
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e461

DETECTION OF BONE FRACTURE

USING CNN AND MATLAB
Dr. Ch. Rambabu A.Hema Sri

Associate Professeor, Department of ECE,

Department of ECE, Seshadri Rao Gudlavalleru

Engineering Seshadri Rao Gudlavalleru Engineering College,Gudlavalleru,Andhra

Pradesh College,Gudlavalleru,Andhra Pradesh

B.T.L.Kalyani A.Dayakar

Department of ECE, Department of ECE,

Seshadri Rao Gudlavalleru Engineering Seshadri Rao Gudlavalleru Engineering

College,Gudlavalleru,Andhra Pradesh College,Gudlavalleru,Andhra

Abstract - Bone fractures are a significant medical concern

requiring accurate and timely diagnosis to ensure effective

treatment. This paper presents a deep learning-based system for

bone fracture detection and classification using Convolutional

Neural Networks (CNNs). The system integrates a user-friendly

Graphical User Interface (GUI) to facilitate the input of bone

fracture images. The process begins with the selection of a bone

fracture image, followed by image resizing for uniformity. A

pre-processed dataset of bone fracture images is utilized for

training the CNN model to detect and classify fractures into

three categories: Mild, Moderate, and Severe. The deep

learning model leverages advanced CNN architectures for

feature extraction and classification, achieving high accuracy in

predicting fracture severity. The GUI enables users to input

images, run the detection process, and view classified outputs

seamlessly. This automated system demonstrates the potential

to assist healthcare professionals in diagnosing fractures

quickly and accurately, reducing dependency on manual

assessments and enhancing clinical decision-making. The

achieved accuracy underscores the effectiveness of the proposed

approach, making it a valuable tool in medical imaging

applications and orthopaedic care.

Keywords - Bone Fracture images Dataset, Deep Learning

algorithm, Convolutional Neural Network, GUI and Accuracy.

I. INTRODUCTION

Bone fractures, which are never a healthy situation, are graded by

degree into Mild, Moderate, and Severe levels. Mild fractures are

small breaks or cracks in the bone with minimal disturbance, and

they are treated conservatively with immobilization and rest.

Moderate fractures need casts or surgery to heal, while Severe

fractures are bone displacement, soft tissue injury, or complications

of fractures depending on more than one bone and thus complex

operations and physiotherapy.

New technologies in medical imaging and deep learning such as

Convolutional Neural Networks (CNNs) have greatly improved the

accuracy of fracture classification and diagnosis to facilitate

medical professionals in making the proper treatment decisions at

the right time and in improving the recovery rate of patients.

Fractures most commonly occur from trauma, osteoporosis, or

overuse. Trauma results from falls or accidents, and the size of the

bone and surrounding muscles determines how much force a bone

can withstand. Overuse fractures in athletes, usually to the foot or

lower leg, are caused by cumulative stress. Fractures from

osteoporosis occur with little trauma because the condition makes

bones extremely brittle and prone to breaking. Fractures of bone are

treated using RICE (Rest, Ice, Compression, Elevation), casting or

splinting, physical therapy, or surgery depending on the magnitude.

Prevention for fractures of bones consists of wearing proper

equipment, resting, applying the right exercise technique, and

maintaining a nutritionally balanced diet including calcium and

vitamin D in order to support bones being well-conditioned. Daily

exercise, especially weight exercising, will give bones strength as

well as hardness and decrease likelihood of fractures.

II. LITERATURE SURVEY

Vijaykumar et al. suggest a rapid and effective algorithm to

eliminate Gaussian noise without losing edges in digital images.

The algorithm estimates the noise corruption, followed by replacing

the center pixel with the mean of surrounding pixels by a threshold.

It is more efficient in terms of computational complexity than

common filters such as mean, Wiener, and bilateral filters.

Experimental results indicate better performance for noise removal

and edge preservation with lower computational complexity,

rendering it simple to execute in hardware. [1]

Al-Khaffaf et al. introduce a noise removal algorithm for

engineering drawings, with special concern for preserving fine

details. The approach analyzes the neighbourhood of thin lines prior

to deciding whether to remove or keep them. The algorithm is tested

on scanned images with 15% salt-and-pepper noise corruption.

Experiments demonstrate that the algorithm performs better in

preserving quality, in terms of PSNR and MSE.[2]

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e462

"A fusion-classification approach to automatic detection of

fractures from tibia X-ray images" by Mahndran and BaBoo

suggests a four-step approach for the system: preprocessing,

segmentation, feature extraction, and bone detection. The system

employs classifiers such as Feed Forward Back Propagation Neural

Networks (BPNN), Support Vector Machines (SVM), and Naïve

Bayes (NB) for fusion classification. Detection rate and speed of

Classification are improved dramatically according to the results

[3].

Mahndran and BaBoo present an ensemble system for fracture

detection from X-ray images based on fusion-based classifiers.

Contrast, homogeneity, energy, and entropy are features extracted

for classification. Several classifiers, namely BPNN, SVM, and NB,

are evaluated with different combinations to facilitate fracture

detection optimization. The experimental outcomes show that

fusion classifiers, especially SVM and BPNN, give the optimal

performance [4].

Rashmi et al. review some of the edge detection methods applied in

digital image processing such as Prewitt, Sobel, and Canny

operators. They emphasize Canny edge detection as being the most

efficient technique, especially for noisy images. The Canny detector

is adaptive and gives clear edges with fewer false alarms than other

detectors. It is used extensively because it is accurate to segment

images and has the capability to detect true edges consistently [5].

Hao et al. concentrate on the carpal bones' automatic separation in

X-ray images of hands for detecting fractures. Crack detection is

utilized by applying image processing methods such as

enhancement, segmentation, and feature extraction. Segmentation

uses the Canny edge detection, which yields better results. The

system proves accuracy and efficiency while detecting ankle bone

fractures from an X-ray image[6].

III. EXISTING METHOD

Utilizing Histogram of Oriented Gradients (HOG) for the

classification of bone fractures is a traditional method used in image

processing. HOG works by looking at the textures and patterns

within bone images. It segments the image into tiny regions,

computes the direction of the edges within each region, and builds

a feature that aids in fracture recognition. These features are then

labeled by a classifier, for example, Support Vector Machine

(SVM), to identify the fracture type. While HOG is good, it

performs poorly with intricate fracture patterns and lacks

generalization compared to newer methods like Convolutional

Neural Networks (CNNs), which learn automatically from data.

Support Vector Machines (SVMs) are forms of machine learning

algorithms that divide data into classes. For bone fractures, SVM

graphs a line (which is called a hyperplane) to separate different

fractures along significant points of the data. SVM can be very time-

consuming and require much computing capacity, especially when

utilizing a large amount of data. SVM too is sensitive to noisy data

and this might affect its accuracy. While HOG and SVM are useful,

they fail to pick up all information in fracture images as efficiently

as CNNs, which are generally more accurate for this type of task.

IV. PROPOSED MODEL

The proposed bone fracture detection system consists of

Convolutional Neural Networks (CNNs) with a Graphical User

Interface (GUI) for simplicity of use. The users input images of bone

fractures ,which are preprocessed and subsequently classified into

three classes: Mild, Moderate, and Severe by the trained CNN. The

system offers real-time output and accuracy rates in order to assess

performance, offering a simple and cost-effective system for

automated fracture detection at hospitals. Figure1 shows the block

diagram of proposed model.

Figure 1: Block diagram of proposed model

Image Resize in MATLAB:

Image resize in MATLAB scales an image to a size standard for

processing. An image is resized using the imresize command in

MATLAB, which provides varying interpolation methods (e.g.,

nearest-neighbor, bilinear, and bicubic) for quality control. This is

done for processing such as machine learning, medical images, and

object detection, in which all the images should have the same

dimensions.

GUI in MATLAB:

GUI in MATLAB enables interactive handling of image processing

operations utilizing graphical controls such as buttons and sliders.

GUI performs tasks such as the loading, scaling, and conversion of

images to different formats, filtering, and CNN- based

classification. GUI simplifies intricate operations rendering it

feasible to process images along with checking models interactively.

1. Initialize

Gui Code function initializes the GUI in a manner where just a

single copy of it gets executed and controls its life cycle.

2. OpeningFunction
The Gui_Code_OpeningFcn initializes the GUI, initializes default

output, and sets up the GUI for interactive use by a user.

3. OutputFunction:

The Gui_Code_OutputFcn gets back the handle of the GUI main

output.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e463

4. ButtonCallbacks:

Every button will perform some associated action such as opening,

resizes, gray-scale conversion, filters application, segmenting and

classification Images with CNN. Each button performs certain

operations such as opening, resizing, gray scale conversion,

filtering, segmenting, and classifying images using a CNN.

5. EditBoxCallbacks:

Functions control edit box operations for text display or input.

6. ToggleButtonCallback:

Controls the toggle button state.

Convolutional Neural Networks (CNNs):

Convolutional Neural Networks (CNNs) are among deep learning's

building blocks that are revolutionizing application in a multitude

of fields, particularly computer vision, with their record- breaking

ability to recognize and learn challenging patterns in image data.

MATLAB Convolutional Neural Networks have caused a lot of

excitement with their record-breaking ability to process image-

based complex data. Fundamentally, a CNN captures the

organization of the visual cortex in possessing many layers that

learn successively and obtain hierarchical features from raw pixel

inputs. Hierarchical feature extraction allows CNNs to

automatically detect prominent information such as edges, texture,

and shapes and thus are very potent at image classification, object

detection, and image segmentation tasks. It is relatively simple to

train and develop CNNs using the MATLAB development

environment with the assistance of the deep learning toolbox to

provide pre-defined layers, training parameters, and visualization

functionality. MATLAB flexibility also facilitates preprocessing,

augmentation, and addition of custom architectures and makes it

straightforward for researchers and practitioners to personalize

CNNs for different purposes. This overview delves into the

applicability of Convolutional Neural Networks in MATLAB and

how they push computer vision possibility horizons. MATLAB and

deep learning combining in more ways, CNNs push horizons from

medical diagnosis in imaging to autonomous vehicles, showing their

wide- ranging effect across today's technology frontiers. The design

of the network may vary depending on the type and the number of

layers utilized. The type and the number of layers utilized are

determined by the application or data in question. For example,

classification networks may utilize a classification layer and a soft

max layer, while regression networks must utilize a regression layer

as the network's output layer. You can utilize a straightforward

network with a variety of convolutional layers to learn from a small

set of black-and- white image data. When it comes to the more

complex data with millions of color images, though, you might find

yourself using a more sophisticated network with numerous

convolutional and fully connected layers.

Image Input Layer:

The MATLAB Image Input Layer is the most important factor in

successfully feeding image data to different deep learning

operations. Since it is the input layer of the neural network

architecture, the layer facilitates image data input of different

dimensions and types. The layer provides provision for

preprocessing and normalization requirements of model training so

that the network can learn key features efficiently. Furthermore, the

Image Input Layer allows for simplicity of use when using

augmented datasets, which also encourages model resistance.

Simple to use and supporting most neural network

frameworks, this layer allows it to be extremely easy to

integrate image data into MATLAB-based deep learning

operations.

Convolutional Layer:

A 2-D convolutional layer applies sliding convolutional filters to

2-D input. Create a 2-D convolutional layer using convolution

2-D layer. The convolutional layer consists of various

component.

Filters and Stride:

A convolutional layer consists of neurons that connect to subregions

of the input images or the outputs of the previous layer. The layer

learns the features localized by these regions while scanning through

an image. When creating a layer using the convolution2dLayer

function, you can specify the size of these regions using the filter

Size input argument. For each region, the train Network function

computes a dot product of the weights and the input, and then adds a

bias term. A set of weights that is applied to a region in the image is

called a filter. The filter moves along the input image vertically and

horizontally, repeating the same computation for each region. In

other words, the filter convolves the input. The image shows a 3- by-

3 filter scanning through the input. The lower map represents the

input and upper map represents the output. The step size with which

the filter moves is called a stride. We can specify the step size with

the Stride name-value pair argument. The local regions that the

neurons connect to can overlap depending on the filter Size and

‘Stride’ values.

This figure 2 shows a 3-by-3 filter scanning through the input with

a stride of 2. The lower map represents the input and the upper map

represents the output.

 Figure 2: Filters and Stride

The number of weights in a filter is h * w * c, where h is the height,

and w is the width of the filter, respectively, and c is the number of

channels in the input. For example, if the input is a colour image,

the number of colour channels is 3. The number of filters determines

the number of channels in the output of a convolutional layer.

Specify the number of filters using the Num filter argument with the

convolution2dLayer function.

Dilated Convolution:

A dilated convolution is a convolution in which the filters are

expanded by spaces inserted between the elements of the filter.

Specify the dilation factor using the 'Dilation Factor' property. Use

dilated convolutions to increase the receptive field (the area of the

input which the layer can see) of the layer without increasing the

number of parameters or computation. The layer expands the filters

by inserting zeros between each filter element. The dilation factor

determines the step size for sampling the input or equivalently the

up-sampling factor of the filter. It corresponds to an effective filter

size of (Filter Size – 1). * Dilation Factor + 1.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e464

For example, a 3-by-3 filter with the dilation factor [2 2] is

equivalent to a 5-by-5 filter with zeros between the elements. This

figure 3 shows a 3-by-3 filter dilated by a factor of two scanning

through the input. The lower map represents the input and the upper

map represents the output.

Number of Neurons:

The product of the output height and width gives the total number
of neurons in a feature map, say Map Size. The total number of
neurons (output size) in a convolutional layer is Map Size*Number
of Filters.

Usually, the results from these neurons pass through some form of

nonlinearity, such as rectified linear units (ReLU).

Feature Maps:

Figure 3: Dilated Convolution

Number of Layers:

A convolutional neural network can consist of one or multiple

convolutional layers. The number of convolutional layers depends
on the amount and complexity of the data.

Batch Normalization Layer:

Create a batch normalization layer using batch Normalization

Layer. A batch normalization layer normalizes a mini-batch of data

across all observations for each channel independently. To speed up

training of the convolutional neural network and reduce the

As a filter moves along the input, it uses the same set of weights
and the same bias for the convolution, forming a feature map. Each
feature map is the result of a convolution using a different set of
weights and a different bias. Hence, the number of feature maps is
equal to the number of filters. The total number of parameters in a
convolutional layer is ((h*w*c + 1) *Number of Filters), where 1 is
the bias.

Padding:

We can also apply padding to input image borders vertically and
horizontally using the 'Padding' name-value pair argument. Padding
is values appended to the borders of the input to increase its size. By
adjusting the padding, you can control the output size of the layer.
This figure 4 shows a 3-by-3 filter scanning through the input with
padding of size 1. The lower map represents the input and the upper
map represents the output.

sensitivity to network initialization, use batch normalization layers

between convolutional layers and nonlinearities, such as ReLU

layers. The layer first normalizes the activations of each channel by

subtracting the mini-batch mean and dividing by the mini-batch

standard deviation. Then, the layer shifts the input by a learnable

offset β and scales it by a learnable scale factor γ. β and γ are

themselves learnable parameters that are updated during network

training.

Batch normalization layers normalize the activations and gradients

propagating through a neural network, making network training an

easier optimization problem. To take full advantage of this fact, you

can try increasing the learning rate. Since the optimization problem

is easier, the parameter updates can be larger and the network can

learn faster. You can also try reducing the L2 and dropout

regularization. With batch normalization layers, the activations of a

specific image during training depend on which images happen to

appear in the same mini-batch. To take full advantage of this

regularizing effect, try shuffling the training data before every

training epoch. To specify how often to shuffle the data during

training, use the 'Shuffle' name-value pair argument of training

Options.

Output size:

Figure 4: Padding

ReLU Layer:

Create a ReLU layer using reluLayer. A ReLU layer performs a

threshold operation to each element of the input, where any value

less than zero is set to zero. Convolutional and batch normalization

layers are usually followed by a nonlinear activation function such

as a rectified linear unit (ReLU), specified by a ReLU layer. A

ReLU layer performs a threshold operation to each element, where

The output height and width of a convolutional is

(Input Size – ((Filter Size – 1) *Dilation Factor + 1) +

2*Padding)/Stride + 1.

This value must be an integer for the whole image to be fully

covered. If the combination of these options does not lead the image

to be fully covered, the software by default ignores the remaining

part of the image along the right and bottom edges in the

convolution.

any input value less than zero is set to zero, that is,

The ReLU layer does not change the size of its input. There are other

nonlinear activation layers that perform different operations and can

improve the network accuracy for some applications. For a list of

activation layers, see Activation Layers.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e465

Cross Channel Normalization (Local Response Normalization)Layer:

Create a cross-channel normalization layer using cross Channe

Normalization Layer. A channel-wise local response (cross-

channel) normalization layer carries out channel-wise

normalization. This layer performs a channel-wise local response

Normalization. It usually follow the ReLU activation layer.

This layer replaces each element with a normalized value it obtains

using the elements from a certain number of neighboring

channels (elements in the normalization window).

That is, for each element x in the input, train Network computes a

normalized value x ′ Using

where K, α, and β are the hyperparameters in the normalization, and

ss is the sum of squares of the elements in the normalization window.

You must specify the size of the normalization window using the

window Channel Size argument of the cross Channel Normalization

Layer function. You can also specify the hyperparameters using the

Alpha, Beta, and K name-value pair arguments. The previous

normalization formula is slightly different than what is presented.

You can obtain the equivalent formula by multiplying the alpha

value by the windowChannelSize.

Max and Average Pooling Layers:

A 2-D max pooling layer performs down sampling by dividing the

input into rectangular pooling regions, then computing the

maximum of each region. Create a max pooling layer using

maxPooling2dLayer. A 2-D average pooling layer performs down

sampling by dividing the input into rectangular pooling regions,

then computing the average of each region. Create an average

pooling layer using averagePooling2dLayer. Pooling layers

follow the convolutional layers for down-sampling, hence, reducing

the number of connections to the following layers. They do not

perform any learning themselves, but reduce the number of

parameters to be learned in the following layers. They also help

reduce overfitting. A max pooling layer returns the maximum

values of rectangular regions of its input. The size of the rectangular

regions is determined by the poolSize argument of max Polling

Layer. For example, if poolSize is [2 3], then the layer returns

the maximum value in regions of height 2 and width 3.

An average pooling layer outputs the average values of rectangular

regions of its input. The size of the rectangular regions is determined

by the poolSize argument of averagePoolingLayer. For example, if

poolSize is [2 3], then the layer returns the average value of regions

of height 2 and width 3.

Pooling layers scan through the input horizontally and vertically in

step sizes you can specify using the 'Stride' name-value pair

argument. If the pool size is smaller than or equal to the stride, then

the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the

input to the pooling layer is n-by-n, and the pooling region size is h-

by- h, then the pooling layer down-samples the regions by h. That

is, the output of a max or average pooling layer for one channel of

a convolutional layer is n/h-by-n/h. For overlapping regions, the

output of a pooling layer is (Input Size – Pool Size +

2*Padding)/Stride + 1.

Fully Connected Layer:

Create a fully connected layer using fully Connected Layer. A fully

connected layer multiplies the input by a weight matrix and then

adds a bias vector. The convolutional (and down-sampling) layers

are followed by one or more fully connected layers. As the name

suggests, all neurons in a fully connected layer connect to all the

neurons in the previous layer. This layer combines all of the features

(local information) learned by the previous layers across the image

to identify the larger patterns. For classification problems, the last

fully connected layer combines the features to classify the images.

This is the reason that the output Size argument of the last fully

connected layer of the network is equal to the number of classes of

the data set. For regression problems, the output size must be equal

to the number of response variables. You can also adjust the

learning rate and the regularization parameters for this layer

using the related name-value pair arguments when creating the

fully connected layer. If you choose not to adjust them, then train

Network uses the global training parameters defined by the training

Options function. For details on global and layer training options.

Output Layers:

Softmax and Classification Layers:

A softmax layer applies a softmax function to the input. Create a

softmax layer using SoftMax Layer. A classification layer computes

the cross-entropy loss for classification and weighted classification

tasks with mutually exclusive classes. Create a classification layer

using classification Layer.

For classification problems, a softmax layer and then a classification

layer usually follows the final fully connected layer. The output unit

activation function is the softmax function:

Were,

The softmax function is the output unit activation function after

the last fully connected layer for multi-class classification

problems:

Where, the conditional probability of the sample given class r,and

P(cr) is the class prior probability:

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e466

where N is the number of samples, K is the number of classes, wi is

the weight for class i, tni is the indicator that the nth sample belongs

to the ith class, and yni is the output for sample n for class i, which

in this case, is the value from the softmax function. In other words,

yni is the probability that the network associates the nth input with

class i.

CNN Classification:

Mild Fracture:

A mild fracture, also known as a hairline fracture or stress fracture,

is a small crack in the bone. A mild fracture is most often brought

on by repeated stress or trauma on the bone.

Characteristics of a mild fracture:

- Small, thin crack in the bone

- Little or no displacement of bone fragments
- Little pain and inflammation
- Little impairment of daily activity
-Typically treated with immobilization, pain management, and

exercise therapy.

Examples of minimal fractures are:

-A small crack in the fibula (lower leg bone on the lateral side) due to

running or jumping

- A hairline fracture of the wrist caused by falling on the hand.

Moderate Fracture:

Moderate fracture is a larger break in the bone that can be treated

more intensely. A fracture can be caused by a multitude of reasons

such as trauma, injury during sport or osteoporosis.

Characteristics of a moderate fracture:

- Wider crack or fracture in the bone
- Some displacement of the bone fragments, but still stable

- Slight swelling and pain
-Some interference with daily functioning, but able to do some tasks

-Surgical treatment may be required, including reduction and

fixation, in addition to immobilization and physical therapy

Moderate fractures consist of:

-A humerus (upper arm bone) fracture due to a fall on an

outstretched arm

-A tibia (shin bone) fracture due to a sports injury, such as a soccer or

football injury.

Severe Fracture:

A severe fracture is a comminuted or complex fracture (multiple

fragments) which requires immediate medical attention. The

fracture may be caused by high-energy trauma, i.e., an auto accident

or fall from a height.

Characteristics of a severe fracture:

- A comminuted or complex fracture (many fragments)
-A high degree of displacement of the bone fragments, making it

unstable

-Severe pain and swelling

-Has a significant impact on everyday activities, as even small things

are difficult to accomplish

-Typically must be treated surgically, i.e., ORIF, in order to align the

bone and permit it to heal

Severe fractures are illustrated as follows:

-A femoral (thigh bone) fracture that is a complex fracture and

resulted from an automobile accident.

-A pelvic comminuted fracture resulting from a fall from a

height.

Accuracy:

"A accuracy" is also a common performance measure in MATLAB

utilized to calculate the overall accuracy of a classification model,

particularly on binary and multi-class classification models.

Accuracy is just the number of correctly classified samples to the

number of all the samples in the data set. To better comprehend

Accuracy, familiarity with jargon terms for True Positives (TP),

False Positives (FP), True Negatives (TN), and False Negatives

(FN) will be helpful:

-True Positives (TP): Number of positive instances that have been

correctly predicted by the classifier.

-False Positives (FP): Number of negative instances that have been

incorrectly predicted as positive by the classifier.

-True Negatives (TN): Number of negative instances that have

been correctly predicted by the classifier.

-False Negatives (FN): Number of positive instances that have been

incorrectly predicted as negative by the classifier. Accuracy can be

obtained by using the following formula:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

i.e., Accuracy is the proportion of correct classification of the

samples as positive or negative to the number of available samples

in the data set.

High Accuracy value indicates that classifier is good and classifying

correctly majority of the samples. However, Accuracy may not be

the best metric of model performance when working with datasets

that are imbalanced and in which one of the classes is significantly

larger than the other. For example, if in an imbalanced dataset one

class is significantly larger than the other class, a classifier may have

high Accuracy by simply predicting the majority class all the time

even if it would fail to predict the minority class correctly.

Precision:

Precision refers to the precision of the positive predictions by the

classifier. Precision indicates what percentage of the positive cases

predicted were actually positive. Precision is defined as:

Precision = TP / (TP + FP)

-TP (True Positives): The number of true positive samples, i.e., the

samples which are actually positive and classified correctly.
-FP (False Positives): The number of false positive samples, i.e., the
samples which are not actually positive but incorrectly classified as
positive.

A high Precision measure means that if the classifier labels a sample

positive, it most likely is positive. Precision is particularly crucial in

situations where there is a high cost of False Positives (e.g., spam

filtering or disease diagnosis).

Recall:

Recall estimates the classifier's capacity to recognize all the true

positive cases. It responds to the question: "Out of all the true

positives, how many did the model identify correctly?" Recall is

computed as: Recall = TP / (TP + FN)

-TP (True Positives): The number of samples that were correctly

classified as positive.

-FN (False Negatives): The number of positive samples that were

mistakenly labeled as negative.

High Recall value indicates that the classifier performs well in

finding positive cases. Recall is important when it is expensive to

miss positive cases, for example, disease detection or fraud

detection.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e467

F1 Score:

The F1 Score is the harmonic mean of Precision and Recall, which

gives a single measure that averages both. It's especially useful

when you need to achieve a balance between Precision and Recall,

particularly in datasets with imbalanced classes. The formula is:

F1 Score = 2 × (Precision × Recall / Precision + Recall)

A high F1 Score means that the classifier achieves a good balance
between Precision and Recall.

If Precision and Recall are very different in value, the F1 Score will

be nearer to the lower value.

V. Results and Discussion

This paper is a comparative analysis of three categories of fractures.

Different classification methods such as CNN algorithm and

graphical user interface are employed for fracture type detection.

For this purpose, we gathered a normal human's bone x- ray

MATLAB is employed to implement various CNN algorithm and

graphical user interface for detection of whether an image is mild,

moderate, severe, and also provides the information about Accuracy,

Precision, F1 score, Recall.

Figure 5:Input image

This figure 5 represent Process begins with capturing an input X-

ray image that is preprocessed to resize for standardization.

Figure 6 :Resized image

This Figure 6 represent Preprocessed images are employed together

with CNNs for training the model, doing feature extraction, and

learning the fracture patterns.

Figure 7 : Training Progress Image

This figure 7 represent trained model classifies the severity of

fracture into categories such as mild, moderate, or severe.

Figure 8 : Training Iterations Image

This figure 8 represent Training Iterations Image

Figure 9 : Classification Result Image

This figure 9 represent performance metrics including accuracy,

precision, recall, and F1- score are outputted in the MATLAB

command line, indicating overall performance of the model.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e468

Table1: Accuracy,Precision,Recall,f1Score

Command window

Accuracy : 85.48%

Precision : 84.88%

Recall : 85.11%

f1Score : 84.82%

In addition, a confusion matrix is generated to see how the actual and

predicted classes relate to each other, and it gives more insight into
how well the classification is performing.

 Table2: Confusion Matrix

47

6

1

4

27

2

5

32

This paper represents a good plan for medical image analysis that will
result in better diagnosis and help medical professionals make faster,
better decisions.

GUI OUTPUT:

The system initiates by importing input X-ray image through

Graphical User Interface (GUI), offering an user-friendly interface.

Pre-processing input image is resizing so input sizes will be the

same for the Convolutional Neural Network (CNN). The model of

CNN learns to classify the severity of the fracture into mild,

moderate, or severe based on features obtained from it. The

“classification result” is displayed prominently along with

important performance measures like accuracy, precision, recall, and

f1-score on the command window for proper verification. A

“confusion matrix” is also created to project the relationship of

actual and estimated classes for profound understanding of how well

the model is performing. The integration of the GUI improves user

interaction, making the system accessible to medical

professionals, enhancing diagnostic accuracy, and supporting more

efficient decision-making. This figure 10 represents a GUI Image and
This figure 11 represents the GUI Image – Output.

 Figure 10 : GUI Image

Figure 11 : GUI Image – Output

VI. CONCLUSION

This paper introduces an optimized and automated bone fracture

detector based on Convolutional Neural Networks (CNN) on

MATLAB. Through preprocessing of X-ray images, resizing, and

data augmentation, the CNN model was trained to differentiate

fractures into categories such as mild, moderate, and severe. Its

structure consists of convolutional layers, batch normalization,

dropout for regularization, and fully connected layers, with high

accuracy without overfitting.

Performance assessment by accuracy, precision, recall, and F1-

score validates the model's efficacy and stability. The confusion

matrix indicates the right and wrongly classified cases, providing

further insight into class-wise performance. An intuitive GUI was

created to facilitate ease of use, enabling clinicians or users to

upload X-ray images and obtain real-time classification results.

The model had up to 87% accuracy, and this indicates that CNNs

are appropriate for classifying medical images. With additional

advancements such as bigger datasets, transfer learning, or real-

time use, the system can go a long way in assisting clinical

diagnostics and facilitating early, correct treatment decisions.

VII. REFERENCES

[1] V. Vijaykumar, P. Vanathi, and P. Kanagasabapathy, "Fast and

efficient algorithm to remove Gaussian noise in digital images,"

IAENG Int. J. Comput. Sci., vol. 37, no. 1, 2010.

[2] H. Al-Khaffaf, A. Z. Talib, and R. A. Salam, "Removing salt-

and-pepper noise from binary images of engineering drawings,"

in Proc. 19th Int. Conf. Pattern Recognit. (ICPR), 2008, pp. 1–4.

[3] S. K. Mahndran and S. Santhosh BaBoo, "An enhanced tibia

fracture detection tool using image processing and classification

fusion techniques in X-ray images," Int. J. Comput. Appl., vol. 11,

no. 14, Aug. 2011. [Online]. Available: http://www.ijcaonline.org

(Online ISSN: 0975-4172, Print ISSN: 0975-4350)

[4] S. K. Mahndran and S. Santhosh BaBoo, "An ensemble system

for automatic fracture detection," IACIT Int. J. Eng. Technol., vol.

4, no. 1, Feb. 2012.

[5] Rashmi, M. Kumar, and R. Saxena, "Algorithm and technique

on various edge detection: A survey," Int. J. Eng. Sci. Emerg.

Technol., vol. 4, no. 3, Jun. 2013.

[6] S. Hao, Y. Han, J. Zhang, and Z. Ji, "Automatic isolation of

carpal-bone in hand X-ray medical image," in Proc. [Conference

name not provided], 2013

http://www.ijcrt.org/
http://www.ijcaonline.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e469

http://www.ijcrt.org/

