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Abstract: Agriculture forms the backbone of India's economy, with a significant portion of the population
reliant on it for livelihood. However, despite its importance, farmers face numerous challenges in
optimizing crop selection and fertilizer management to maximize yield rates. This project addresses these
challenges by implementing an intelligent system aimed at assisting farmers in making informed
decisions regarding crop selection and fertilizer usage. The project also focuses on user interface
development, incorporating a user-friendly interface tailored for farmers' ease of use. Through
comprehensive testing, validation, and continuous improvement efforts, the system aims to revolutionize
agricultural practices, ultimately contributing to increased crop yields, reduced input costs, and improved
livelihoods for farming communities.
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I. INTRODUCTION

India is an agricultural nation, where the population is over 1.2 billion, out of which around 70% of the
population depends upon agriculture. Agriculture is a primary source of earning for Indian citizens and
agriculture also has made an influence on India's economy. Agriculturists have an immeasurable variety to
choose equitable products of the soil crops The selection of the crop by the farmer plays a vital role in the
economical returns to the farmer. In this project , we have implemented an intelligent system which
intends to assist the farmers in making an informed decision about which crop to grow and which
fertilizer used depending on the soil characteristics as well as environmental factors such as temperature
and rainfall. In the crop recommendation application, the user can provide the soil data from their side
and the application will predict which crop should the user grow. For the fertilizer recommendation
application, the user can input the soil data and the type of crop they are growing, and the application will
predict what the soil lacks or has excess of and will recommend improvements.

A.Problem Definition Problem Identified: Addressing Challenges in Agricultural Optimization.
Despite advancements in agricultural technology, farmers still face challenges in optimizing crop
selection and fertilizer management to maximize yield rates. Existing methods often lack precision and
fail to consider the intricate relationship between environmental factors, soil nutrient content, and crop
suitability. This project aims to address these challenges by 3 developing a comprehensive system that
leverages data analysis techniques to provide tailored crop recommendations based on soil nutrients,
rainfall, humidity, and temperature.

B. Objectives of the Study: This research aims to develop a secure, scalable, and userfriendly Farmer
Helper Website that: 1. To provide data-driven crop recommendations, the system will analyze soil nutrient
levels, rainfall patterns, temperature ranges, and other environmental factors to suggest the most suitable
crops for the user's specific agricultural context. 2. To optimize fertilizer usage and enhance crop
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productivity, the system will develop algorithms to predict the optimal fertilizer type and application rates
based on the crop’s nutrient requirements and the soil's existing composition.

II. RELATED WORK : CROP RECOMMENDATION SYSTEM USING MACHINE LEARNING Study
1: In this project, the
authors used various machine learning algorithms for crop recommendation, including Decision Tree,
Naive Bayes, Support Vector Machine, Logistic Regression, Random Forest, and XGBoost. The highest
accuracy of 99.31% was achieved using the XGBoost algorithm on a dataset containing information
about 22 different crops . Study 2: In this study, two machine learning algorithms, Random Forest and
Decision Tree, were employed for supervised learning tasks involving classification and regression
problems. Random Forest, which leverages the ensemble learning technique, utilizes multiple decision
trees trained on random subsets of data and averages their predictions to improve model accuracy and
reduce overfitting.
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Recommendat |Conference machine agricultural accuracy, The system
ion Based on o |learning and making it the |relies on
Ambient nAdvanced |techniques environment  [best model for historic
Climate Computing for al crop al datasets,
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AICECS (%) showed 98.86% |models  like
2021. pH value of  3ccyracy, CNN or ANN
soil Rainfall sjightly  better [were not tested.
(mm) than
Entro
Criterlioc))/n.

21 |Soil-Based Published in  |Decision Soil The proposed |[Relies on
Crop the 2024 Trees Random |Parameters:  |Soil-Based accurate  soil
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I11. PROPOSED SYSTEM

Fig 1: Block Diagram of Overall Methodology of Proposed System

In our framework, we have proposed a procedure that is separated into various stages as
appeared in Figure 1. The five phases are as per the following: The five phases are as per
the following:

1) Collection of Datasets

2) Pre-processing (Noise Removal)

3) Feature Extraction

4) Applied Machine Learning Algorithm

5) Recommendation System

6) Recommended Crop

Flow of the Proposed System

As demonstrated in the figure, the methodology to extract the sentiment contains the several steps that are
described below:

Algorithms
applied

Collection Of Recommendation
Dataset System

1) Data Collection :

Recommended
Crop

The dataset consists of parameters like Nitrogen (N), Phosphorous (P), Potassium (K), PH value of soil,
Humidity, Temperature and Rainfall. The datasets have been obtained from the Kaggle website. The data
set has 2200 instance or data that have taken from the past historic data. This dataset include twenty two
different crops such as rice, maize, chickpea, kidneybeans, pigeonpeas, mothbeans, mungbean, blackgram,
lentil, pomegranate, banana, mango, grapes, watermelon, muskmelon, apple, orange, papaya, coconut,
cotton, jute, and coffee.

Dataset - Link: https://www.kaggle.com/datasets/atharvaingle/crop- recommendation-dataset

2) Noise Removal :

For the successful application pre-processing is required. The data which is acquired from
different resources are sometime in raw form. It may contain some incomplete, redundant,
inconsistent data. Therefore in this step such redundant data should be filtered. Data should be
normalized.

3) Feature Extraction :
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This step is focus on identifying and using most relevant attribute from the dataset. Through this
process irrelevant and redundant information is removed for the application of classifiers.

4) Methodology :

In this proposed system applied different Machine Learning algorithms like Decision Tree, Support
Vector Machine (SVM), Random Forest, and K- nearest neighbor (KNN).

A) Decision Tree ;

Decision tree classifiers utilize greedy methodology. It is a supervised learning algorithm where
attributes and class labels are represented using a tree. The main purpose of using Decision Tree is to
form a training prototype which we can use to foresee class or value of target variables by learning
decision rules deduced from previous data (training data). The Decision tree can be described by two
distinct types, namely decision nodes and leaves. The leaves are the results or the final end resu Its. Each node
in the tree acts as a test case for some attribute, and each edge descending from that node corresponds to one of
the possible answers to the test case.

We have applied Decision tree approach in our model as:

i) Importing  library DecisionTreeClassifier from sklearn.tree Class.
ii) Now we create DecisionTree Classifier object

iii) In the last we fit our data

B.)Support Vector Machine (SVM) :

Support Vector Machine (SVM) is a supervised machine learning algorithm or model which can be
utilized for classification and as well as for regression challenges. However, we mainly use it in
classification challenges. SVM is generally represented as training data points in space which is divided
into groups by intelligible gap which is as far as possible. In SVM algorithm, each data item is plotted as a
point in n-dimensional space with each feature value being the value of a specific coordinate. Then the
classification is performed by finding the hyper-plane differentiating the two classes.

C) KNN:

The K-Nearest Neighbors (KNN) algorithm in a crop recommendation system works by analyzing
historical agricultural data, such as soil type, rainfall, temperature, and past crop yields.

The system gathers data on soil properties, climate conditions, and crop performance Relevant features
like nitrogen, phosphorus, potassium (NPK) levels, pH, temperature, and humidity are chosen. The
algorithm checks which crops were successfully grown in the K nearest neighbors and recommends the
most frequently occurring crop.
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D) Random Forest :

Random Forest, a machine learning algorithm, is widely used in crop recommendation systems due to its
accuracy and robustness. 1. he system gathers data on soil properties, weather conditions, crop yield
history, and other relevant factors. Important features such as soil pH, temperature, rainfall, and nutrient
levels are selected. 3. Multiple decision trees are created using different subsets of the data. Each tree
makes an independent prediction. The final crop recommendation is determined by aggregating the
predictions from all trees, selecting the most frequently suggested crop.

IV. RESULT AND ANALYSIS

Dataset — Decision Tree —

=L O CmvREsAN s O CmRDETAN

Support Vector Machine (SVM) — KNN —

2 o 3 26
-LO-CBDVEEDaED [ o> =LOD-€BTTEOAN
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Random Forest —

- O-CO¥DEOAN

Algorithms |Accuracy Recall Precision F1-score
Decision  |98.63636363636363 [98.63636363636363  |98.68055555555556  |98.63152866630287
Tree

97.72727272727273  |97.72727272727273  |97.87326467724195 |97.70616589588195
SVM

05.68181818181817 |95.68181818181817 |96.28976143584399 |95.67492608232794
KNN
Random |99.31818181818181 |99.31818181818181 |99.37348484848485 (99.31754816901672
Forest

V. CONCLUSION

We have developed and applied a smart system that can suggest suitable crops for farmers across India.
This system would help the farmers choose the best crop based on factors like Nitrogen, Phosphorous,
Potassium, PH Value, Humidity, Temperature, and Rainfall. By using this research we can increase
productivity of the country and produce profit out of such a technique. This research can enhance the
country’s productivity and profitability by using this technique. This way, farmers can grow the right crop
and increase their income and the country’s overall earnings. We have evaluated machine learning
algorithms and discovered that Decision Tree and Random had the best accuracy among them.

VI. FUTURE WORK

The system can be enhanced further to add following functionality:

. The main future work’s aim is to improved dataset with larger number of attributes.
. We need to build a model, which can classify between healthy and diseased crop leaves and also if
the crop has any disease, predict which disease is it.
. To build website and mobile app for easy to use.
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