www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A DEVELOPER CENTERED BUG
PREDICTION MODEL

Dr. A. Radhika, 2Sowjanya Paluri, 3Mythili Potla, *Jhansi Munaga, °Peetla Sowmya

professor, Department of Computer Science and Engineering, SRK Institute of Technology, Vijayawada,
Andhra Pradesh, INDIA

&
2345gtudent, Department of Computer Science and Engineering, SRK Institute of Technology, NTR,
Andhra Pradesh, INDIA

ABSTRACT

Software bugs are a critical challenge in the development lifecycle, impacting product quality, user
satisfaction, and maintenance costs. Traditional bug prediction models often focus on static code metrics or
historical bug data, without considering the developer-centric context. This paper proposes a Developer-
centered bug prediction model that leverages both code-level features and developer-specific behavioral
patterns to enhance prediction accuracy. The model integrates features such as code complexity, change
history, developer expertise, and commit frequency, using advanced machine learning techniques like
ensemble learning and deep neural networks. We validate our approach on-real-world datasets from open-
source repositories, demonstrating significant improvements over conventional models in terms of precision,
recall, and F1-score. The results suggest that incorporating developer-related factors provides a more nuanced
understanding of bug-prone code, enabling more targeted and effective bug management strategies.
Keywords: Bug Prediction, Developer-Centric Analysis, Change Scattering, Code Quality Assessment,
Predictive modeling, Logistic Regression, Cross-Validation, Code Change Patterns, Developer behavior
Analysis, Static Code Analysis, Model Evaluation, Software Reliability.

INTRODUCTION

Bug prediction is a crucial task in software development, aiming to identify defect-prone code areas early in
the lifecycle. Traditional models primarily rely on code metrics and historical bug data, often overlooking the
influence of developer behavior and context.

A developer-centered bug prediction model addresses this gap by integrating both code-level features and
developer-specific factors such as coding patterns, commit history, and expertise. By leveraging machine
learning techniques, this model offers a more holistic approach, improving the accuracy of bug detection and
enabling targeted interventions. This shift from a purely code-centric to a developer-aware perspective
enhances software quality and optimizes resource allocation in development teams.

Bug prediction is an essential task in software maintenance, as it allows teams to allocate resources effectively
and focus their efforts on problematic areas of the codebase. Traditional models rely on static code attributes
such as lines of code (LOC), cyclomatic complexity, and code churn. While these metrics provide valuable
insights, they do not account for the influence of developer behaviour on software quality. Developers work
in teams, collaborate on various tasks, and have different skill levels, which all play a role in defect
introduction and resolution. By integrating developer-related attributes, a bug prediction model can offer a
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more holistic view of defect-prone areas, making it a valuable tool for software quality assurance.

LITERATURE SURVEY

Zimmermann et al. (2007) [1] emphasized the use of historical defect data to train classifiers for software
modules. While this model was effective to some extent, but lacked adaptability across projects and often
failed to generalize due to the absence of human-related dynamics in the process.

Kamei et al. (2013) [2] proposed Just-In-Time (JIT) defect prediction, using features at the change-
level instead of file-level. However, these models often still overlooked the individual developer's role
and behavioral patterns behind the changes.

Rahman and Devanbu (2013) [3] investigated whether social factors and developer reputation influence
software quality. Developer experience, focus, task switching, and collaboration patterns.

Hall et al. (2012) [4] This study provides a comprehensive review of fault prediction models, evaluating
their performance across different datasets and metrics. It highlights the variability in results and stresses
the need for consistent evaluation frameworks.

Kim et al. (2007) [5] The authors propose a history-based fault prediction method using change history
logs, demonstrating that historical change metrics can effectively predict future faults in software
components.

Menzies et al. (2007) [6] This work applies data mining techniques to static code attributes to construct
defect predictors, showing that simple models built from code metrics can perform comparably to complex
ones.

Yang et al. (2015) [7] The paper introduces a deep learning-based approach for Just-In-Time (JIT) defect
prediction, significantly improving prediction accuracy by automatically learning feature representations
from software change data.

Shivaji et al. (2009) [8] This research focuses on feature selection techniques to improve bug prediction
accuracy, demonstrating that reducing irrelevant or redundant features enhances classifier performance.
Nam et al. (2018) [9] A systematic review of automated defect prediction techniques is presented,
identifying current trends, gaps, and suggesting future directions including deep learning and cross-project
prediction.

Zhang & Wu (2018) [10] The study investigates developer-centric features in defect prediction, revealing
that incorporating developer behavior and expertise can lead to more accurate and personalized
predictions.

EXISTING SYSTEM
Current bug prediction systems primarily focus on static code metrics, historical defect data, and machine
learning algorithms like decision trees, SVMs, and neural networks. Models such as BUGZILLA, JPredict,
and SZZ Algorithm have been widely used to identify defect-prone code areas based on code complexity,
change history, and commit patterns. However, these systems often overlook the impact of developer-specific
factors like coding habits, expertise, and collaboration patterns.
While some recent models attempt to integrate developer behavior, they still lack a comprehensive approach
that effectively combines code features with developer-centric insights. This gap highlights the need for a
developer-centered bug prediction model to improve accuracy and contextual relevance in defect de

e Ignorance of Human Factors

e Lack of Developer Focus Consideration
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The proposed developer-centered bug prediction model aims to address the limitations of existing defect
prediction systems by integrating developer-centric attributes alongside traditional code-based and process-
based metrics. This approach enhances the accuracy, interpretability, and applicability of defect prediction
while promoting proactive defect management in software development.
The primary objective of the proposed system is to incorporate developer-related factors such as coding
behaviour, expertise, collaboration patterns, and workload distribution into the bug prediction framework. By
leveraging these insights, the model provides a more holistic view of defect introduction, allowing software
teams to mitigate risks more effectively.
Key Features of the Proposed System: Developer-Centered Bug Prediction Model
1. Integrated Data Analysis: Combines code metrics with developer-specific data (e.g., commit
history, coding patterns).
2. Advanced Machine Learning Algorithms: Utilizes models like ensemble learning and deep neural
networks for accurate bug prediction.
3. Developer Behaviour Insights: Analyzes developer activity to identify patterns linked to defect-
prone code.
4. Real-Time Prediction: Provides timely identification of bug-prone areas during the development
process.
5. Continuous Learning: Adapts to new data, improving prediction accuracy over time.
6. Scalability & Flexibility: Supports large-scale projects and integrates with version control systems
like Git.
METHODOLOGY
The developer-centered bug prediction model follows a systematic approach to enhance defect detection
accuracy by integrating code-level features with developer-specific data. The methodology involves the
following steps:
e Data Collection: Gather datasets from software repositories, including code metrics, commit history, and
developer activity.
e Data Preprocessing: Clean & preprocess the data to handle missing values, normalize features, & remove
noise.
e Feature Selection: Identify relevant features such as code complexity, change frequency, developer
expertise, and code review patterns
e Model Development: Apply machine learning algorithms like ensemble methods, decision trees, and
neural networks to build predictive models.
e Evaluation Metrics: Assess the model using metrics like accuracy, precision, recall, and F1-score to
measure its effectiveness.
e Result Analysis: Compare the developer-centered model’s performance with traditional models to
highlight improvements.
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RESULTS & ANALYSIS

© train.describe().T

Exg

= count mean std min  25% sex 75% max
toc 1017630 37.347160 54600401 10 1300 2200 4200 3442.00
vig) 101763.0 5492684 7.900855 10 2.00 3.00 6.00 404.00
ev(g) 1017630 2 845022 4631262 10 1.00 1.00 200 165.00
ivig) 1017630 3498826 5534531 10  1.00 200 4.00 a02.00

n 1017630 96 655995 171147191 00 2500 5100  111.00 8441.00

v 101763.0 638280856  1270.791601 0.0 O7.67 23279 56026 80843.08

' 1017630 0.111634 0100096 00  0.05 o.00 015 1.00

a 101763.0 13681881 14.121306 0.0  5.60 982 18.00 a18.20

i 1017630 27 573007 22866742 00 1556 2336 3434 56078
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b 1017630 0.179164 0421344 00 003 o.08 019 2695

€ 101763.0 1141.357982  ©B62795472 00 31.38 12540 56692 03592339
10Code 1017630 22 802453 28541010 00  7.00  14.00 26.00 2824.00
10Comment 101763.0 1.773045 5002412 0.0  0.00 0.00 1.00 344.00
10B1ank 101762.0 2979865 6382358 00  1.00 200 5.00 210.00
locCodsAndComment  101763.0 0.196604 0698906 0.0  0.00 0.00 0.00 43.00
uniq_Op 101762.0 11.906121 67495490 00 200  11.00 16.00 410.00
uniq_Opnd 101763.0 15.506671 18.064261 0.0  7.00 1200 20.00 1026.00
total_Op 1017683.0 57.628116 104.537660 0.0 15.00 30.00 66.00 5420.00
total_Opnd 101763.0 30.240608 71692309 00 1000  20.00 45.00 3021.00
branchCount 1017683.0 9.839549 14.412789 10 3.00 5.00 11.00 503.00

Figure 1: Exploratory Data Analysis
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Figure 2: Training-Test Adversarial VValidation
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Figure 4: Skewness Reduction with Log Transform - Visualizing Numerical Features
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Figure 5: Evaluating Models Using Cross-Validated AUC and Log Loss Metrics
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Figure 6: Final Prediction Output: Bug Occurrence Probability by ID
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CONCLUSION

The developer-centered bug prediction model represents an innovative approach to software defect
detection by integrating developer-centric metrics with traditional code-based methods. By considering
factors such as developer expertise, coding behaviour, and collaboration patterns, this model provides a
more comprehensive and accurate prediction mechanism. Unlike conventional models rely primarily on
historical defect data, this approach leverages machine learning techniques to analyze real-time code
changes and developer activities, enabling early detection of potential defects. This proactive strategy helps
development teams address issues before they become critical, ultimately improving software quality and
maintainability. The integration of interactive dashboards and visualization tools ensures that developers
and project managers can easily interpret defect trends and make informed decisions. Scalability and
security are also key aspects of the system, allowing seamless integration into various software development
environments while maintaining data privacy and ethical considerations. By fostering a culture of continuous
quality improvement, this model not only reduces debugging and maintenance costs but also enhances
overall productivity. As organizations increasingly prioritize software reliability, adopting such a developer-
focused bug prediction model will be instrumental in shaping the future of software engineering.
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