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Abstract : We have investigated pressure dependence of some thermophysical properties of TiO2 (rutile) by 

using equations of state (EOS). We have used two different equations of state, viz. Birch-Murnaghan third order 

EOS and Vinet-Rydberg EOS. We have calculated pressure, bulk modulus and its pressure derivatives at 

different values of volume compression. These results have been used in the generalized free volume formula to 

determine Grüneisen parameter at different values of volume compression. We have used the model given by 

Burakovsky and Preston (B-P Model) to calculate volume dependence of the Grüneisen parameter. This model 

is based on the assumption that the Grüneisen parameter is an analytic function of (V/V0)
1/3, and designed to 

accurately represent the theoretically determined low pressure behavior of Grüneisen parameter. Using the 

Burakovsky-Preston model in the Lindemann law we have  calculated melting curves for rutile (TiO2) at high 

pressure. The calculations have been performed by assuming that TiO2 remains in the rutile structure for the 

entire range of volume compression. 
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1. Introduction 

Rutile (TiO2) is a material with many useful applications in various fields, including photovoltaic 

devices, integrated waveguides, humidity sensors, solar cells, catalysts and photocatalytic applications [1]. 

Under extreme compressions, TiO2 exhibits unique behaviour and properties that make it suitable for specific 

applications. When TiO2 is subjected to extreme compression, it undergoes structural changes, which affect its 

properties such as bulk modulus, first pressure derivative of bulk modulus, and volume dependence of 

Grüneisen parameter. These properties are crucial in understanding the thermophysical behaviour of TiO2 under 

high pressure [2].  

At high pressure, the phase diagrams of TiO2 exhibits a series of structural phase transformations which 

are of particular interest in geophysics and geochemistry of the Earth mantle [3]. Understanding its properties 

and behaviour under high pressure can lead to the development of new materials with specific properties and 

applications [4-7]. Thermophysical properties such as melting temperature. Debye temperature, viscosity, 

thermal conductivity and diffusivity of rocks and minerals are important for strengthening our knowledge about 

the interior of the Earth. Temperature and pressure dependence of thermophysical properties of TiO2 have been 

investigated by several researchers [8-13]. In some of the previous studies [9] the pressure dependences of the 

six elastic constants of single-crystalline rutile (TiO2) have been measured using the ultrasonic techniques for a 

pressure range of 0-2 GPa. First-principle methods have been used to determine the pressure dependence of 

elastic and thermal properties of cubic TiO2 [12].  
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The EOS have paramount important in geophysics and material science. There are two popular 

equations, the Birch-Murnaghan EOS [14] and the Vinet EOS [15], which are given below - 
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where K0 and 0K  are the values of bulk modulus and its pressure derivative, respectively, both at zero pressure 

and x = (V/V0)
1/3 and   .2/1K3 0  The Birch-Murnaghan EOS, Eq. (1), was derived using the Eulerian strain 

theory [14]; the Vinet EOS, Eq. (2), is based on the Rydberg interatomic potential function [16]. We have used 

Eqs. (1) and (2) to find the pressures at different compressions (V/V0). 

 In the present study, we have considered TiO2 for theoretical prediction of its thermophysical properties 

and melting curves. We have calculated bulk modulus and its pressure derivative by using the Birch-Murnaghan 

third order EOS and the Vinet-Rydberg EOS. The obtained results have been used in the generalized free 

volume formula to determine Grüneisen parameter at different values of compressions. We have used the model 

given by Burakovsky and Preston (B-P model) to calculate volume dependence of the  Grüneisen parameter. 

This model has been used in the Lindemann law to calculate melting curves for rutile at high pressures. 

 

2. Method of Analysis 

According to the Birch-Murnaghan third order EOS, the bulk modulus K and its pressure derivative K' 

are given as follows [14] 
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and according to the Vinet-Rydberg the EOS, the bulk modulus K and its pressure derivative K' are given  as 

follows [15] 
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TABLE 1 

Input Parameters for rutile (TiO2) [17]  

 

K0 (GPa) K'0  0 Tm (K) 

213.5 6.3 1.62 2116 

 

The Debye-Grüneisen definition of  , can be written as follows [18] 

 
Vlnd

lnd D             (7) 

The Lindemann melting criterion, which asserts that the root-mean square atomic displacement of atoms from 

their equilibrium positions in a solid is a fixed fraction of the interatomic distance at the melting point, can be 

rewritten in the form of Gilvarry law, which relates the melting temperature Tm, to the Grüneisen parameter [19] 
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There have been various attempts to develop a model for   [20-23]. They are summarised by the single 

generalized formula [16,19] 
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Now, at P = 0 (i.e. atmospheric pressure) 000 KKandKK,   then  
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We have calculated t = 4.09 for TiO2 at zero pressure, taking 3.6K0   and .62.10   

An analytic model for the volume dependence of Grüneisen parameter   has been developed by 

Burakovsky and Preston [24] which is written as follows 
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where  

a1, a2 and n are constant for a given material. Burakovsky and Preston have taken 2/1  in the limit of 

extreme condition (V→0). This value of 

  has been supported by previous workers [25, 26]. Eq. (11) can then 

be written as follows 
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Now, at V = V0, P = 0, and 0  

We get 
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Assuming that a1 = a2 = a  [27-29] Eq. (13) gives 
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by using Eq. (14), Eq. (12) can be written as follows 

 

n

0
0

3/1

0
0

V

V

2

1

2

1

V

V

2

1

2

1

2

1





































        (15) 

Using Eq. (15), in the Lindemann law, Eq. (8) can be integrated to yield the melting temperatures  
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3. Results and Discussion 

 We have used Eqs. (1) and (2) to find out the pressure (P) at different compressions (V/V0) for TiO2 

using the input given in Table 1. Figure 1 represents the plots between pressure (P) and V/V0 based on the 

Birch-Murnaghan EOS and the Vinet-Rydberg EOS down to a compression of 0.60. We have used Eqs. (3) and 

(5) to find values of bulk modulus (K) at high pressure (P). Figure 2 represents the plot between K and P. The 

bulk modulus is increases very rapidly with the increase in pressure for both the EOSs. We have used Eqs. (4) 

and (6) to calculate pressure derivative of bulk modulus (K') with the increasing pressure. The results are  

plotted in figure 3. Values of P,  K and K' determine from both the EOSs  are comparable with each other.  

 The volume dependence of Grüneisen parameter   has been computed using the generalized free 

volume formula Eq. (9), the results based on the two EOSs. We have fitted the B-P Model with the results 

determined from the generalized free volume formula. It is found that the results based on the Birch-Murnaghan 

EOS give n = 1, and those based on the  Vinet-Rydberg EOS fit Eq. (15) with n = 3.2 (Figure 4). 

 Values of melting temperatures for TiO2 as function of V/V0 are computed from Eq. (16). The results for 

Tm are then transformed as function of pressure with the help of EOSs. The melting curves given in figure 5 

reveal that Tm increases with the increase in pressure in a nonlinear manner such that the melting slope 

decreases with the increasing pressure [30].  

 0
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Equation (17) reveals that melting slope becomes zero in the limit of infinite pressure.  

 It should be mentioned that at the maximum value of melting slope is found at zero pressure. We can 

write [30] 
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where 000m Kand,T  are the zero pressure value. Value of the melting slope at zero pressure for rutile 

determined from Eq. (18) turns out to be 25.6 K (GPa)-1. In the limit of infinite pressure, mT  varies as (V/V0)
1/3 

as is evident from Eq. (16) in the limit of extreme compression V→ 0. This would imply 
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Eq. (8) at infinite pressure can be written as follows 
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On comparing Eq. (19) and Eq. (20), we get 
2

1
 . This result supports the B-P model for volume dependence 

of the Grüneisen parameter  

4. Conclusion  

Values of the Grüneisen parameter   computed from the generalized from formula using the results 

based on the Birch-Murnaghan EOS and the Vinet-Rydberg EOS are found to be consistent with the 

Burakovsky Preston model for the volume dependence of Grüneisen parameter for the entire range of 

compressions. The Burakovsky and Preston model has been used in the Lindemann law to determine melting 

curves for rutile up to very high pressures corresponding to a volume compression V/V0 = 0.60. It has been 

found that Tm increases with increasing pressure in a nonlinear manner such that the melting slope decreases 

with increase in pressure. 
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Figure 1 : Plots of pressure (P) versus volume compression (V/V0) for Rutile (TiO2) 
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Figure 2 : Plots of bulk modulus (K) versus pressure (P) for Rutile (TiO2) 
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Figure 3 : Plots of pressure derivative of bulk modulus (K') versus pressure (P) for Rutile (TiO2) 
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Figure 4 : Plots of versus volume compression (V/V0) for Rutile (TiO2) 

obtained by fitting the B-P model with the results based on 

generalized free volume formula. 
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Figure 5 : Plots of melting curves (Tm Versus P) for Rutile (TiO2) using the 

B-P model in the Lindemann law of melting Eq. (16) 

 

 

 

 

 

T
m

 (
K

) 
 

Rutile (TiO2) 

Rutile (TiO2) 
Birch-Murnaghan EOS 

Vinet EOS 

BP model  

m = 1 

BP model  

m = 3.2 

http://www.ijcrt.org/


www.ijcrt.org                                                                 © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT2505021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a165 
 

Acknowledgements 

We are thankful to Prof. Jai Shanker, Institute of Basic Sciences, Agra for his guidance. 

References 

1. R.L. Rudnick, D.M. Fountain, Rev. Geophys. 38(3) (1995) 267.  

https://doi.org/10.1029/95RG01302 

2. A.K. Pandey et al., Natl. Acad. Sci. Lett. 47 (2023) 375.  

https://doi.org/10.1007/s40009-023-01358-0 

3. J. Muscat, V. Swamy, N.M. Harrison, Phys. Rev. B 65 (2002) 224112.  

https://doi.org/10.1103/PhysRevB.65.224112 

4. A.M. Al-Shekh, S. Kareem, S. Mawllod, Int. J. Thermodyn. 25 (2022) 10.  

https://doi.org/10.5541/ijot.900071 

5. A.M. Al-Sheikh, S.J. Al-Faris, S.K. Jalal, Iran. J. Sci. Technol. Trans. Sci. 46 (2022) 689.  

https://doi.org/10.1007/s40995/021-01253-7 

6. S.K. Jalal, A.M. Al-Sheikh, R.H. Al-Saqa, Iran. J. Sci. Technol. Trans. Sci. 45 (2021) 391.  

https://doi.org/10.1007/s40995-020-01041-9 

7. S. Kareem, S. Mawllod, Int. J. Thermodyn. 23 (2020) 245.  

https://doi.org/10.5541/ijot.771458 

8. D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, E. Hake, Phys. Chem. Minerals. 26 (1998) 31.  

 https://doi.org/10.1007/s002690050158 

9. I.J. Fritz, J. Phys. Chem. Solids. 35 (1974) 817.  

https://doi.org/10.1016/s0022-3697(74)80262-3 

 

10. A.Y. Wu, R.J. Sladek, Phys. Rev. B 25 (1982) 5230.  

https://doi.org/10.1103/PhysRevB.25.5230 

11. R. Miloua, Z.Kebbab, N. Benramdane, M. Khadroui, F. Chiker, Comp. Mater. Sci. 50 (2011) 2142.  

https://doi.org/10.1016/j.commatsci.2011.02.020 

 

12. T. Mahmood, C. Cao, W.S. Khan, Z. Usman, F.K. Butt, S. Hussain, Physica B 407 (2012) 958.  

https://doi.org/10.1016/j.physb.2011.12.114 

13. H. Kangarlou, A. Abdollahi, Pramana- J. Phys. 86 (2015) 117.  

https://doi.org/10.1007/s12043-015-0966-z. 

14. F. Birch, J. Geophys. Res. 91 (1986) 4949.  

https://doi.org/10.1029/JB091iB05p04949 

15. P. Vinet, J. Ferrante, J.H. Rose, J.R. Smith, J. Phys. Condens. Matter. 1 (1989) 1941.  

https://doi.org/10.1088/0953-8984/1/11/002 

16. F.D. Stacey, Rep. Prog. Phys. 68 (2005) 341.  

https://doi.org/10.1088/0034-4885/68/2/R03 

17. S. Arafin, R.N. Singh, J. Phys. Chem. Solids, 99 (2016) 86.  

https://doi.org/10.1016/j.jpcs.2016.07.015 

18. J.-P. Poirier, Introduction to the Physics of the Earth's Interior, 2nd edition, (Cambridge University 

Press, Cambridge, UK, 2000).  

https://doi.org/10.1017/CB09781139164467 

19. O.L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science, (Oxford University 

Press, New York, 1995), p. 281.  

https://doi.org/10.1093/oso/9780195056068.001.0001 

20. H. Stiller, S. Franck, Phys. Earth Planet. Inter. 22 (1980) 173.  

https://doi.org/10.1016/0031-9201(80)90030-8  

21. J.S. Dugdale and D.K.C. MacDonald, Phys. Rev. 89 (1953) 832.  

https://doi.org/10.1103/physRev.89.832 

22. R.D. Irvine, F.D. Stacey, Phys. Earth Planet. Inter. 11 (1975) 157.  

https://doi.org/10.1016/0031-9201(75)90009-6 

23. M.A. Barton, F.D. Stacey, Phys. Earth. Planet. Inter. 39 (1985) 167.  

https://doi.org/10.1016/0031-9201(85)90087-1  

24. L. Burakosky, D.L. Preston, J. Phys. Chem. Solid. 65 (2004) 1581,  

http://www.ijcrt.org/


www.ijcrt.org                                                                 © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882 

IJCRT2505021 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a166 
 

https://doi.org/ 10.1016/j.jpcs.2003.10.076. 

25. H. Nagara, T. Nakamura, Phys. Rev. B. 31 (1985) 1844.  

https://doi.org/10.1103/PhysRevB.31.1844 

26. Yu. V. Petrov, High Press. Res. 11 (1994) 313.  

https://doi.org/10.1080/08957959408206139 

27. J. Shanker, B.P. Singh, K. Jitendra, Condens. Matter Phys. 11 (2008) 681.  

https:// doi.org/10.5488/CMP.11.4.681. 

28. A. Dwivedi, Can. J. Phys. 98 (2020) 813.  

https://doi.org/10.1139/cjp-2019-0326. 

29. V. Rashmi, A. Dwivedi, Comp. Cond. Matter 42 (2025) e01013 (1).  

https://doi.org/10.1016/j.cocom.2025.e01013 

30. J. Shanker, K. anand, B.S. Sharma, A. Vijay, Int. J. Thermophys. 41(2020) 170.  

https://doi.org/10.1007/s10765-020-02751-3. 

 

http://www.ijcrt.org/

