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ABSTRACT 

Software bugs are a critical challenge in the development lifecycle, impacting product quality, user 

satisfaction, and maintenance costs. Traditional bug prediction models often focus on static code metrics or 

historical bug data, without considering the developer-centric context. This paper proposes a Developer-

centered bug prediction model that leverages both code-level features and developer-specific behavioral 

patterns to enhance prediction accuracy. The model integrates features such as code complexity, change 

history, developer expertise, and commit frequency, using advanced machine learning techniques like 

ensemble learning and deep neural networks. We validate our approach on real-world datasets from open-

source repositories, demonstrating significant improvements over conventional models in terms of precision, 

recall, and F1-score. The results suggest that incorporating developer-related factors provides a more nuanced 

understanding of bug-prone code, enabling more targeted and effective bug management strategies. 

Keywords: Bug Prediction, Developer-Centric Analysis, Change Scattering, Code Quality Assessment, 

Predictive modeling, Logistic Regression, Cross-Validation, Code Change Patterns, Developer behavior 
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INTRODUCTION 

Bug prediction is a crucial task in software development, aiming to identify defect-prone code areas early in 

the lifecycle. Traditional models primarily rely on code metrics and historical bug data, often overlooking the 

influence of developer behavior and context.  

A developer-centered bug prediction model addresses this gap by integrating both code-level features and 

developer-specific factors such as coding patterns, commit history, and expertise. By leveraging machine 

learning techniques, this model offers a more holistic approach, improving the accuracy of bug detection and 

enabling targeted interventions. This shift from a purely code-centric to a developer-aware perspective 

enhances software quality and optimizes resource allocation in development teams. 

Bug prediction is an essential task in software maintenance, as it allows teams to allocate resources effectively 

and focus their efforts on problematic areas of the codebase. Traditional models rely on static code attributes 

such as lines of code (LOC), cyclomatic complexity, and code churn. While these metrics provide valuable 

insights, they do not account for the influence of developer behaviour on software quality. Developers work 

in teams, collaborate on various tasks, and have different skill levels, which all play a role in defect 

introduction and resolution. By integrating developer-related attributes, a bug prediction model can offer a 
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more holistic view of defect-prone areas, making it a valuable tool for software quality assurance. 

 

LITERATURE SURVEY  

Zimmermann et al. (2007) [1] emphasized the use of historical defect data to train classifiers for software 

modules. While this model was effective to some extent, but lacked adaptability across projects and often 

failed   to generalize due to the absence of human-related dynamics in the process. 

Kamei et al. (2013) [2] proposed Just-In-Time (JIT) defect prediction, using features at the change-

level instead of file-level. However, these models often still overlooked the individual developer's role 

and behavioral patterns behind the changes. 

Rahman and Devanbu (2013) [3] investigated whether social factors and developer reputation influence 

software quality. Developer experience, focus, task switching, and collaboration patterns. 

Hall et al. (2012) [4] This study provides a comprehensive review of fault prediction models, evaluating 

their performance across different datasets and metrics. It highlights the variability in results and stresses 

the need for consistent evaluation frameworks. 

Kim et al. (2007) [5] The authors propose a history-based fault prediction method using change history 

logs, demonstrating that historical change metrics can effectively predict future faults in software 

components. 

Menzies et al. (2007) [6] This work applies data mining techniques to static code attributes to construct 

defect predictors, showing that simple models built from code metrics can perform comparably to complex 

ones. 

Yang et al. (2015) [7] The paper introduces a deep learning-based approach for Just-In-Time (JIT) defect 

prediction, significantly improving prediction accuracy by automatically learning feature representations 

from software change data. 

Shivaji et al. (2009) [8] This research focuses on feature selection techniques to improve bug prediction 

accuracy, demonstrating that reducing irrelevant or redundant features enhances classifier performance. 

Nam et al. (2018) [9] A systematic review of automated defect prediction techniques is presented, 

identifying current trends, gaps, and suggesting future directions including deep learning and cross-project 

prediction. 

Zhang & Wu (2018) [10] The study investigates developer-centric features in defect prediction, revealing 

that incorporating developer behavior and expertise can lead to more accurate and personalized 

predictions. 

 

EXISTING SYSTEM 

Current bug prediction systems primarily focus on static code metrics, historical defect data, and machine 

learning algorithms like decision trees, SVMs, and neural networks. Models such as BUGZILLA, JPredict, 

and SZZ Algorithm have been widely used to identify defect-prone code areas based on code complexity, 

change history, and commit patterns. However, these systems often overlook the impact of developer-specific 

factors like coding habits, expertise, and collaboration patterns.  

While some recent models attempt to integrate developer behavior, they still lack a comprehensive approach 

that effectively combines code features with developer-centric insights. This gap highlights the need for a 

developer-centered bug prediction model to improve accuracy and contextual relevance in defect de 

 Ignorance of Human Factors 

 Lack of Developer Focus Consideration 
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PROPOSED SYSTEM ARCHITECTURE 

 

 

The proposed developer-centered bug prediction model aims to address the limitations of existing defect 

prediction systems by integrating developer-centric attributes alongside traditional code-based and process-

based metrics. This approach enhances the accuracy, interpretability, and applicability of defect prediction 

while promoting proactive defect management in software development. 

The primary objective of the proposed system is to incorporate developer-related factors such as coding 

behaviour, expertise, collaboration patterns, and workload distribution into the bug prediction framework. By 

leveraging these insights, the model provides a more holistic view of defect introduction, allowing software 

teams to mitigate risks more effectively. 

Key Features of the Proposed System: Developer-Centered Bug Prediction Model 
1. Integrated Data Analysis: Combines code metrics with developer-specific data (e.g., commit 

history, coding patterns). 

2. Advanced Machine Learning Algorithms: Utilizes models like ensemble learning and deep neural 

networks for accurate bug prediction. 

3. Developer Behaviour Insights: Analyzes developer activity to identify patterns linked to defect-

prone code. 

4. Real-Time Prediction: Provides timely identification of bug-prone areas during the development 

process. 

5. Continuous Learning: Adapts to new data, improving prediction accuracy over time. 

6. Scalability & Flexibility: Supports large-scale projects and integrates with version control systems 

like Git. 

METHODOLOGY 

The developer-centered bug prediction model follows a systematic approach to enhance defect detection 

accuracy by integrating code-level features with developer-specific data. The methodology involves the 

following steps: 

 Data Collection: Gather datasets from software repositories, including code metrics, commit history, and 

developer activity. 

 Data Preprocessing: Clean & preprocess the data to handle missing values, normalize features, & remove 

noise. 

 Feature Selection: Identify relevant features such as code complexity, change frequency, developer 

expertise, and code review patterns 

 Model Development: Apply machine learning algorithms like ensemble methods, decision trees, and 

neural networks to build predictive models. 

 Evaluation Metrics: Assess the model using metrics like accuracy, precision, recall, and F1-score to 

measure its effectiveness. 

 Result Analysis: Compare the developer-centered model’s performance with traditional models to 

highlight improvements. 
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RESULTS & ANALYSIS 

 

 

 

 

 

 

 

 

Figure 1: Exploratory Data Analysis 

  Figure 2: Training-Test Adversarial Validation 
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Figure 3: Feature Distribution Analysis - Train vs Test Dataset 

   Figure 4: Skewness Reduction with Log Transform - Visualizing Numerical Features 
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Figure 5: Evaluating Models Using Cross-Validated AUC and Log Loss Metrics 

 

 

 

Figure 6: Final Prediction Output: Bug Occurrence Probability by ID 
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CONCLUSION   

The developer-centered bug prediction model represents an innovative approach to software defect 
detection by integrating developer-centric metrics with traditional code-based methods. By considering 
factors such as developer expertise, coding behaviour, and collaboration patterns, this model provides a 
more comprehensive and accurate prediction mechanism. Unlike conventional models rely primarily on 
historical defect data, this approach leverages machine learning techniques to analyze real-time code 
changes and developer activities, enabling early detection of potential defects. This proactive strategy helps 
development teams address issues before they become critical, ultimately improving software quality and 
maintainability. The integration of interactive dashboards and visualization tools ensures that developers 
and project managers can easily interpret defect trends and make informed decisions. Scalability and 
security are also key aspects of the system, allowing seamless integration into various software development 
environments while maintaining data privacy and ethical considerations. By fostering a culture of continuous 
quality improvement, this model not only reduces debugging and maintenance costs but also enhances 
overall productivity. As organizations increasingly prioritize software reliability, adopting such a developer-
focused bug prediction model will be instrumental in shaping the future of software engineering. 
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