IJCRT.ORG

ISSN: 2320-2882

h69

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Research On Formulation And Evaluation Of Hydrochloride Mepivacaine As A Mucoadhesive Buccal Tablet.

Vaishnavi G. Sitre*, Vijay G. Pawar*, Asha S. Magar*.

ABSTRACT:

This study's goal was to create and assess mucoadhesive buccal tablets of Mbv-HCl utilising a variety of hydrophilic polymers in order to improve mucoadhesion and provide sustained drug release. Seven formulations (F1–F7) were made and evaluated for important physical characteristics such as surface ph, swelling index, drug content, hardness, thickness, weight fluctuation, and friability. Drug concentration ranged from 97.16 ± 0.15 to $103.21 \pm 0.42\%$, while tablet weights ranged from 295.5 ± 0.8 to 304.4 ± 0.5 mg. All formulations showed consistent physical properties within pharmacopeial limitations. The buccal mucosa could tolerate surface ph levels between 5.5 and 7.8, suggesting that they were appropriate for buccal delivery. The use of chitosan, carbopol 934p, and HPMC promoted drug entrapment and the development of porous structures, which greatly improved mucoadhesion, swelling behaviour and prolonged drug release. According to in vitro drug release profiles, formulations F1 and F5 conformed to zero-order kinetics, but formulations F3–F7 followed Hixson-Crowell kinetics. Interestingly, formulation F4 had the best penetration, which was explained by its adjusted polymer ratio that improved diffusion via surface channels. According to these results, the developed mucoadhesive tablets have encouraging potential for long-term buccal administration of Mbv-HCl.

Keywords: Mebeverine Hydrochloride, Mucoadhesive, Antispasmodic.

INTRODUCTION:

Mebeverine hydrochloride (Mbv-HCl), an antispasmodic medication, has demonstrated a potent local anaesthetic effect with minimal side effects when compared to other local anaesthetics. [1]. White in colour and crystalline, it dissolves well in water and ethanol. [2] Mbv HCl exhibits a non-specific relaxing action on vascular, cardiac and other smooth muscle. [3] According to earlier research, there is no one mechanism responsible for Mbv-HCl's spasmolytic effect. Mbv-HCl works by a polyvalent spasmolytic method that involves about three distinct processes. Previously, Hameed et al. provided a thorough analysis and description of these processes. [4] To provide a comfortable treatment without the discomfort that comes with needle injections for gingival or periodontic treatments, topical local anaesthetics are used during dental operations. [5] The formulations must be easy to apply, stay on the tissue, be sufficiently efficacious, and be stable during storage. In the medical industry, topical anaesthetics are used to mask injection pain, pain from superficial mucosal lesions like ulcers, pain from operational procedures, and pain from skin anaesthesia before vein puncture for sedation or general anaesthesia. [6] Topical formulations of local anaesthetics can be combined with other formulations. Preparation methods, including sprays, emulsions, filmstrips, patches, and creams, might influence efficacy [7] Mucoadhesive polymers with certain characteristics, such as high molecular weight, long chain length, chain length flexibility, and viscosity, are utilised to create transmucosal drug delivery systems. [8] The most common components of a variety of mucoadhesive polymers are hydrophilic polymers and gelling agents. [9] The mucoadhesive qualities of hydrophilic polymers having a carboxylic group, such as cellulose derivatives, are better. [10] The basic properties of hydrogels, the other kind of polymeric biomaterial, include swelling as they absorb water, which causes chitosan and polyacrylates to adhere to the epithelium's mucus. [11]. Mbv-HCl is formulated as topical mucoadhesive tablets that are appropriate for local administration to the superficial mucosa and are used to treat a variety of painful oral disorders. This strategy uses a number of mucoadhesive polymers, including chitosan, carbopol 934, and HPMC, to provide the tablets enough time to remain in the body. The primary concern of the present research is the long-term preservation of the delivery system in the oro-mucosal area. Furthermore, Mbv-HCl needs to be administered in a controlled way to produce pharmacological responses. In vitro creation of an anaesthetic bioadhesive sheep was the goal of this endeavour. In this work, mucoadhesive oral formulations of the antispasmodic medication Mby-HCl were developed and evaluated for usage as buccal anaesthetic tablets..^[12]

TABLET:

One definition of a tablet is a solid unit dosage form of medication or medication combined with appropriate excipients that is made by compression or moulding. It is made up of an active ingredient and an excipient combination that is often in powder form and is compressed or pressed into a solid dosage.^[7]

	ADVANTAGES OF TABLET: ^[8]						
O	It's simple to manage.						
O	A range of production techniques.						
O	The most affordable of all oral dose forms.						
O	Compared to ordinary compressed pills, it acts faster.						
O	It is easy to swallow and has the lowest chance of hanging up.						
O	Tablets are Low Cost						
O	Tablets are excellent devices for consumption.						
O	Tablets Enhance Mobility in the Workforce						
0	Tablets are Environmentally Friendly.						

□ DISADVANTAGES OF TABLET:^[8]

- 1. Children have trouble swallowing.
- 2. There are certain drugs that don't compress into pills.
- 3. Usually, the pills don't have enough mechanical strength. Thus, careful handling is required.
- 4. Incorrectly manufactured tablets may leave a gritty texture and/or an unpleasant taste in the mouth.
- 5. Formulating dispersible tablets might be difficult for medications with larger doses.

1JCR

NEED FOR INVESTIGATION:

One well-known antispasmodic medication that is frequently used to treat gastrointestinal diseases, including irritable bowel syndrome (IBS), is mebeverine hydrochloride. However, significant first-pass metabolism, variable bioavailability, and the requirement for frequent dosage because of its short half-life are some of the drawbacks of its traditional oral distribution. The efficacy of treatment and patient compliance may be impacted by these factors. medication distribution presents a viable substitute for traditional methods as it circumvents the hepatic first-pass effect and grants direct access to the systemic circulation via the buccal mucosa. Mucoadhesive buccal pills are particularly beneficial due to their enhanced medication absorption, prolonged duration of residence, and simplicity of administration. Not much effort has been made to synthesise mebeverine hydrochloride into a mucoadhesive buccal dose form, despite its shown pharmacological efficacy. Since this form of administration ensures a sustained release profile, boosts absorption, and reduces the frequency of doses, it may improve its therapeutic efficacy. Investigating the manufacturing and assessment of mebeverine hydrochloride as a mucoadhesive buccal tablet is therefore crucial. This project aims to create a patient-friendly, efficient, controlledrelease buccal formulation that will solve the shortcomings of traditional dosage forms in order to improve disease management and the quality of life for patients with gastrointestinal disorders.

PLAN OF WORK:

- 1. Review literature
- 2. Procurement of raw material
- 3. Preformulation
- 4. Formulation of tablet.
- 5. Evaluation of the tablet.
- 6. Drafting and submission.
- 7. Conclusion

MATERIALS AND METHOD:[21-23]

- 1. Carbopol 934p is manufactured by Lubrizol.
- 2. HPMC is manufactured by Otto Chemie Pvt Ltd
- 3. Mannitol is manufactured by Ankit Pulps Pvt Ltd
- 4. Mg Sterate is manufactured by the MLA Group of Industries,
- 5. Mbv-HCL is manufactured by Nandivardhan Chemicals in Delhi
- 6. Chitosan is manufactured by Shree Sai Biotech Indore
- 7. Avicel is manufactured by IFF Pharma Solutions

FORMULATION AND EVALUATION OF MUCOADHESIVE BUCCAL TABLETS:

1. FORMULATION:

Compaction tools and a direct compression method were used to create MBV-HCl tablet formulations in a variety of compositions. [12] According to Table 1.

Fig no. 1

Ingredient	F1	F2	F3	F4	F5	F6	F7
(mg)							
Mbv-HCL	150	150	150	150	150	150	150
Carbopol 934P	100	75	50	25	75	50	25
HPMC	0	25	50	75	0	0	0
Chitosan	0	0	0	0	25	50	75
Mannitol	45	45	45	45	45	45	45
Avicel	80	80	80	80	80	80	80
Mg Stearate	25	25	25	25	25	25	25
Total weight	400	400	400	400	400	400	400

Table 1: Composition of Mbv-HCl mucoadhesive buccal tablets

Figure 2: Evaluation of mucoadhesive buccal Mbv-HCl tablets

2. EVALUATION:

1. Weight variation: [20-26]

After weighing a batch of about ten pills with different formulations, the average weight was calculated and distributed.

2. Hardness:

Pfizer tablet hardness (crushing strength) was used to test the diametric force needed to shatter tablets. Three tablets per batch were found, and the mean was calculated.

3. Friability:

Friability serves as a gauge for tablet strength. Using an ROCHE friabilator (USP) set to 25 rpm for four minutes, tablet friability was assessed. Ten pills' weights were noted both before and after the test

was over, and friability was *calculated by the following formula*: Percentage friability = (initial weight – final weight/initial weight) 100.

4. Thickness:

The tablet's diameter will determine its thickness. To measure tablet thickness, vernier callipers and a micrometre are utilised. Controlling the thickness will help with packing and ensure that consumers accept the goods.

5. Content uniformity:

For every formulation, ten pills were consumed. This was followed by mixing and crushing. 100 ml of 0.1 M hydrochloric acid was used to extract 200 mg of Mbv-HCl from the mixture. It was then heated for 10 minutes in a water bath while being shaken regularly. After producing 250 ml with enough 0.1 M hydrochloric acid, it was added and filtered [13]. At λ max 263 nm, the absorbance of the final solution was measured with an ultraviolet–visible spectrophotometer.

6. Microenvironment (superficial) Ph:

After consuming ml of distilled water, the buccal tablet was left to swell for two hours. Contact with a combination glass electrode was maintained for one minute to record the ph. The buccal tablets' surface ph should be kept as close to neutral as possible since an acidic or alkaline pH might irritate the buccal mucosa.

Swelling test:

The swelling experiments involved the administration of around six buccal tablets. Each tablet was placed in a glass petri dish with 5 ml of phosphate buffer (pH 6.8) after being weighed (W1). The excess water was also drained before each pill was carefully removed from the petri dish. The removal was carried out using filter paper at 1, 2, 4, 6, 8, and 12 hours. To determine the tablets' hydration (H), the weight difference between the tablets before and after swelling was expressed as a percentage.

PRE FORMULATION STUDIES:[18]

Bulk Density:[19]

The powder's bulk density is calculated by dividing its mass by its bulk volume. The bulk density was determined by measuring the volume of a known mass powder sample that was put into the cup using a volume-measurement instrument or via a screen into a graduated cylinder.

Bulk density M/vol:

Where M Mass of the powder and vo is = bulk volume of the powder. (13)

1. Tapped Density:^[16]

The volume, Vo, was measured after a known quantity of powder was put into a graduated cylinder. The reading was taken after 500 taps on a density measurement instrument that was fastened to the cylinder. To determine the density, a measuring cylinder filled with the powder sample is mechanically tapped. Following the first volume measurement, the cylinder was mechanically tapped, and subsequent volume readings were taken until more volume fluctuations were seen...

Tapped density =M/vol:

Where M= mass of the powder &vr =final tapping volume of the powder. [14]

2. Measures of Powder Compressibility:

Compressibility and Hausner's ratio reveal a powder's propensity to compress. Therefore, these measures are employed to evaluate the relative importance of interparticulate interaction. The bulk and tapped densities will be closer in a free-flowing powder, where these interactions are less significant. Materials with worse flow will have their bulk and tapped densities recorded. Both Hausner's ratio and the compressibility index exhibit similar differences. ^[15]

Compressibility index = 100(V0 - Vr) / Vo Hausner's ratio = V0/Vr

Where V0 = bulk density of the powder &Vr = final tapping density of the powder. [16]

RESULTS AND DISCUSSION:

Mbv-HCl mucoadhesive buccal properties of tablets

Table 2 displays the physical attributes of each corresponding tablet. Surface pH, thickness, and hardness were all within the permissible range. Between batches F1 and F7, the formulations' weights ranged from 295.5 ± 0.8 to 304.4 ± 0.5 mg. The drug concentration and tablet friability ranged from 97.16 ± 0.15 to 103.21 ± 0.42 and 0.113 ± 0.03 to 0.417 ± 0.06 , respectively. Table 2 displays the formulation's surface pH, which ranges from 5.5 to 7.8, the pH of typical saliva.

Formulatio	Hardness	Thickness	Weight	Friability	Surface	Drug
n code	(Kg/cm2)	(mm)	(mg)	(%)	pН	content
						(%)
F1	5.5±0.02	3.08±0.01	295.5±0.8	0.33±0.05	6.91±0.06	97.1±0.15
F2	5.3±0.08	3.15±0.02	302.4±0.4	0.41±0.06	6.73±0.03	102.5±0.34
F3	5.6±0.03	3.02±0.04	298.2±0.3	0.28±0.05	6.50±0.04	97.8±0.68

F4	5.7±0.08	2.98±0.02	304.4±0.5	0.24±0.03	6.36±0.03	103.2±0.42
F5	5.9±0.04	2.94±0.03	301.3±0.2	0.11±0.03	6.71±0.02	101.3±0.17
F6	5.6±0.02	3.03±0.01	299.7±0.4	0.29±0.07	6.48±0.05	98.2±0.27
F7	5.8±0.03	2.96±0.04	300.2±0.2	0.16±0.05	6.16±0.05	99.1±0.23

Table 2: Physicochemical properties of Mbv-HCl buccal tablets

The developed mucoadhesive buccal tablets demonstrated Mbv-HCl's robust adherence and prolonged release. Chitosan, carbopol 934p, and HPMC are examples of hydrophilic polymers that improve drug trapping, swelling, and controlled release. By generating porous structures and improving water absorption, higher polymer concentrations enhanced medication release. The kinetics of release varied according to the formulation: F1 and F5 employed a zero-order model, whereas F3–F7 used the Hixson-Crowell model. Chitosan's ionic contact with the mucosa strengthened the mucoadhesive strength. There was consistency in swelling indices among all formulations. Because of its ideal polymer composition, which promotes drug diffusion through pore and channel development at the tablet surface, F4 exhibited the maximum permeation.

CONCLUSION:

Mebeverine hydrochloride, a widely used antispasmodic drug, has been effectively developed into a mucoadhesive buccal tablet with local anaesthetic properties. The optimal formulation was achieved using a combination of Carbopol 934 and HPMC in a 1:3 ratio. This formulation enhances drug retention and effectiveness at the site of application, offering a promising alternative for targeted delivery in managing gastrointestinal discomfort through the buccal route.

REFERENCES:

- **1.** Baloglu E, Karavana SY, Hyusein IY, Kose T. Design and formulation of mebeverineHCl semisolid formulations for intraorally administration. AAPS PharmSciTech.2010; 11: 181-188.
- **2.** Elliott S, Burgess V. Investigative implications of the instability and metabolism of mebeverine. J AnalToxicol. 2006; 30: 91-97.
- **3.** Darvish-Damavandi M, Nikfar S, Abdollahi M. A systematic review of efficacy and tolerability of mebeverine in irritable bowel syndrome. World J Gastroenterol. 2010; 16: 547-553.
- **4.** Abdel-Hamid SM, Abdel-Hady SE, El-Shamy AH, El-Dessouky HF. A novel formulation for mebeverine hydrochloride. Drug DevInd Pharm. 2007; 33: 1078-1089.
- **5.** Saxena P, Gupta SK, Newaskar V, Chandra A. Advances in dental local anaesthesia techniques and devices: An update. Natl J Maxillofac Surg. 2013; 4: 19-24.
- **6.** Ogle OE, Mahjoubi G. Advances in local anaesthesia in dentistry. Dent Clin North Am. 2011; 55: 481-499.
- 7. Ramacciato JG, Meechan JG. Recent advances in local anaesthesia. Dent Update. 2005; 32(1): 8-10.
- 8. Sudhakar Y, Ketousetuo KK, Bandyopadhyay AK. Buccal bioadhesive drug delivery- A promising option for orally less efficient drugs. J Control Release. 2006; 114: 15–40.
- 9. Longer MA. Robinson JR. Fundamental aspects of Bioadhesion. Pharm. Int. 1986; 7: 114-117.
- 10. Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive delivery systems. II. Formulation and in-vitro/ in-vivo evaluation of buccal mucoadhesive tablets containing water-soluble drugs. Drug DevInd Pharm.2004; 30(9): 995-1004.
- 11. Pratima N, Tiwari S, Kamble S. Mucoadhesive: As Oral Controlled Gastroretentive Drug Delivery System. Int. J. Res. Dev. Pharm. Life Sci.2012; 2(3): 32-59.
- **12.** Javad S., Deshpande A. Sarab A. Evaluation of buccaltablets of salbutamol. Acta Pharm. Technol. 2014; 5(2):137-141.
- 13. Goud B, Samanthula K. Formulation and evaluation of bioadhesive tablets of simvastatin. Int.J. Adv. Res. Pharm. Bio Sci. 2011; 1(1): 68-91.
- 14. Velmurugan S, Spinivas P. Formulation and in vitro evaluation of losartan potassium mucoadhesive buccal tablets. Asian J. Pharm. Clin. Res. 2013; 6(3): 125-130.
- **15.** John S, Sathesh R, Divakar G, Manoj K, Jangidand Kapil. Development and evaluation of buccoadhesive drug delivery system for Atorvastatin calcium. Int. J.Curr. Pharm. Res. 2010; 01: 31-38.
- **16.** NIH Guide for the care and use of laboratory animals. Specialised: Laboratory Animal Welfare. 1985;1 4(8)

- 17. Reinhardt V. Comfortable quarters for sheep in research institutions. Comfortable Quarters for Laboratory Animals, 9th edn. Washington: Animal Welfare Institute 2002: 83-88.
- **18.** Roy S, Pal K, Anis A, Pramanik K, Prabhakar B. Polymers in Mucoadhesive Drug Delivery System: A Brief Note. Des. Monomers Polym. 2009; 12: 483-495.
- 19. Gandhi S, Pandya P, Umbarkar R, Tambawala T, Shah M. Mucoadhesive drug delivery system- an unusual manoeuvre for site-specific drug delivery system. Int. J. Pharmaceut Sci. 2011; 2(3): 132-152.
- **20.** Fu XC, Wang GP, Liong WQ, Chou MSS. Prediction of drug release from HPMC matrices: effect of physicochemical properties of drug and polymer concentration. J. Controll. Rel, 2004; 95: 209-216.
- **21.** Siepmann J, Peppas NA. Modelling of drug release from delivery systems based on hydroxypropylmethylcellulose (HPMC). Adv Drug Deliv Rev, 2001; 48:139-157.
- 22. Rao YM, Vishnu YV, Chandrasekhar K, Ramesh G. Development of Mucoadhesive patches for buccaladministration of Carvedilol. Curr. Drug Delivery. 2007;4: 27-39.
- 23. Lacan M, Jug M. Influence of hydroxypropyl-cyclodextrin complexation on piroxicam release from buccoadhesive tablets. Eur J Pharm Sci. 2012; 21: 251–260.
- 24. Chen S, Zhu J, Cheng J. Preparation and in vitro evaluation of a novel combined multiparticulated delayed-onset sustained-release formulation of diltiazem
- 25. hydrochloride. Pharmazie. 2007; 62(12): 907-913. Sonia TA, Sharma CP. Chitosan and its derivatives from a drug delivery perspective. AdvPolym Sci. 2011; 243:23-54.
- **26.** Cerchiara T, Luppi B, Bigucci F, Petrachi M, Orienti J, Zecchi V. Controlled release of vancomycin from freeze-dried chitosan salts coated with different fatty acids by spray–drying. J. Microencapsulation, 2003; 20: 473-478.