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Abstract - Bone fractures are a significant medical concern 

requiring accurate and timely diagnosis to ensure effective 

treatment. This paper presents a deep learning-based system for 

bone fracture detection and classification using Convolutional 

Neural Networks (CNNs). The system integrates a user-friendly 

Graphical User Interface (GUI) to facilitate the input of bone 

fracture images. The process begins with the selection of a bone 

fracture image, followed by image resizing for uniformity. A 

pre-processed dataset of bone fracture images is utilized for 

training the CNN model to detect and classify fractures into 

three categories: Mild, Moderate, and Severe. The deep 

learning model leverages advanced CNN architectures for 

feature extraction and classification, achieving high accuracy in 

predicting fracture severity. The GUI enables users to input 

images, run the detection process, and view classified outputs 

seamlessly. This automated system demonstrates the potential 

to assist healthcare professionals in diagnosing fractures 

quickly and accurately, reducing dependency on manual 

assessments and enhancing clinical decision-making. The 

achieved accuracy underscores the effectiveness of the proposed 

approach, making it a valuable tool in medical imaging 

applications and orthopaedic care. 
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I. INTRODUCTION 

 
Bone fractures, which are never a healthy situation, are graded by 

degree into Mild, Moderate, and Severe levels. Mild fractures are 

small breaks or cracks in the bone with minimal disturbance, and 

they are treated conservatively with immobilization and rest. 

Moderate fractures need casts or surgery to heal, while Severe 

fractures are bone displacement, soft tissue injury, or complications 

of fractures depending on more than one bone and thus complex 

operations and physiotherapy. 

New technologies in medical imaging and deep learning such as 

Convolutional Neural Networks (CNNs) have greatly improved the 

accuracy of fracture classification and diagnosis to facilitate 

medical professionals in making the proper treatment decisions at 

the right time and in improving the recovery rate of patients. 

Fractures most commonly occur from trauma, osteoporosis, or 

overuse. Trauma results from falls or accidents, and the size of the 

bone and surrounding muscles determines how much force a bone 

can withstand. Overuse fractures in athletes, usually to the foot or 

lower leg, are caused by cumulative stress. Fractures from 

osteoporosis occur with little trauma because the condition makes 

bones extremely brittle and prone to breaking. Fractures of bone are 

treated using RICE (Rest, Ice, Compression, Elevation), casting or 

splinting, physical therapy, or surgery depending on the magnitude. 

Prevention for fractures of bones consists of wearing proper 

equipment, resting, applying the right exercise technique, and 

maintaining a nutritionally balanced diet including calcium and 

vitamin D in order to support bones being well-conditioned. Daily 

exercise, especially weight exercising, will give bones strength as 

well as hardness and decrease likelihood of fractures. 

 

II. LITERATURE SURVEY 

 
Vijaykumar et al. suggest a rapid and effective algorithm to 

eliminate Gaussian noise without losing edges in digital images. 

The algorithm estimates the noise corruption, followed by replacing 

the center pixel with the mean of surrounding pixels by a threshold. 

It is more efficient in terms of computational complexity than 

common filters such as mean, Wiener, and bilateral filters. 

Experimental results indicate better performance for noise removal 

and edge preservation with lower computational complexity, 

rendering it simple to execute in hardware. [1] 

Al-Khaffaf et al. introduce a noise removal algorithm for 

engineering drawings, with special concern for preserving fine 

details. The approach analyzes the neighbourhood of thin lines prior 

to deciding whether to remove or keep them. The algorithm is tested 

on scanned images with 15% salt-and-pepper noise corruption. 

Experiments demonstrate that the algorithm performs better in 

preserving quality, in terms of PSNR and MSE.[2] 
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"A fusion-classification approach to automatic detection of 

fractures from tibia X-ray images" by Mahndran and BaBoo 

suggests a four-step approach for the system: preprocessing, 

segmentation, feature extraction, and bone detection. The system 

employs classifiers such as Feed Forward Back Propagation Neural 

Networks (BPNN), Support Vector Machines (SVM), and Naïve 

Bayes (NB) for fusion classification. Detection rate and speed of 

Classification are improved dramatically according to the results 

[3]. 

Mahndran and BaBoo present an ensemble system for fracture 

detection from X-ray images based on fusion-based classifiers. 

Contrast, homogeneity, energy, and entropy are features extracted 

for classification. Several classifiers, namely BPNN, SVM, and NB, 

are evaluated with different combinations to facilitate fracture 

detection optimization. The experimental outcomes show that 

fusion classifiers, especially SVM and BPNN, give the optimal 

performance [4]. 

Rashmi et al. review some of the edge detection methods applied in 

digital image processing such as Prewitt, Sobel, and Canny 

operators. They emphasize Canny edge detection as being the most 

efficient technique, especially for noisy images. The Canny detector 

is adaptive and gives clear edges with fewer false alarms than other 

detectors. It is used extensively because it is accurate to segment 

images and has the capability to detect true edges consistently [5]. 

Hao et al. concentrate on the carpal bones' automatic separation in 

X-ray images of hands for detecting fractures. Crack detection is 

utilized by applying image processing methods such as 

enhancement, segmentation, and feature extraction. Segmentation 

uses the Canny edge detection, which yields better results. The 

system proves accuracy and efficiency while detecting ankle bone 

fractures from an X-ray image[6]. 

 

III. EXISTING METHOD 

 

Utilizing Histogram of Oriented Gradients (HOG) for the 

classification of bone fractures is a traditional method used in image 

processing. HOG works by looking at the textures and patterns 

within bone images. It segments the image into tiny regions, 

computes the direction of the edges within each region, and builds 

a feature that aids in fracture recognition. These features are then 

labeled by a classifier, for example, Support Vector Machine 

(SVM), to identify the fracture type. While HOG is good, it 

performs poorly with intricate fracture patterns and lacks 

generalization compared to newer methods like Convolutional 

Neural Networks (CNNs), which learn automatically from data. 

Support Vector Machines (SVMs) are forms of machine learning 

algorithms that divide data into classes. For bone fractures, SVM 

graphs a line (which is called a hyperplane) to separate different 

fractures along significant points of the data. SVM can be very time- 

consuming and require much computing capacity, especially when 

utilizing a large amount of data. SVM too is sensitive to noisy data 

and this might affect its accuracy. While HOG and SVM are useful, 

they fail to pick up all information in fracture images as efficiently 

as CNNs, which are generally more accurate for this type of task. 

IV. PROPOSED MODEL 

 
The proposed bone fracture detection system consists of 

Convolutional Neural Networks (CNNs) with a Graphical User 

Interface (GUI) for simplicity of use. The users input images of bone 

fractures ,which are preprocessed and subsequently classified into 

three classes: Mild, Moderate, and Severe by the trained CNN. The 

system offers real-time output and accuracy rates in order to assess 

performance, offering a simple and cost-effective system for 

automated fracture detection at hospitals. Figure1 shows the block 

diagram of proposed model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Block diagram of proposed model 

Image Resize in MATLAB: 

Image resize in MATLAB scales an image to a size standard for 

processing. An image is resized using the imresize command in 

MATLAB, which provides varying interpolation methods (e.g., 

nearest-neighbor, bilinear, and bicubic) for quality control. This is 

done for processing such as machine learning, medical images, and 

object detection, in which all the images should have the same 

dimensions. 

GUI in MATLAB: 

GUI in MATLAB enables interactive handling of image processing 

operations utilizing graphical controls such as buttons and sliders. 

GUI performs tasks such as the loading, scaling, and conversion of 

images to different formats, filtering, and CNN- based 

classification. GUI simplifies intricate operations rendering it 

feasible to process images along with checking models interactively. 

1. Initialize 

Gui Code function initializes the GUI in a manner where just a 

single copy of it gets executed and controls its life cycle. 

2. OpeningFunction 
The Gui_Code_OpeningFcn initializes the GUI, initializes default 

output, and sets up the GUI for interactive use by a user. 

3. OutputFunction: 

The Gui_Code_OutputFcn gets back the handle of the GUI main 

output. 
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4. ButtonCallbacks: 

Every button will perform some associated action such as opening, 

resizes, gray-scale conversion, filters application, segmenting and 

classification Images with CNN. Each button performs certain 

operations such as opening, resizing, gray scale conversion, 

filtering, segmenting, and classifying images using a CNN. 

5. EditBoxCallbacks: 

Functions control edit box operations for text display or input. 

6. ToggleButtonCallback: 

Controls the toggle button state. 

Convolutional Neural Networks (CNNs): 

Convolutional Neural Networks (CNNs) are among deep learning's 

building blocks that are revolutionizing application in a multitude 

of fields, particularly computer vision, with their record- breaking 

ability to recognize and learn challenging patterns in image data. 

MATLAB Convolutional Neural Networks have caused a lot of 

excitement with their record-breaking ability to process image- 

based complex data. Fundamentally, a CNN captures the 

organization of the visual cortex in possessing many layers that 

learn successively and obtain hierarchical features from raw pixel 

inputs. Hierarchical feature extraction allows CNNs to 

automatically detect prominent information such as edges, texture, 

and shapes and thus are very potent at image classification, object 

detection, and image segmentation tasks. It is relatively simple to 

train and develop CNNs using the MATLAB development 

environment with the assistance of the deep learning toolbox to 

provide pre-defined layers, training parameters, and visualization 

functionality. MATLAB flexibility also facilitates preprocessing, 

augmentation, and addition of custom architectures and makes it 

straightforward for researchers and practitioners to personalize 

CNNs for different purposes. This overview delves into the 

applicability of Convolutional Neural Networks in MATLAB and 

how they push computer vision possibility horizons. MATLAB and 

deep learning combining in more ways, CNNs push horizons from 

medical diagnosis in imaging to autonomous vehicles, showing their 

wide- ranging effect across today's technology frontiers. The design 

of the network may vary depending on the type and the number of 

layers utilized. The type and the number of layers utilized are 

determined by the application or data in question. For example, 

classification networks may utilize a classification layer and a soft 

max layer, while regression networks must utilize a regression layer 

as the network's output layer. You can utilize a straightforward 

network with a variety of convolutional layers to learn from a small 

set of black-and- white image data. When it comes to the more 

complex data with millions of color images, though, you might find 

yourself using a more sophisticated network with numerous 

convolutional and fully connected layers. 

 

Image Input Layer: 

 

The MATLAB Image Input Layer is the most important factor in 

successfully feeding image data to different deep learning 

operations. Since it is the input layer of the neural network 

architecture, the layer facilitates image data input of different 

dimensions and types. The layer provides provision for 

preprocessing and normalization requirements of model training so 

that the network can learn key features efficiently. Furthermore, the 

Image Input Layer allows for simplicity of use when using 

augmented datasets, which also encourages model resistance. 

Simple to use and supporting most neural network 

frameworks, this layer allows it to be extremely easy to 

integrate image data into MATLAB-based deep learning 

operations. 

Convolutional Layer: 

A 2-D convolutional layer applies sliding convolutional filters to 

2-D input. Create a 2-D convolutional layer using convolution 

2-D layer. The convolutional layer consists of various 

component. 

 
Filters and Stride: 

A convolutional layer consists of neurons that connect to subregions 

of the input images or the outputs of the previous layer. The layer 

learns the features localized by these regions while scanning through 

an image. When creating a layer using the convolution2dLayer 

function, you can specify the size of these regions using the filter 

Size input argument. For each region, the train Network function 

computes a dot product of the weights and the input, and then adds a 

bias term. A set of weights that is applied to a region in the image is 

called a filter. The filter moves along the input image vertically and 

horizontally, repeating the same computation for each region. In 

other words, the filter convolves the input. The image shows a 3- by-

3 filter scanning through the input. The lower map represents the 

input and upper map represents the output. The step size with which 

the filter moves is called a stride. We can specify the step size with 

the Stride name-value pair argument. The local regions that the 

neurons connect to can overlap depending on the filter Size and 

‘Stride’ values. 

This figure 2 shows a 3-by-3 filter scanning through the input with 

a stride of 2. The lower map represents the input and the upper map 

represents the output. 

 

                                  Figure 2: Filters and Stride 

The number of weights in a filter is h * w * c, where h is the height, 

and w is the width of the filter, respectively, and c is the number of 

channels in the input. For example, if the input is a colour image, 

the number of colour channels is 3. The number of filters determines 

the number of channels in the output of a convolutional layer. 

Specify the number of filters using the Num filter argument with the 

convolution2dLayer function. 

Dilated Convolution: 

A dilated convolution is a convolution in which the filters are 

expanded by spaces inserted between the elements of the filter. 

Specify the dilation factor using the 'Dilation Factor' property. Use 

dilated convolutions to increase the receptive field (the area of the 

input which the layer can see) of the layer without increasing the 

number of parameters or computation. The layer expands the filters 

by inserting zeros between each filter element. The dilation factor 

determines the step size for sampling the input or equivalently the 

up-sampling factor of the filter. It corresponds to an effective filter 

size of (Filter Size – 1). * Dilation Factor + 1. 
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For example, a 3-by-3 filter with the dilation factor [2 2] is 

equivalent to a 5-by-5 filter with zeros between the elements. This 

figure 3 shows a 3-by-3 filter dilated by a factor of two scanning 

through the input. The lower map represents the input and the upper 

map represents the output. 

Number of Neurons: 

The product of the output height and width gives the total number 
of neurons in a feature map, say Map Size. The total number of 
neurons (output size) in a convolutional layer is Map Size*Number 
of Filters. 

Usually, the results from these neurons pass through some form of 

nonlinearity, such as rectified linear units (ReLU). 
 

 

 

 

 

 

 

 

 

 

Feature Maps: 

 

 

 

 

 

 

 

Figure 3: Dilated Convolution 

Number of Layers: 

A convolutional neural network can consist of one or multiple 

convolutional layers. The number of convolutional layers depends 
on the amount and complexity of the data. 

 

Batch Normalization Layer: 

Create a batch normalization layer using batch Normalization 

Layer. A batch normalization layer normalizes a mini-batch of data 

across all observations for each channel independently. To speed up 

training of the convolutional neural network and reduce the 

As a filter moves along the input, it uses the same set of weights 
and the same bias for the convolution, forming a feature map. Each 
feature map is the result of a convolution using a different set of 
weights and a different bias. Hence, the number of feature maps is 
equal to the number of filters. The total number of parameters in a 
convolutional layer is ((h*w*c + 1) *Number of Filters), where 1 is 
the bias. 

Padding: 

We can also apply padding to input image borders vertically and 
horizontally using the 'Padding' name-value pair argument. Padding 
is values appended to the borders of the input to increase its size. By 
adjusting the padding, you can control the output size of the layer. 
This figure 4 shows a 3-by-3 filter scanning through the input with 
padding of size 1. The lower map represents the input and the upper 
map represents the output. 

sensitivity to network initialization, use batch normalization layers 

between convolutional layers and nonlinearities, such as ReLU 

layers. The layer first normalizes the activations of each channel by 

subtracting the mini-batch mean and dividing by the mini-batch 

standard deviation. Then, the layer shifts the input by a learnable 

offset β and scales it by a learnable scale factor γ. β and γ are 

themselves learnable parameters that are updated during network 

training. 

Batch normalization layers normalize the activations and gradients 

propagating through a neural network, making network training an 

easier optimization problem. To take full advantage of this fact, you 

can try increasing the learning rate. Since the optimization problem 

is easier, the parameter updates can be larger and the network can 

learn faster. You can also try reducing the L2 and dropout 

regularization. With batch normalization layers, the activations of a 

specific image during training depend on which images happen to 

appear in the same mini-batch. To take full advantage of this 

regularizing effect, try shuffling the training data before every 

training epoch. To specify how often to shuffle the data during 

training, use the 'Shuffle' name-value pair argument of training 

Options. 
 

 

 

 

 

 

 

Output size: 

 

 

 

 

Figure 4: Padding 

ReLU Layer: 

Create a ReLU layer using reluLayer. A ReLU layer performs a 

threshold operation to each element of the input, where any value 

less than zero is set to zero. Convolutional and batch normalization 

layers are usually followed by a nonlinear activation function such 

as a rectified linear unit (ReLU), specified by a ReLU layer. A 

ReLU layer performs a threshold operation to each element, where 

The output height and width of a convolutional is 

(Input Size – ((Filter Size – 1) *Dilation Factor + 1) + 

2*Padding)/Stride + 1. 

This value must be an integer for the whole image to be fully 

covered. If the combination of these options does not lead the image 

to be fully covered, the software by default ignores the remaining 

part of the image along the right and bottom edges in the 

convolution. 

any input value less than zero is set to zero, that is, 

 

 

The ReLU layer does not change the size of its input. There are other 

nonlinear activation layers that perform different operations and can 

improve the network accuracy for some applications. For a list of 

activation layers, see Activation Layers. 
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Cross Channel Normalization (Local Response Normalization)Layer: 

Create a cross-channel normalization layer using cross Channe 

Normalization Layer. A channel-wise local response (cross- 

channel) normalization layer carries out channel-wise 

normalization. This layer performs a channel-wise local response 

Normalization. It usually follow the ReLU activation layer. 

This layer replaces each element with a normalized value it obtains 

using the elements from a certain number of neighboring 

channels (elements in the normalization window). 

That is, for each element x in the input, train Network computes a 

normalized value x ′ Using 

 

 

 

where K, α, and β are the hyperparameters in the normalization, and 

ss is the sum of squares of the elements in the normalization window. 

You must specify the size of the normalization window using the 

window Channel Size argument of the cross Channel Normalization 

Layer function. You can also specify the hyperparameters using the 

Alpha, Beta, and K name-value pair arguments. The previous 

normalization formula is slightly different than what is presented. 

You can obtain the equivalent formula by multiplying the alpha 

value by the windowChannelSize. 

 

Max and Average Pooling Layers: 

A 2-D max pooling layer performs down sampling by dividing the 

input into rectangular pooling regions, then computing the 

maximum of each region. Create a max pooling layer using 

maxPooling2dLayer. A 2-D average pooling layer performs down 

sampling by dividing the input into rectangular pooling regions, 

then computing the average of each region. Create an average 

pooling layer using averagePooling2dLayer. Pooling layers 

follow the convolutional layers for down-sampling, hence, reducing 

the number of connections to the following layers. They do not 

perform any learning themselves, but reduce the number of 

parameters to be learned in the following layers. They also help 

reduce overfitting. A max pooling layer returns the maximum 

values of rectangular regions of its input. The size of the rectangular 

regions is determined by the poolSize argument of max Polling 

Layer. For example, if poolSize is [2 3], then the layer returns 

the maximum value in regions of height 2 and width 3. 

An average pooling layer outputs the average values of rectangular 

regions of its input. The size of the rectangular regions is determined 

by the poolSize argument of averagePoolingLayer. For example, if 

poolSize is [2 3], then the layer returns the average value of regions 

of height 2 and width 3. 

Pooling layers scan through the input horizontally and vertically in 

step sizes you can specify using the 'Stride' name-value pair 

argument. If the pool size is smaller than or equal to the stride, then 

the pooling regions do not overlap. 

For nonoverlapping regions (Pool Size and Stride are equal), if the 

input to the pooling layer is n-by-n, and the pooling region size is h- 

by- h, then the pooling layer down-samples the regions by h. That 

is, the output of a max or average pooling layer for one channel of 

a convolutional layer is n/h-by-n/h. For overlapping regions, the 

output of a pooling layer is (Input Size – Pool Size + 

2*Padding)/Stride + 1. 

Fully Connected Layer: 

Create a fully connected layer using fully Connected Layer. A fully 

connected layer multiplies the input by a weight matrix and then 

adds a bias vector. The convolutional (and down-sampling) layers 

are followed by one or more fully connected layers. As the name 

suggests, all neurons in a fully connected layer connect to all the 

neurons in the previous layer. This layer combines all of the features 

(local information) learned by the previous layers across the image 

to identify the larger patterns. For classification problems, the last 

fully connected layer combines the features to classify the images. 

This is the reason that the output Size argument of the last fully 

connected layer of the network is equal to the number of classes of 

the data set. For regression problems, the output size must be equal 

to the number of response variables. You can also adjust the 

learning rate and the regularization parameters for this layer 

using the related name-value pair arguments when creating the 

fully connected layer. If you choose not to adjust them, then train 

Network uses the global training parameters defined by the training 

Options function. For details on global and layer training options. 

 

Output Layers: 

Softmax and Classification Layers: 

A softmax layer applies a softmax function to the input. Create a 

softmax layer using SoftMax Layer. A classification layer computes 

the cross-entropy loss for classification and weighted classification 

tasks with mutually exclusive classes. Create a classification layer 

using classification Layer. 

For classification problems, a softmax layer and then a classification 

layer usually follows the final fully connected layer. The output unit 

activation function is the softmax function: 
 

Were, 

 
 

The softmax function is the output unit activation function after 

the last fully connected layer for multi-class classification 

problems: 
 

Where, the conditional probability of the sample given class r,and 

P(cr) is the class prior probability: 
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where N is the number of samples, K is the number of classes, wi is 

the weight for class i, tni is the indicator that the nth sample belongs 

to the ith class, and yni is the output for sample n for class i, which 

in this case, is the value from the softmax function. In other words, 

yni is the probability that the network associates the nth input with 

class i. 

 

CNN Classification: 

 

Mild Fracture: 

A mild fracture, also known as a hairline fracture or stress fracture, 

is a small crack in the bone. A mild fracture is most often brought 

on by repeated stress or trauma on the bone. 

Characteristics of a mild fracture: 

- Small, thin crack in the bone 

- Little or no displacement of bone fragments 
- Little pain and inflammation 
- Little impairment of daily activity 
-Typically treated with immobilization, pain management, and 

exercise therapy. 

Examples of minimal fractures are: 

-A small crack in the fibula (lower leg bone on the lateral side) due to 

running or jumping 

- A hairline fracture of the wrist caused by falling on the hand. 

Moderate Fracture: 

Moderate fracture is a larger break in the bone that can be treated 

more intensely. A fracture can be caused by a multitude of reasons 

such as trauma, injury during sport or osteoporosis. 

Characteristics of a moderate fracture: 

- Wider crack or fracture in the bone 
- Some displacement of the bone fragments, but still stable 

- Slight swelling and pain 
-Some interference with daily functioning, but able to do some tasks 

-Surgical treatment may be required, including reduction and 

fixation, in addition to immobilization and physical therapy 

Moderate fractures consist of: 

-A humerus (upper arm bone) fracture due to a fall on an 

outstretched arm 

-A tibia (shin bone) fracture due to a sports injury, such as a soccer or 

football injury. 

Severe Fracture: 

A severe fracture is a comminuted or complex fracture (multiple 

fragments) which requires immediate medical attention. The 

fracture may be caused by high-energy trauma, i.e., an auto accident 

or fall from a height. 

Characteristics of a severe fracture: 

- A comminuted or complex fracture (many fragments) 
-A high degree of displacement of the bone fragments, making it 

unstable 

-Severe pain and swelling 

-Has a significant impact on everyday activities, as even small things 

are difficult to accomplish 

-Typically must be treated surgically, i.e., ORIF, in order to align the 

bone and permit it to heal 

Severe fractures are illustrated as follows: 

-A femoral (thigh bone) fracture that is a complex fracture and 

resulted from an automobile accident. 

-A pelvic comminuted fracture resulting from a fall from a 

height. 

Accuracy: 

"A accuracy" is also a common performance measure in MATLAB 

utilized to calculate the overall accuracy of a classification model, 

particularly on binary and multi-class classification models. 

Accuracy is just the number of correctly classified samples to the 

number of all the samples in the data set. To better comprehend 

Accuracy, familiarity with jargon terms for True Positives (TP), 

False Positives (FP), True Negatives (TN), and False Negatives 

(FN) will be helpful: 

-True Positives (TP): Number of positive instances that have been 

correctly predicted by the classifier. 

-False Positives (FP): Number of negative instances that have been 

incorrectly predicted as positive by the classifier. 

-True Negatives (TN): Number of negative instances that have 

been correctly predicted by the classifier. 

-False Negatives (FN): Number of positive instances that have been 

incorrectly predicted as negative by the classifier. Accuracy can be 

obtained by using the following formula: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

i.e., Accuracy is the proportion of correct classification of the 

samples as positive or negative to the number of available samples 

in the data set. 

High Accuracy value indicates that classifier is good and classifying 

correctly majority of the samples. However, Accuracy may not be 

the best metric of model performance when working with datasets 

that are imbalanced and in which one of the classes is significantly 

larger than the other. For example, if in an imbalanced dataset one 

class is significantly larger than the other class, a classifier may have 

high Accuracy by simply predicting the majority class all the time 

even if it would fail to predict the minority class correctly. 

Precision: 

Precision refers to the precision of the positive predictions by the 

classifier. Precision indicates what percentage of the positive cases 

predicted were actually positive. Precision is defined as: 

Precision = TP / (TP + FP) 

-TP (True Positives): The number of true positive samples, i.e., the 

samples which are actually positive and classified correctly. 
-FP (False Positives): The number of false positive samples, i.e., the 
samples which are not actually positive but incorrectly classified as 
positive. 

A high Precision measure means that if the classifier labels a sample 

positive, it most likely is positive. Precision is particularly crucial in 

situations where there is a high cost of False Positives (e.g., spam 

filtering or disease diagnosis). 

 

Recall: 

Recall estimates the classifier's capacity to recognize all the true 

positive cases. It responds to the question: "Out of all the true 

positives, how many did the model identify correctly?" Recall is 

computed as: Recall = TP / (TP + FN) 

-TP (True Positives): The number of samples that were correctly 

classified as positive. 

-FN (False Negatives): The number of positive samples that were 

mistakenly labeled as negative. 

High Recall value indicates that the classifier performs well in 

finding positive cases. Recall is important when it is expensive to 

miss positive cases, for example, disease detection or fraud 

detection. 
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F1 Score: 

The F1 Score is the harmonic mean of Precision and Recall, which 

gives a single measure that averages both. It's especially useful 

when you need to achieve a balance between Precision and Recall, 

particularly in datasets with imbalanced classes. The formula is: 

F1 Score = 2 × (Precision × Recall / Precision + Recall) 

A high F1 Score means that the classifier achieves a good balance 
between Precision and Recall. 

If Precision and Recall are very different in value, the F1 Score will 

be nearer to the lower value. 

 

 

V. Results and Discussion 

 

This paper is a comparative analysis of three categories of fractures. 

Different classification methods such as CNN algorithm and 

graphical user interface are employed for fracture type detection. 

For this purpose, we gathered a normal human's bone x- ray 

MATLAB is employed to implement various CNN algorithm and 

graphical user interface for detection of whether an image is mild, 

moderate, severe, and also provides the information about Accuracy, 

Precision, F1 score, Recall. 

 
 

Figure 5:Input image 

This figure 5 represent Process begins with capturing an input X- 

ray image that is preprocessed to resize for standardization. 

 

 

Figure 6 :Resized image 

 

This Figure 6 represent Preprocessed images are employed together 

with CNNs for training the model, doing feature extraction, and 

learning the fracture patterns. 

 

 
Figure 7 : Training Progress Image 

This figure 7 represent trained model classifies the severity of 

fracture into categories such as mild, moderate, or severe. 
 

Figure 8 : Training Iterations Image 

This figure 8 represent Training Iterations Image 

 
Figure 9 : Classification Result Image 

 

This figure 9 represent performance metrics including accuracy, 

precision, recall, and F1- score are outputted in the MATLAB 

command line, indicating overall performance of the model. 
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Table1: Accuracy,Precision,Recall,f1Score 

 

Command window 

Accuracy : 85.48% 

Precision : 84.88% 

Recall : 85.11% 

f1Score : 84.82% 

 

 
In addition, a confusion matrix is generated to see how the actual and 

predicted classes relate to each other, and it gives more insight into 
how well the classification is performing. 
 

        Table2: Confusion Matrix 

 

 

47 

 

6 

 

1 

 

4 

 

27 

 

2 

  

5 

 

32 

 

 

This paper represents a good plan for medical image analysis that will 
result in better diagnosis and help medical professionals make faster, 
better decisions. 

 

GUI OUTPUT: 

The system initiates by importing input X-ray image through 

Graphical User Interface (GUI), offering an user-friendly interface. 

Pre-processing input image is resizing so input sizes will be the 

same for the Convolutional Neural Network (CNN). The model of 

CNN learns to classify the severity of the fracture into mild, 

moderate, or severe based on features obtained from it. The 

“classification result” is displayed prominently along with 

important performance measures like accuracy, precision, recall, and 

f1-score on the command window for proper verification. A 

“confusion matrix” is also created to project the relationship of 

actual and estimated classes for profound understanding of how well 

the model is performing. The integration of the GUI improves user 

interaction, making the system accessible to medical 

professionals, enhancing diagnostic accuracy, and supporting more 

efficient decision-making. This figure 10 represents a GUI Image and 
This figure 11 represents the GUI Image – Output. 

 

 

               Figure 10 : GUI Image 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 : GUI Image – Output 

 

 

VI. CONCLUSION 

 
This paper introduces an optimized and automated bone fracture 

detector based on Convolutional Neural Networks (CNN) on 

MATLAB. Through preprocessing of X-ray images, resizing, and 

data augmentation, the CNN model was trained to differentiate 

fractures into categories such as mild, moderate, and severe. Its 

structure consists of convolutional layers, batch normalization, 

dropout for regularization, and fully connected layers, with high 

accuracy without overfitting. 

 
Performance assessment by accuracy, precision, recall, and F1- 

score validates the model's efficacy and stability. The confusion 

matrix indicates the right and wrongly classified cases, providing 

further insight into class-wise performance. An intuitive GUI was 

created to facilitate ease of use, enabling clinicians or users to 

upload X-ray images and obtain real-time classification results. 

 

The model had up to 87% accuracy, and this indicates that CNNs 

are appropriate for classifying medical images. With additional 

advancements such as bigger datasets, transfer learning, or real-

time use, the system can go a long way in assisting clinical 

diagnostics and facilitating early, correct treatment decisions. 

 

VII. REFERENCES 

 

[1] V. Vijaykumar, P. Vanathi, and P. Kanagasabapathy, "Fast and 

efficient algorithm to remove Gaussian noise in digital images," 

IAENG Int. J. Comput. Sci., vol. 37, no. 1, 2010. 

[2] H. Al-Khaffaf, A. Z. Talib, and R. A. Salam, "Removing salt- 

and-pepper noise from binary images of engineering drawings," 

in Proc. 19th Int. Conf. Pattern Recognit. (ICPR), 2008, pp. 1–4. 

[3] S. K. Mahndran and S. Santhosh BaBoo, "An enhanced tibia 

fracture detection tool using image processing and classification 

fusion techniques in X-ray images," Int. J. Comput. Appl., vol. 11, 

no. 14, Aug. 2011. [Online]. Available: http://www.ijcaonline.org 

(Online ISSN: 0975-4172, Print ISSN: 0975-4350) 

[4] S. K. Mahndran and S. Santhosh BaBoo, "An ensemble system 

for automatic fracture detection," IACIT Int. J. Eng. Technol., vol. 

4, no. 1, Feb. 2012. 

[5] Rashmi, M. Kumar, and R. Saxena, "Algorithm and technique 

on various edge detection: A survey," Int. J. Eng. Sci. Emerg. 

Technol., vol. 4, no. 3, Jun. 2013. 

[6] S. Hao, Y. Han, J. Zhang, and Z. Ji, "Automatic isolation of 

carpal-bone in hand X-ray medical image," in Proc. [Conference 

name not provided], 2013

http://www.ijcrt.org/
http://www.ijcaonline.org/


www.ijcrt.org                                                                 © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882 

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e469 
 

 

http://www.ijcrt.org/

