1C)

IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Molly Fish Breeding Behavior (Poecilia sphenops)

priyanka pradhan, Ms. Urvashi Sharma* Department of Zoology, Kalinga University, Raipur (C.G.)

Abstract

Molly fish (*Poecilia sphenops*) have adapted to a variety of aquatic environments through specific reproductive strategies, which are examined in this in-depth study of their breeding behavior. Their distinct sexual dimorphism—males possess a modified gonopodium for internal fertilization, while females have specialized brood pouches that enable ovoviviparous reproduction—is examined in the study. The analysis shows that environmental parameters, including habitat type, photoperiod, water chemistry (pH 7.5-8.2), and temperature (75-82°F), directly affect courting, hormonal regulation, gestation duration (4-6 weeks), and brood development. The study also goes into further depth on captive breeding methods, emphasizing how crucial good tank conditions, feeding, and fry management techniques are to promoting successful reproduction in aquariums.

Keywords: Ovoviviparity, Gonopodium, Thermoregulation, Brood development, Environmental Adaptation

Introduction

The Molly fish, scientifically known as Poecilia sphenops and commonly called the Black Molly or Shortfin Molly, belongs to the freshwater Poeciliidae family (Das n.d.; Ghazi et al., 2019). They originate from freshwater rivers and brackish coastal areas in Mexico, Guatemala, Honduras, and Nicaragua. These fish have become very popular in the aquarium hobby lately due to their resilience, distinctive color patterns, and fascinating mating behaviors (Alderton, 2003; Emmens, 2013). In their natural habitat, the Molly fish prefer warm, plant-filled waters and plenty of hiding spots, factors that directly influence their behaviors and mating practices.

The aim of this paper is to establish a framework for understanding the complex reproductive patterns and environmental factors influencing Molly fish breeding behavior, which can inform appropriate aquarium care practices, conservation of wild populations, and potential applications in aquaculture. Examining the distinct biological and behavioral characteristics related to reproduction might allow us to attain a more profound insight into the ecological significance of these adaptations and their evolutionary backgrounds within the broader framework of live-bearers.

Figure:-Molly Fish (Poecilia sphenops)

Study Area

The study area pertains to the natural or man-made surroundings in which molly fish inhabit, develop, and breed. Researchers, breeders, or aquarium enthusiasts examine molly fish in these areas to understand their biology, behavior, and responses to varying conditions.

Aquarium or Experimental Study Zones (In Laboratories or Farms)

Individuals also examine mollies in regulated settings, such as:

- Fish tanks (domestic or laboratory)
- Aquaculture facilities (for raising and selling)
- University research laboratories

In These Fields, Investigators Examine:

- Reproduction their breeding methods, birthing process, and nurturing of offspring (they are livebearers!)
- Conduct their swimming, eating, fighting, or social grouping habits
- Water Quality how alterations in temperature, salinity, or contamination influence them
- Health and Illnesses to evaluate medications and track ailments

Methodology

The approach to researching Molly fish involves a systematic procedure utilized in scientific studies, breeding, or observing molly fish (Poecilia spp.). It details the process of conducting the study—from choosing the fish and preparing tanks, to examining data.

Here's an in-depth description of a common methodology employed in molly fish research:

Approach of Molly Fish Research

- Select robust male and female molly fish.
- Determine the species/type (e.g., black molly, sailfin molly).
- Choose fish that are alike in size and age to minimize differences.

IJCRI

Acclimatization

- Place the fish into the experimental tanks.
- Permit them to acclimate for 7–14 days in regulated water environments.
- Provide them with regular feedings (commercial pellets or live food) and observe their health.

Figure:-Male and Female Molly fish (*Poecilia sphenops*)

Aquariums/Tanks:

- Utilize glass tanks of suitable dimensions (e.g., 50–100 liters).
- Water Quality.
- Temp: 24–28°C
- pH: 7.5–8.5
- Salinity (when examining brackish water): 5–15 ppt

Figure: - Aquariums Tank.

Result

The individual is experiencing an April explosion in the aquarium of vibrant life. Seven Red Molly Fries started the month on the second, bringing a burst of color. Four days later, the sixth Black Molly fry, aged seventeen, became part of the group. They were likely brothers and sisters eager to begin a vibrant school. The 18th added eight more squirming newcomers: guppy fry, which will contribute flowing fins and vibrant tails to the aquatic scene. Thirteen Polar Blue Parrot eggs, with their enchanting name hintin g at the extraordinary beauty ahead, represented the peak on the 25th.

The aquarium transformed into a more vibrant and thrilling aquatic environment with every new addition.

Date	Molly fish	Fry/Eggs
01/02/2025	White Molly Fish	8
07/04/2025	Black Molly Fish	17

Conclusion

The reproductive habits of Molly fish (Poecilia sphenops) present a fascinating example of evolutionary adaptation that has contributed to the species' success in both the wild and in aquariums. Their distinctive reproductive structures, like the male gonopodium and female brood pouch, enable an ovoviviparous reproductive strategy that produces independent fry after a gestation period of 4–6 weeks, which is influenced by environmental factors such as temperature, water chemistry, light cycles, and habitat configuration. Their reproductive efficiency makes them ideal candidates for captive breeding, as optimal tank conditions, diet, and fry care can facilitate continuous breeding cycles with little external interference. However, the reproductive advantage that makes Milo fish highly sought after for the aquarium industry also creates ecological problems when introduced into foreign environments, highlighting the importance of responsible ownership and conservation efforts to safeguard wild populations from pollution, habitat loss, and climate change impacts. Understanding the complex relationship between evolutionary adaptations, ecological influences, and reproductive behaviors not only enhances our admiration for this intriguing species but also contributes to better husbandry methods, conservation efforts, and ecological management strategies to ensure the long-term survival of both wild and captive Molly fish populations.

Acknowledgements

I want to convey my heartfelt thanks to everyone who played a role in the successful completion of this research on Poecilia spp. (Molly fish).

First and foremost, I express my sincere gratitude to Ms. Urvashi Sharma, for their unwavering support, motivation, and insightful recommendations during this research journey.

I also appreciate the Department of zoology, Kalinga University, Raipur for offering the essential facilities and resources to carry out the experimental work. Sincere gratitude to the laboratory team and technicians for their assistance in managing, maintaining, and observing the fish specimens.

I would like to recognize the support of my classmates and friends, who offered help, collaboration, and encouragement throughout the research phase.

Finally, I am very grateful to my family for their unwavering support, patience, and encouragement, which helped me remain focused and dedicated during this project/research.

