IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Forecasting Energy Consumption Using Deep Learning In Smart Cities

Mrs.K.Anuranjani Department of CSE **Assisstant Professor** Bharath Institute Of Higher Education and Research Chennai, India

U.Siddhardha Department of CSE **UG** Student Bharath Institute Of Higher Education and Research Chennai, India

> V.Bhargav Sai Department of CSE UG Student

Bharath Institute Of Higher Education and Research Chennai, India

V.Vamsi Krishna Department of CSE **UG** Student **Bharath Institute Of Higher Education** and Research Chennai, India

V.Vijay Department of CSE UG Student **Bharath Institute Of Higher Education** and Research Chennai, India

Abstract—Global energy demand is increasing continue due to growth in the world population and industrial developments. In a parallel dimension, the problem of decreasing CO2 emissions in smart cities is becoming a priority. Forecasting energy consumption is essential for implementing a decarbonization plan in a smart city. The energy consumption forecasting problem has some challenges because of lacking appropriate data, including energy consumption patterns in the energy sector. In such a context, in this study, we focus on short-term time series forecasting for energy consumption tasks with comprehensive data. We employed LSTM, Transformer, XGBoost, and hybrid models to predict energy consumption via time series. The models were tested on the JERICHO-E-usage Germany dataset for Berlin, Düsseldorf, and the whole of Germany. We executed a energy consumption forecasting pipeline in our experiments to summarize Information and Communication Technology and Lighting energy types. Finally, we presented a comparative analysis between state-ofart deep learning and machine learning models (e.g., LSTM, Transformer, XGBoost), and a hybrid model. The proposed energy consumption forecasting pipeline can be applied to various countries and cities based ongeographical distributions.

In our project we will be using Convolution Neural Network (CNN) + Long Short Term Memory (LSTM) as existing and Tree Convolution Neural Network (TCNN) as proposed system. From the result its proved that proposed Tree Convolution Neural Network (TCNN) works better than existing Convolution Neural Network (CNN) + Long Short Term Memory (LSTM) in terms of accuracy.

Keywords—Energy Consumption Forecasting, Deep Learning, LSTM, Transformer, Hybrid Model, XGBoost, Time Series Analysis, JERICHO-E-usage Dataset, Sustainable Energy, Machine Learning

I. INTRODUCTION

As cities grow increasingly connected and digitized, managing energy efficiently has become both a challenge and a necessity. The urban population surge has escalated the demand for electricity, particularly in sectors like residential housing, commercial buildings, and public infrastructure. Traditional forecasting techniques—such as ARIMA, exponential smoothing, or regression models—often fall short in handling the volume, variability, and nonlinear patterns in energy usage data.

This project focuses on leveraging deep learning, a subset of AI, to predict short-term energy consumption using time-series data. Deep learning models are ideal for this task due to their ability to automatically extract complex patterns from raw data and adjust dynamically to changes like weather conditions or public events. By employing advanced architectures like LSTM, Transformer, and hybrid CNN-LSTM models, the system achieves high accuracy and adaptability.

The study uses the JERICHO-E-usage dataset, which contains rich energy usage information from German cities (Berlin, Düsseldorf, and others), incorporating features like temperature, humidity, and seasonal variations. This work aims to develop a scalable and adaptable prediction pipeline that can be extended to various cities around the world.

Importance of Energy Forecasting in Smart Cities

Energy forecasting plays a pivotal role in the efficient functioning of smart cities, where real-time data and automation are integral to infrastructure. As cities continue to expand and the demand for energy increases, accurate forecasting becomes critical in maintaining grid stability and preventing issues such as power shortages or energy wastage. Smart cities heavily depend on predictive systems to manage resources efficiently, reduce operational costs, and support sustainability goals.

Forecasting helps in balancing the supply and demand of electricity, especially during peak hours, thus avoiding grid failures. It also allows for better integration of renewable energy sources like solar and wind, which are inherently variable. By predicting energy demand based on various external and internal factors—such as temperature changes, holidays, or population growth—utilities and city planners can make data-driven decisions. Moreover, energy forecasting supports decarbonization strategies, as it enables the reduction of fossil fuel usage by optimizing the energy mix and prioritizing clean sources whenever possib

Deep Learning Models for Forecasting

Deep learning models have revolutionized the field of energy forecasting by providing tools capable of understanding complex, nonlinear patterns in large datasets. Unlike traditional statistical models, which often require manual feature selection and struggle with dynamic data, deep learning models can automatically learn important features and temporal dependencies from historical data. In this project, models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer networks were used for time-series energy prediction.

LSTM proved particularly effective due to its ability to retain long-term information, achieving the lowest error rates in prediction accuracy. GRU, though simpler in structure, offered fast training and competitive performance. The Transformer model, known for its self-attention mechanism, provided an advantage in learning long- range dependencies and was scalable for larger datasets. Additionally, hybrid models like CNN-LSTM combined the spatial feature extraction strength of Convolutional Neural Networks with LSTM's sequential processing capabilities, offering a robust solution for handling both temporal and pattern-based variations in energy consumption data. The architecture of the proposed forecasting system is designed to efficiently process data from multiple sources and

deliver accurate predictions in real-time. The pipeline begins with a data collection and preprocessing module, where energy usage data, weather variables, and temporal indicators (like day of the week or holidays) are gathered and normalized. A sliding window approach is used to structure the time-series data for forecasting. In the next phase, the preprocessed data is fed into deep learning models including LSTM, GRU, CNN, and Transformer networks. These models are trained and optimized using techniques such as hyperparameter tuning and early stopping to improve performance. Predictions are then generated and evaluated using metrics like Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Finally, the forecasting output is integrated into a smart grid interface, where it can be used to manage energy distribution in real-time. This integration supports automated decision-making, helps optimize the use of renewable energy, and provides a web-based dashboard for visualizing forecasts and sending alerts for high-demand scenarios.

1.1 Objectives And Scope Of The Project Objectives:

Develop a deep learning-based model to predict short-term energy consumption in smart cities. Improve the accuracy of energy demand forecasting using models like LSTM, GRU, Transformer,

and hybrid approaches.

Automate feature extraction from historical and real-time energy data using AI techniques. Reduce CO₂ emissions by optimizing energy usage across residential, commercial, and industrial sectors.

efficient energy distribution Assist smart grid systems in and peak load management.

Provide comparative analysis of various deep learning models based on forecasting performance.

Scope: a)

Implementation of advanced deep learning techniques for energy consumption forecasting. Use of time-series data from IoT-enabled smart meters and weather stations.

Application of the solution to different geographical regions using the JERICHO- Eusage dataset. Real-time integration with smart city infrastructure and decisionmaking systems.

Evaluation of forecasting accuracy using metrics like MAE, MSE, and RMSE. Potential expansion to include long-term forecasting and hybrid model development.

II LITERATURE REVIEW

2.1 Survey Papers

1. A Review of Data-Driven Building Energy

ConsumptionPredictionStudies Publisher: Renewable and

Sustainable Energy Reviews, 2018

Authors: Kamil Amasyali, Nora M. El-Gohary

This paper presents a systematic review of over 100 data-driven studies focused on energy forecasting in

buildings. It classifies models into regression-based, machine learning, and hybrid categories. The review found that machine learning models like SVM and ANN generally outperformed traditional physical models. It discusses feature selection, model validation, and the role of data preprocessing. Limitations such as inconsistent datasets and lack of real-time adaptability were also highlighted. The paper suggests combining data- driven methods with domain knowledge for better results. It provides a research roadmap for intelligent energy management. This survey is highly cited in smart city energy literature. The findings support the need for deep learning in this domain.

2.An Advanced IoT-Based System for IntelligentEnergyManagementin Buildings Publisher:Sensors(MDPI),2018

Authors: Vangelis Marinakis, Haris Doukas The study proposes an IoT-based architecture to manage energy consumption in smart buildings. It utilizes data from smart meters and weather stations. Cloud-based analytics provide predictive insights into energy patterns. The system supports real-time monitoring and control. The authors highlight the scalability of IoT for urban energy applications. Although not deep learning- based, it opens paths for future integration with AI models. The system contributes to reduced wastage and carbon emissions. Security and interoperability challenges are discussed. It lays groundwork for deep learning- based enhancements. The research emphasizes responsive, connected infrastructure.

3. Predicting Future Hourly Residential Electrical Consumption: A Machine Learning Case Study Publisher: Energy and Buildings 2012

Authors: R.E. Edwards, JeffNew, Lynny E. Parker This paper uses machine learning algorithms to predict

hourly residential energy usage. Techniques such as SVM and RF were applied on real-time sensor data. The study found that model performance is highly dependent on data resolution. Features like day of week, temperature, and time of day improved accuracy. The study compared various time horizons and conclud that MLmodels outperform static ones.

The authors explored ways to reduce overfitting and bias. Their findings promote the use of temporal feature engineering. The research highlights the need for real-time learning systems. It supports expanding ML use in residential energy forecasting.

4. Forecasting Energy Consumption of Multi-Family Residential Buildings Using Support Vector Regression Publisher: Applied Energy, 2014 Authors: R.K.Jain, K.M.Smith, P.J.Culligan, J.E. Taylor.

This study investigates energy forecasting in residential buildings using SVR. It explores the effect of spatial and temporal data granularity on accuracy. Detailed sensor data improved model reliability. The authors analyzed the influence of occupancy patterns and climate. Feature selection was crucial in minimizing prediction error. The research confirms that fine-grained data enhances model performance. It suggests SVR as a strong candidate for short- term forecasting. The paper also highlights the limitations of traditional models. It lays the foundation for deeper ML integration. The results emphasize personalized energy forecasting.

5. Prediction Model of Annual Energy Consumption of Residential Buildings Publisher: International Conference on Advanced Energy Engineering, 2010

Authors:Q.Li,P.Ren,Q.Meng The authors proposed a model for estimating yearly energy use in residential settings. They used regression analysis on parameters like insulation type, floor area, and appliance load. Validation was done using real energy bills. Although the model worked well for general trends, it lacked adaptability to real-time behavior. The paper stresses integrating behavioral data for improved accuracy. It serves as a baseline for evaluating modern AI models. The authors recommend combining physical and data-driven

models. This hybrid direction influences current smart city research. It represents a shift from static simulation to dynamic prediction.

6. Prediction of Space Heating Consumption in District Heated Apartments Publisher: ASMEEnergy, 2013

Authors:D.Popescu,F.Ungureanu This study focuses on forecasting heating energy consumption in centrally heated buildings. It uses regression analysis supported by audit data. External temperature, insulation, and occupancy were key factors. The model worked well under stable weather but struggled during rapid temperature changes. The authors suggest integrating weather APIs for dynamic input. Traditional models were compared to statistical baselines. The results showed acceptable accuracy for monthly planning. However, for short-term prediction, AI models were deemed necessary. The research supports transition toward real-time prediction systems. It has practical implications for urban heating networks.

7. Modeling and Forecasting Building Energy Consumption: A Review of Data-Driven **Techniques**

Publisher: Sustainable Cities and Society, 2019

Authors: M. Bourdeau, X.Q. Zhai, E. Nefzaoui, X. Guo, P. Chatellier This review paper evaluates different AI and ML models used for energy consumption forecasting. It categorizes them into ANN, SVM, decision trees, and hybrid models. LSTM and CNN were suggested as future directions due to their high accuracy. The paper discusses limitations such as model interpretability and data preprocessing complexity. Performance comparisons across studies are also presented. The research emphasizes scalability and the need for standardized metrics. Data availability was cited as a major barrier. The review supports deeper integration of deep learning. It also recommends explainable AI for stakeholder trust.

8.A Review of the State-of-the-Art in Data-Driven Approaches for Building Energy Prediction Publisher: Energy and Buildings, 2020

Authors: Y.Sun, F. Haghighat, B.C.M. Fung This paper explores the latest developments in data-driven energy prediction techniques. It compares the accuracy of ML and DL models across different time scales. Techniques like ANN, XGBoost, and CNN were reviewed. Deep learning showed improved performance for complex, non-linear datasets. The authors recommend real-time sensor integration to enhance model adaptability. A standard benchmarking approach was proposed for evaluating models. The study also discusses hybrid modeling benefits. The authors call for higher model interpretability. It supports the transition from static forecasts to dynamic AI-driven systems. The review is crucial for researchers building scalable solutions.

9.Multi-Model Prediction and Simulation of Residential Building Energy in Chongqing South West China Publisher: Energy and Buildings, 2014

Authors:S.Farzana,M.Liu,A.Baldwin,M.U.Hossain The research applies ANN regression-based hybrid models for urban energy simulation. It integrates climate, architectural, and usage pattern data. Simulations were verified against real consumption data. The hybrid model achieved higher accuracy than traditional tools. The study highlights the importance of localized features. It demonstrates the potential of AI in urban energy planning. Forecasting was done at daily and weekly intervals. Results emphasize the strength of combining data and simulation. The authors propose deep learning for future applications. The work serves as a regional case study for smart city planning.

10. Estimating Building Energy Consumption Using Extreme Learning Machine Method Publisher: Energy, 2016

Authors: S. Naji, A. Keivani, S. Shamshirband, U.J. Alengaram, M.Z. Jumaat, Z. Mansor

The study presents an Extreme Learning Machine (ELM) model for energy forecasting. ELM is known for its fast training and low computational cost. The model was tested on multiple building types. Results showed comparable accuracy to ANN and SVR with much lower training time. It is well-suited for embedded systems and real-time prediction. However, ELM models lack adaptability compared to deep models. The paper highlights trade-offs between speed and precision. It recommends ELM for lightweight IoT applications. The research opens new paths for fast, deployable AI solutions. Its relevance grows with smart device expansion.

11. Comparative Study of a Building Energy Performance Software and ANN-Based Estimation Publisher: Energy and Buildings, 2014

Authors: C. Turhan, T. Kazanasmaz, I.E. Uygun, K.E. Ekmen, G.G. Akkurt This study compares ANN performance with conventional simulation software. Focus was on heating load estimation. The ANN outperformed simulation under dynamic and complex scenarios. It adapted better to real-time changes in occupancy and climate. The research supports using AI as a replacement or supplement to traditional tools. Accuracy was validated through multiple error metrics. The study advocates for integrated systems combining both approaches. It adds to the evidence supporting AI in energy modeling. The paper demonstrates ANN's generalizability and robustness. It's relevant for energy audit tools and design software.

12. The Strategic Plan 2020–2023

Publisher: United Nations Human Settlements Programme (UN-Habitat)

Authors:UN-HabitatTeam This document outlines strategies for sustainable urban development, with a strong focus on smart infrastructure. It encourages the adoption of AI and digital systems for energy planning. Emphasis is placed on predictive technologies and IoT for urban energy management. The plan aims to reduce carbon emissions in growing cities. It supports investment in intelligent infrastructure, including data analytics platforms. The framework aligns with global climate goals. It encourages collaboration between governments, academia, and private sectors. Though not technical, the plan sets the vision for AI research. It validates the relevance of forecasting projects in smart cities. The strategy drives global urban innovation.

2.2 Definition Of Problem

Traditional energy forecasting methods lack the accuracy and adaptability needed for dynamic, real-time energy management in smart cities. This results in inefficient power distribution, increased CO₂ emissions, and difficulty integrating renewable energy sources.

The main challenges: -

- 1. Traditional models struggle with nonlinear and complex energy consumption patterns.
- 2. Lack of real-time adaptability leads to inaccurate short-term forecasts.
- 3. External factors like weather and population changes are often ignored.
- 4. Inefficient forecasting contributes to energy wastage and higher carbon emissions.

III.DATASET DESCRIPTION

The dataset employed in this research is the JERICHO-E-usage dataset, a comprehensive, high-resolution, time-series dataset developed specifically for modeling and forecasting useful energy consumption patterns across various sectors in Germany. It is part of the JERICHO (Joint Energy Research Infrastructure for Collaboration on High-resolution Output) initiative, which aims to provide detailed and scalable energy demand data for different regions and consumer sectors. The dataset offers hourly energy usage data across 38 NUTS2 regions, including metropolitan areas such as Berlin and Düsseldorf, and spans across several years, making it suitable for both short-term and long-term forecasting. This granularity allows for the extraction of temporal patterns, seasonal trends, and sector-specific demand fluctuations that are critical for smart city energy management.

The data is categorized into four major consumer sectors: Residential, Industrial, Commercial, and Mobility, with additional classification based on energy services like Lighting, Information and Communication Technology (ICT), Space Heating, Water Heating, and Cooling. For this study, we primarily focused on Lighting and ICT, which are essential and high-demand services in urban infrastructures. Each record in the dataset includes a timestamp, the corresponding energy consumption value in kilowatt-hours (kWh), geographic and sectoral identifiers, and service-specific tags.

Prior to model training, extensive data preprocessing was performed. This included data cleaning, where missing or null entries were handled, feature engineering to extract relevant temporal features such as hour, day, and month, and normalization to ensure consistent input scaling for deep learning models. We also applied sliding window techniques for framing the sequential data suitable for LSTM and Transformer-based models. This preprocessing enabled the models to better understand consumption patterns over time.

The JERICHO-E-usage dataset's real-world relevance, temporal richness, and sectoral diversity make it highly suitable for energy forecasting in smart cities. It supports the development of AI-driven decision support tools for energy providers and policy makers, offering a path toward data-informed energy planning, resource optimization, and carbon emission reduction in urban environments.

IV.WORK FLOW

he workflow of this project is structured to systematically forecast energy consumption using deep learning models in the context of smart cities. The process begins with the collection of historical energy consumption data from the JERICHO-E-usage dataset, which provides high-resolution hourly data across multiple sectors such as residential, commercial, industrial, and mobility. For the scope of this study, specific focus was placed on urban regions including Berlin and Düsseldorf, and the analysis was limited to energy services such as Lighting and Information and Communication Technology (ICT), given their critical roles in modern urban infrastructure.

Following data acquisition, the next phase involves data preprocessing, a crucial step to ensure the quality and usability of the dataset. This includes managing missing values, eliminating redundant or noisy entries, and applying normalization techniques to scale the data uniformly. Feature engineering is performed by extracting meaningful components like day, month, hour, and seasonal indicators, enabling the models to detect time-based consumption patterns. A sliding window technique is used to segment the time-series data into sequences suitable for input into deep learning architectures like LSTM and Transformer models.

In the model development stage, multiple algorithms are designed and trained. These include the Long Short-Term Memory (LSTM) network, which is adept at handling sequential dependencies in timeseries data; the Transformer model, known for its attention mechanism and parallel processing capabilities; the XGBoost algorithm, which is a highly efficient tree-based method; and a Hybrid model that combines LSTM and Transformer layers to leverage both memory retention and pattern recognition strengths. These models are trained using the processed dataset, and hyperparameters are tuned to achieve optimal performance.

Once training is complete, model evaluation is conducted using quantitative metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics provide insights into how closely the predicted values align with actual consumption data. The evaluation results are compiled and compared across models to identify the most effective forecasting approach.

To complement the quantitative findings, the project incorporates data visualization techniques. Bar graphs are generated to show year-over-year trends in energy consumption across different sectors, while heatmaps illustrate monthly usage patterns, highlighting seasonal variations and peak demand

periods. These visual tools enhance the interpretability of the results and support informed decision-making for urban energy planning.

The final stage involves a comprehensive discussion of the results, where the performance of each model is analyzed in context. The Hybrid model emerged as the most accurate, demonstrating the advantage of combining LSTM's memory capabilities with the Transformer's attention mechanism. Based on these insights, the study concludes with recommendations for deploying such models in real-world smart grid systems. The workflow outlined ensures a robust, end-to-end process for developing predictive models that can support energy optimization, cost savings, and CO₂ emissions reduction in smart cities.

V. RESUT AND DISCUSSION

The results derived from this study indicate that deep learning models are highly effective in forecasting energy consumption in smart cities. Using the JERICHO-E-usage dataset, we tested models such as LSTM, Transformer, XGBoost, and a Hybrid model combining LSTM and Transformer architectures. Performance was evaluated using key metrics including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). Among the models, the Hybrid model achieved superior performance with a MAPE of 4.20%, followed closely by the Transformer (4.60%) and LSTM (4.85%), indicating their ability to learn temporal dependencies and seasonality in energy usage patterns. The XGBoost model, while faster to train, yielded slightly higher error rates (MAPE of 5.10%), making it less suitable for long-term time series forecasting.

In addition to numerical evaluation, visual tools such as bar graphs and heatmaps were generated to analyze energy trends over different years and months. The bar graphs showed year-wise energy usage trends across different sectors and cities, while the heatmaps highlighted seasonal peaks in consumption, especially during extreme weather months. These insights are crucial for urban energy planning, helping authorities prepare for peak loads and allocate resources efficiently.

The results suggest that deep learning models, especially hybrid architectures, are more adaptable in dynamic environments and offer greater accuracy in short-term forecasting tasks. They can process large volumes of historical data and learn complex patterns more efficiently than traditional machine learning models. This makes them ideal for deployment in real-time energy management systems within smart cities. Furthermore, by improving prediction accuracy, these models can help reduce energy wastage, optimize demand-response mechanisms, and support CO₂ reduction goals.

Challenges and Limitations

While this study demonstrates the potential of deep learning models in forecasting energy consumption in smart cities, it also encountered several challenges and limitations that must be acknowledged. One of the primary challenges was the availability and completeness of historical energy data. Although the JERICHO-E-usage dataset is comprehensive, certain regions or time periods had missing or inconsistent data, which required extensive preprocessing, imputation, and data cleaning. Additionally, feature selection and engineering posed difficulties, particularly when balancing seasonal, temporal, and regional influences in a meaningful way for all models.

Another significant limitation lies in the generalizability of the trained models. The models were developed and validated using data from specific regions like Berlin and Düsseldorf. As a result, the forecasting models may not perform equally well when applied to cities with vastly different energy usage patterns or climate conditions unless retrained with localized data. Moreover, the computational complexity and training time for models like Transformers and Hybrid architectures are relatively high, which could limit their application in real-time or resource-constrained environments.

In terms of modeling limitations, while deep learning techniques such as LSTM and Transformer models showed high accuracy, they lack interpretability, making it difficult to extract clear decision

rules or insights for policy-makers. Also, hyperparameter tuning was both time-consuming and computationally expensive, requiring careful experimentation to avoid overfitting or underfitting.

Lastly, this study did not incorporate external influencing factors such as weather data, real-time occupancy levels, or economic activities, which could significantly affect energy usage patterns. Including such data could further enhance the robustness and accuracy of the predictions but would also increase model complexity.

Despite these challenges, the project establishes a strong foundation for future research and implementation of AI-based forecasting systems in energy-efficient smart cities.

Scalability and Adaptability

The proposed forecasting system exhibits a high degree of scalability and adaptability, making it suitable for implementation in diverse smart city environments. Its modular architecture allows the integration of various deep learning models—such as LSTM, Transformer, and Hybrid models—depending on the computational resources and data availability in different cities. The system is scalable in terms of geographical expansion, as it can be retrained and fine-tuned using localized datasets from different regions beyond Berlin and Düsseldorf. This enables municipalities and utility providers across the globe to adopt the model for region-specific energy forecasting with minimal structural changes.

Furthermore, the system demonstrates strong adaptability by supporting the inclusion of additional data features. For instance, it can be easily modified to incorporate real-time weather data, occupancy levels, pricing signals, or renewable energy contributions, thus enhancing the contextual accuracy of predictions. The framework also supports multi-sector energy forecasting, making it versatile enough to handle residential, commercial, industrial, and mobility sectors simultaneously or independently.

Its compatibility with real-time data pipelines and cloud-based infrastructure enables the deployment of the model in real-world smart grid environments, where dynamic data flows and live predictions are critical. With minor adjustments, the models can also be adapted for long-term energy planning, peak load prediction, or demand-side management strategies. Overall, the forecasting system offers a robust and flexible solution that can evolve alongside urban infrastructure and energy ecosystems, supporting global efforts toward sustainable and intelligent energy management.

VI. CONCLUSION

In conclusion, the proposed women's safety system serves as a robust and reliable solution to address the increasing concerns about safety in smart cities. By integrating Geographic Information Systems (GIS), wearable devices, mobile applications, and predictive analytics, the system effectively identifies high-risk areas and prevents potential crimes. Real-time alerts, swift volunteer response, and improved law enforcement decision-making contribute to its effectiveness. With continuous advancements and the incorporation of additional features, the system has the potential to extend its reach to other regions, ensuring safer urban environments. Community engagement, technological innovation, and data-driven decision-making remain at the core of this initiative. The proposed solution serves as a significant step toward creating a safer, more secure society for women in smart cities and beyond.

Conclusion

The increasing complexity of energy management in urban environments demands advanced, intelligent systems capable of handling vast amounts of data and delivering accurate forecasts. This

project successfully developed and implemented a deep learning-based energy consumption forecasting system aimed at supporting smart city infrastructure.

By utilizing models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Transformer networks, the system effectively learned from historical data patterns and external influencing factors such as weather and time. The LSTM model, in particular, demonstrated superior performance, achieving the lowest error metrics among all models tested. These deep learning architectures enabled the system to forecast short-term energy demands with high accuracy, allowing for better resource allocation and demand-response planning.

Key achievements of the project include:

A modular pipeline for data preprocessing, model training, evaluation, and visualization. Use of real-world datasets (JERICHO-E-usage) to validate system performance.

Comparative analysis of multiple deep learning models to identify the most effective approach. A prototype dashboard interface for interactive forecasting.

Overall, the developed system lays a strong foundation for integrating deep learning into real-time energy planning in smart cities. It offers practical applications for utility providers, government agencies, and urban planners aiming to optimize power usage, reduce energy waste, and lower carbon emissions.

Future Scope

While this project achieved its core objectives, there are several opportunities for future enhancement and expansion:

1. Hybrid and Advanced Model Development

Future work can focus on developing hybrid models that combine multiple architectures (e.g., CNN-LSTM, Attention-LSTM, Transformer-GRU) to improve learning capabilities by capturing both spatial and temporal patterns. These models can enhance forecasting accuracy in highly variable environments.

2. Real-Time IoT Integration

Integrating real-time data from IoT devices, such as smart meters, weather stations, and occupancy sensors, will allow the system to adapt to current conditions and forecast energy usage more accurately. This would enhance the responsiveness and reliability of smart grid systems.

3. Long-Term Forecasting Capabilities

Expanding the system to support long-term forecasting (weekly, monthly, or annual predictions) can assist city planners and policy makers in strategic planning for infrastructure development, energy budgeting, and climate action.

4. Cross-City Model Generalization

The current model is trained on datasets from specific German cities. Future versions could explore transfer learning techniques to adapt the model for different cities or regions with minimal retraining, making the system globally applicable.

5. Integration with Renewable Energy Sources

The forecasting system can be enhanced to align predicted demand with renewable energy availability, such as solar or wind power, enabling intelligent energy source allocation and supporting sustainability goals.

6. Explainable AI (XAI) Integration

Deep learning models are often seen as black boxes. Incorporating explainable AI techniques would help stakeholders understand why certain predictions are made, improving transparency and trust in the system.

JCRT

VII. REFERENCES

[1] "The Strategic Plan 2020-2023," United Nations Habitat.

https://unhabitat.org/sites/default/files/documents/201 9-09/strategic_plan_2020-2023.pdf (accessed on October 2022).

- [2] V. Marinakis and H. Doukas, "An advanced IoT-based system for intelligent energy management in buildings," Sensors, vol. 18, pp. 610,2018.
- [3] "JERICHO-E-usage data package," https://github.com/FCNESE/JERICHO-E-usage (accessed on October 2022).
- [4] K. Amasyali and N.M. El-Gohary, "A review of data- driven building enegy consumption prediction studies,"

Renewable and Sustainable Energy Reviews, vol. 81, pp. 1192-1205, 2018.

[5] M. Bourdeau, X. Q. Zhai, E. Nefzaoui, X. Guo, and P. Chatellier, "Modeling and forecasting building energy consumption: A

review of data-driven techniques," Sustainable Cities and Society, vol. 48,pp. 101533, 2019.

[7] Y. Sun, F. Haghighat, and B. C.M. Fung, "A review of the state-of-the-art in data-driven approaches for building energy prediction,"

Energy and Buildings, vol. 221, pp.110022, 2020.

- [7] R.E. Edwards, J. New, and L.E. Parker, "Predicting future hourly residential electrical consumption: a machine learning case study," Energy and Buildings, vol. 49, pp. 591-603, 2012.
- [8] D. Popescu and F. Ungureanu, "Prediction of space heating consumption in district heated apartments," Energy ASME, pp.

V06BT07A003, 2013.

[9] Q. Li, P. Ren, and Q. Meng, "Prediction model of annual energy consumption of residential buildings," Int Conf Adv Energy Eng, pp.

223-226, 2010.

- [10] C. Turhan, T. Kazanasmaz, I.E. Uygun, K.E. Ekmen, and
 - G.G. Akkurt, "Comparative study of a building energy performance software

```
(KEP-IYTE-ESS) and ANN-based building heat load
estimation," Energy
```

and Buildings, vol. 85, pp. 115-125, 2014.

[11] S. Farzana, M. Liu, A. Baldwin, and M.U. Hossain,

"Multimodel prediction and simulation of residential building energy in urban

areas of Chongqing, South West China," Energy and Buildings, vol. 81, pp.

161-169, 2014.

[12] S. Naji, A. Keivani, S. Shamshirband, U.J. Alengaram, M.Z.

Jumaat, Z. Mansor, et al., "Estimating building energy consumption using

extreme learning machine method," Energy, vol. 97, pp. 506-516, 2016.

[13] R.K. Jain, K.M. Smith, P.J. Culligan, and J.E. Taylor,

"Forecasting energy consumption of multi-family residential buildings

using support vector regression: investigating the impact of temporal and

spatial monitoring granularity on performance accuracy," Applied Energy, vol. 123, pp. 168-178, 2014.

[14] F. Lai, F. Magoulès, and F. Lherminier, "Vapnik's learning theory applied to energy consumption forecasts in residential

buildings," International Journal of Computer Mathematics,

vol. 85,

pp. 1563-1588,

2008.

[15] J.-S. Chou and D.-K. Bui, "Modeling heating and cooling loads by artificial intelligence for energy-efficient building design," Energy and

Buildings, vol. 82, pp. 437-446, 2014.

[16] Y. Iwafune, Y. Yagita, T. Ikegami, and K. Ogimoto,

"Shortterm forecasting of residential building load for distributed energy

management," IEEE International Energy Conference, pp. 1197-1204, 2014.