHODOLOGY

The proposed system adopts an ensemble-based approach for accurate and efficient flying object detection
in aerial imagery. Recognizing the limitations of individual detection models, this methodology integrates
multiple versions of the YOLO family (YOLOv5s, YOLOv5m, YOLOvV8s, and YOLOv8m) known for their
real-time performance, along with the transformer-based DETR model, which offers improved accuracy in
complex scenarios. By combining the strengths of these models, the system aims to achieve enhanced
detection precision, robustness against environmental variations, and faster inference times.

5.1 Data Collection and Preprocessing

The dataset was collected from Roboflow, which contains annotated images of various flying objects
such as drones, airplanes, helicopters, and birds. Data preprocessing included resizing all images to a fixed
dimension, normalization, and data augmentation (rotation, flipping, brightness variation) to improve model
generalization. The dataset was split into 70
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5.2 Model Training

Five object detection models were used: YOLOvV5, YOLOvV6, YOLOv7, YOLOvVS, and DETR. Each model
was trained individually using transfer learning with pre-trained weights. Common hyperparameters included:
Epochs: 100 Batch Size: 16 Learning Rate: 0.001 Optimizer: Adam The mod
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Fig. 5. YOLO Model

5.3 Ensemble Strategy

An ensemble approach was used to combine the outputs of the five models. Each model generated
predictions consisting of bounding boxes, class labels, and confidence scores. A weighted voting mechanism
was applied, where models with better validation accuracy were given higher weights. Overlapping bounding
boxes were filtered using Non-Maximum Suppression (NMS) and final detections were selected based on

maximum aggregated confidence.
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Fig. 6. Ensemble Approach

5.4 Real Time Detection on Image and Video

The system supports real-time detection on both images and video streams. For videos, frame-wise
detection is performed, and bounding boxes are updated continuously. The detection output includes: Object
type (e.g., drone, bird) Bounding box with label and confidence Real-time frame processing with FPS counter

5.5 Streamlit based User-Interface

The detection system was integrated into a web Ul using Streamlit. It allows users to upload an image or
video, perform real-time detection, and view results interactively. The interface displays the original media
with overlaid bounding boxes, along with prediction confidence and speed (FPS). To enhance the practicality
of the object detection system, a live camera testing module was integrated using the OpenCV library. The
objective was to provide real-time inference by capturing webcam frames and passing them through the
trained object detection models. However, due to the ensemble of multiple models (YOLOv5, YOLOvV7,
YOLOvVS8, and DETR), real time detection posed significant computational challenges. As a result, a
simplified configuration using only a single YOLO model (YOLOvV5) was considered for live detection to
balance performance and resource usage. This component was tested for integration feasibility and is proposed
for future optimization.
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5.6 Performance Evaluation

The ensemble model was evaluated using standard metrics: Precision Recall F1-score mAP@0.5 FPS
(frames per second) The ensemble achieved better performance compared to individual models, balancing
both detection accuracy and speed effectively. The proposed methodology for flying object detection involves
a multi-stage process comprising dataset preparation, model training, ensembling, and deployment through a
user interface. The dataset used for training was sourced from Roboflow, containing annotated images of
various flying objects such as drones, birds, helicopters, and airplanes. Preprocessing techniques such as
resizing, normalization, and augmentation (including rotation, flipping, and brightness variation) were applied
to enhance model robustness, and the dataset was split into training, validation, and testing sets in a 70:20:10
ratio. Five object detection models—YOLOvV5, YOLOv6, YOLOv7, YOLOv8, and DETR—were
individually trained using transfer learning with pre-trained weights, and common hyperparameters like 100
epochs, a batch size of 16, and an Adam optimizer with a learning rate of 0.001 were used.

Each model generated predictions comprising class labels, bounding boxes, and confidence scores. An
ensemble strategy was implemented to merge the outputs using a weighted voting mechanism, where weights
were assigned based on validation accuracy. Overlapping predictions were refined using Non-Maximum
Suppression (NMS) to eliminate redundancy and improve accuracy. The final output displayed the detected
flying objects along with their labels and confidence levels. To make the system user-friendly, a Streamlit-
based web interface was developed, allowing users to upload images or videos and view real-time detection
results with labeled bounding boxes and performance metrics like frames per second (FPS).

V1. IMPLEMENTATION

The implementation of the flying object detection system involved training four separate YOLO models
(YOLOVv5, YOLOv7, YOLOvVS, and YOLOV9) and one DETR model using a curated dataset sourced from
Roboflow. Each model was individually trained to recognize flying objects with high precision, after which
their predictions were ensembled using a custom logic that combined confidence scores and bounding box
overlaps to generate a final, consensus-based detection output. The system supports three modes: static image
detection, video file analysis, and real-time camera input. Image and video modes function seamlessly, with

IJCRT2505273 ‘ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c404



http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882
clear visualization of detected flying objects, as seen in the output frames. For live detection, OpenCV was
used to capture frames, but due to the high computational load of running multiple models simultaneously, a
simplified version with only YOLOV5 was used to ensure responsiveness. The user interface was developed
using Streamlit, offering an interactive and minimalistic experience where users can upload inputs, view
detections, and choose the mode of operation.

6.1 User Interface Selection of Method Image,Video or Camera

As shown in Figure, the system captures real-time image feed and performs object detection using the 4
YOLO Models and DETR model. Detected waste items are enclosed within bounding boxes along with class
labels and confidence scores. This allows the system to identify and categorize waste in a live environment,
making it suitable for practical deployment in smart waste management systems.
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Fig. 8. Website

6.2 Image Detection Output

In this Figure it presents the backend terminal output during the execution of the waste detection model. It
highlights the loading of model weights, inference progress, and object detection results with corresponding
class names and confidence levels. This confirms that the YOLOv5 model has been successfully integrated
and is functioning as intended, providing detailed logs for validation and debugging.
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Fig. 9 Detection Through Image
6.3 Flying Object Detection From Video

As shown in Figure, the system captures real-time video feed and performs object detection using the 4
YOLO Models and DETR model. Detected waste items are enclosed within bounding boxes along with class
labels and confidence scores. This allows the system to identify and categorize waste in a live environment,
making it suitable for practical deployment in smart waste management systems.
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Fig. 10 Detection Through Video

6.4 Flying Object Detection Through Real Camera

The system captures real-time video feed from the camera and performs object detection using the
YOLOvV5 model. Detected waste items are enclosed within bounding boxes along with class labels and
confidence scores. This allows the system to identify and categorize waste in a live environment, making it
suitable for practical deployment in smart waste management systems.
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Fig. 11 Real Time Detection Through Camera

VII. RESULTS AND DISCUSSIONS

The proposed ensemble-based flying object detection system demonstrated high accuracy and reliability
across different input types, including images, video files, and realtime camera feeds. By combining the
outputs of four YOLO models (YOLOvV5, YOLOv7, YOLOV8, YOLOV9) along with the DETR model, the
system effectively reduced false positives and improved detection consistency. During testing, image and
video modes produced accurate bounding boxes around flying objects such as drones, birds, and aircrafts,
with clear labels and confidence scores. The ensemble strategy outperformed individual models in terms of
detection accuracy, particularly in cluttered or low-contrast scenarios.

Real-time live camera integration revealed performance limitations due to the computational demand of
running multiple models concurrently, resulting in delayed frame processing and occasional system freezes.
To mitigate this, a lightweight configuration using only YOLOvV5 was adopted for live streaming, enabling
smoother, albeit slightly less accurate, performance. The Streamlit interface enabled intuitive user interaction
and efficient visualization of results. Overall, the ensemble approach proved effective for offline detection
tasks, while realtime integration remains an area for future optimization using methods like model
guantization, GPU acceleration, or ONNX conversion.

VIIl. APPLICATIONS AND LIMITATIONS

The proposed ensemble-based flying object detection system can be effectively applied in various domains
such as aerial surveillance, air traffic management, disaster response, and environmental monitoring. Its
ability to detect flying objects like drones and aircraft with improved precision and robustness makes it
valuable for defense and border security, where real-time tracking is crucial. In civil aviation, it can assist in
managing low-altitude UAV traffic to avoid mid-air collisions. Additionally, the system supports rescue
operations during natural disasters by tracking aerial units like drones in real time. Industries can also use it
for infrastructure inspection and maintenance using drones, ensuring safety and efficiency in operations across
wide geographical areas.
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Despite its strengths, the system has limitations primarily related to computational complexity and latency.
Integrating multiple YOLO variants with DETR increases the resource demands, making real-time
deployment challenging on edge or mobile devices. The fusion of outputs from different models introduces
architectural complexity and may result in detection conflicts or increased inference time, especially in
dynamic or cluttered aerial environments. Furthermore, the system’s performance heavily depends on the
quality and diversity of the training dataset; poor representation can lead to missed detections. Additionally,
detecting small or occluded flying objects from high altitudes remains a persistent challenge due to limited
resolution and varying environmental conditions.

I X.FUTURE SCOPE

The HawkEye system presents several avenues for future enhancements to improve its efficiency,
accuracy, and adaptability in flying object detection. Advanced architectures, such as attention mechanisms
or recurrent neural networks, could be explored to better capture intricate patterns and temporal dynamics,
enhancing detection precision. Multi-modal fusion, integrating radar, LIDAR, or infrared sensors alongside
visual data, can significantly improve detection capabilities, particularly in challenging environments with
occlusions or low visibility. Domain adaptation is another key area, where refining the model to function
effectively across diverse terrains, weather conditions, and lighting scenarios would increase its robustness
for real-world applications. Additionally, real-time implementation on edge devices, UAVS, or surveillance
cameras would optimize its performance in resource-constrained environments, ensuring immediate detection
and response capabilities. Implementing continuous learning techniques will enable the model to adapt and
improve over time, leveraging new data to remain effective in dynamic settings. Finally, addressing ethical
and privacy concerns is essential to ensure responsible deployment, focusing on data security, prevention of
misuse, and maintaining transparency in decisionmaking processes to foster societal acceptance. These future
developments can significantly enhance HawkEye’s potential in surveillance, defense, and autonomous aerial
monitoring applications.

X. CONCLUSION

The criteria for detecting flying objects in complex backgrounds, such as skies, clouds, and trees, under a
variety of environmental conditions are successfully met by the developed and trained flying object detection
model. The model exhibits remarkable accuracy in recognizing and categorizing flying objects by utilizing
deep learning techniques and a wide range of datasets. It also provides accurate bounding box coordinates and
labels. This capability has important practical ramifications for a number of fields where accurate
identification of airborne entities is crucial, such as security surveillance, wildlife monitoring, and aviation
safety. To improve the model’s performance and suitability for real-world situations, it will be necessary to
continuously refine and optimize it going forward. We can guarantee the model’s efficacy in addressing these
issues by iteratively enhancing its resilience and flexibility.
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