www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

DETECTION OF BONE FRACTURE
USING CNN AND MATLAB

Dr. Ch. Rambabu
Associate Professeor,
Department of ECE,
Engineering Seshadri Rao Gudlavalleru Engineering
Pradesh College,Gudlavalleru,Andhra Pradesh

B.T.L.Kalyani
Department of ECE,
Seshadri Rao Gudlavalleru Engineering
College,Gudlavalleru,Andhra Pradesh

Abstract - Bone fractures are a significant medical concern
requiring accurate and timely diagnosis to ensure effective
treatment. This paper presents a deep learning-based system for
bone fracture detection and classification using Convolutional
Neural Networks (CNNs). The system integrates a user-friendly
Graphical User Interface (GUI) to facilitate the input of bone
fracture images. The process begins with the selection of a bone
fracture image, followed by image resizing for uniformity. A
pre-processed dataset of bone fracture images is utilized for
training the CNN model to detect and classify fractures into
three categories: Mild, Moderate, and Severe. The deep
learning model leverages advanced CNN architectures for
feature extraction and classification, achieving high accuracy in
predicting fracture severity. The GUI enables users to input
images, run the detection process, and view classified outputs
seamlessly. This automated system demonstrates the potential
to assist healthcare professionals in diagnosing fractures
quickly and accurately, reducing dependency on manual
assessments and enhancing clinical decision-making. The
achieved accuracy underscores the effectiveness of the proposed
approach, making it a valuable tool in medical imaging
applications and orthopaedic care.

Keywords - Bone Fracture images Dataset, Deep Learning
algorithm, Convolutional Neural Network, GUI and Accuracy.

I. INTRODUCTION

Bone fractures, which are never a healthy situation, are graded by
degree into Mild, Moderate, and Severe levels. Mild fractures are
small breaks or cracks in the bone with minimal disturbance, and
they are treated conservatively with immobilization and rest.
Moderate fractures need casts or surgery to heal, while Severe
fractures are bone displacement, soft tissue injury, or complications
of fractures depending on more than one bone and thus complex
operations and physiotherapy.

A.Hema Sri
Department of ECE,
Seshadri Rao Gudlavalleru
College,Gudlavalleru,Andhra

A.Dayakar
Department of ECE,
Seshadri Rao Gudlavalleru Engineering
College,Gudlavalleru,Andhra

New technologies in medical imaging and deep learning such as
Convolutional Neural Networks (CNNSs) have greatly improved the
accuracy of fracture classification and diagnosis to facilitate
medical professionals in making the proper treatment decisions at
the right time and in improving the recovery rate of patients.
Fractures most commonly occur from trauma, osteoporosis, or
overuse. Trauma results from falls or accidents, and the size of the
bone and surrounding muscles determines how much force a bone
can withstand. Overuse fractures in athletes, usually to the foot or
lower leg, are caused by cumulative stress. Fractures from
osteoporosis occur with little trauma because the condition makes
bones extremely brittle and prone to breaking. Fractures of bone are
treated using RICE (Rest, Ice, Compression, Elevation), casting or
splinting, physical therapy, or surgery depending on the magnitude.
Prevention for fractures of bones consists of wearing proper
equipment, resting, applying the right exercise technique, and
maintaining a nutritionally balanced diet including calcium and
vitamin D in order to support bones being well-conditioned. Daily
exercise, especially weight exercising, will give bones strength as
well as hardness and decrease likelihood of fractures.

Il. LITERATURE SURVEY

Vijaykumar et al. suggest a rapid and effective algorithm to
eliminate Gaussian noise without losing edges in digital images.
The algorithm estimates the noise corruption, followed by replacing
the center pixel with the mean of surrounding pixels by a threshold.
It is more efficient in terms of computational complexity than
common filters such as mean, Wiener, and bilateral filters.
Experimental results indicate better performance for noise removal
and edge preservation with lower computational complexity,
rendering it simple to execute in hardware. [1]

Al-Khaffaf et al. introduce a noise removal algorithm for
engineering drawings, with special concern for preserving fine
details. The approach analyzes the neighbourhood of thin lines prior
to deciding whether to remove or keep them. The algorithm is tested
on scanned images with 15% salt-and-pepper noise corruption.
Experiments demonstrate that the algorithm performs better in
preserving quality, in terms of PSNR and MSE.[2]

IJCRT2504519 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e461

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

"A fusion-classification approach to automatic detection of
fractures from tibia X-ray images" by Mahndran and BaBoo
suggests a four-step approach for the system: preprocessing,
segmentation, feature extraction, and bone detection. The system
employs classifiers such as Feed Forward Back Propagation Neural
Networks (BPNN), Support Vector Machines (SVM), and Naive
Bayes (NB) for fusion classification. Detection rate and speed of
Classification are improved dramatically according to the results
[3].

Mahndran and BaBoo present an ensemble system for fracture
detection from X-ray images based on fusion-based classifiers.
Contrast, homogeneity, energy, and entropy are features extracted
for classification. Several classifiers, namely BPNN, SVM, and NB,
are evaluated with different combinations to facilitate fracture
detection optimization. The experimental outcomes show that
fusion classifiers, especially SVM and BPNN, give the optimal
performance [4].

Rashmi et al. review some of the edge detection methods applied in
digital image processing such as Prewitt, Sobel, and Canny
operators. They emphasize Canny edge detection as being the most
efficient technique, especially for noisy images. The Canny detector
is adaptive and gives clear edges with fewer false alarms than other
detectors. It is used extensively because it is accurate to segment
images and has the capability to detect true edges consistently [5].
Hao et al. concentrate on the carpal bones' automatic separation in
X-ray images of hands for detecting fractures. Crack detection is
utilized by applying image processing methods such as
enhancement, segmentation, and feature extraction. Segmentation
uses the Canny edge detection, which yields better results. The
system proves accuracy and efficiency while detecting ankle bone
fractures from an X-ray image[6].

Il. EXISTING METHOD

Utilizing Histogram of Oriented Gradients (HOG) for the
classification of bone fractures is a traditional method used in image
processing. HOG works by looking at the textures and patterns
within bone images. It segments the image into tiny regions,
computes the direction of the edges within each region, and builds
a feature that aids in fracture recognition. These features are then
labeled by a classifier, for example, Support Vector Machine
(SVM), to identify the fracture type. While HOG is good, it
performs poorly with intricate fracture patterns and lacks
generalization compared to newer methods like Convolutional
Neural Networks (CNNs), which learn automatically from data.
Support Vector Machines (SVMs) are forms of machine learning
algorithms that divide data into classes. For bone fractures, SVM
graphs a line (which is called a hyperplane) to separate different
fractures along significant points of the data. SVM can be very time-
consuming and require much computing capacity, especially when
utilizing a large amount of data. SVM too is sensitive to noisy data
and this might affect its accuracy. While HOG and SVM are useful,
they fail to pick up all information in fracture images as efficiently
as CNNs, which are generally more accurate for this type of task.

IV. PROPOSED MODEL

The proposed bone fracture detection system consists of
Convolutional Neural Networks (CNNs) with a Graphical User
Interface (GUI) for simplicity of use. The users input images of bone
fractures ,which are preprocessed and subsequently classified into
three classes: Mild, Moderate, and Severe by the trained CNN. The
system offers real-time output and accuracy rates in order to assess
performance, offering a simple and cost-effective system for
automated fracture detection at hospitals. Figurel shows the block
diagram of proposed model.

Bone
fracture Input image
images
Image
dataset Resize

Pre-Processing

Convolutional Neural Network Classification

Dataset Layers Training options

Accuracy Precision f1 score Recall

Figure 1: Block diagram of proposed model

Image Resize in MATLAB:

Image resize in MATLAB scales an image to a size standard for
processing. An image is resized using the imresize command in
MATLAB, which provides varying interpolation” methods (e.g.,
nearest-neighbor, bilinear, and bicubic) for quality control. This is
done for processing such as machine learning, medical images, and
object detection, in which all the images should have the same
dimensions.

GUIl in MATLAB:

GUI in MATLAB enables interactive handling of image processing
operations utilizing graphical controls such as buttons and sliders.
GUI performs tasks such as the loading, scaling, and conversion of
images to different formats, filtering, and CNN- based
classification. GUI simplifies intricate operations rendering it
feasible to process images along with checking models interactively.
1. Initialize

Gui Code function initializes the GUI in a manner where just a
single copy of it gets executed and controls its life cycle.
2.OpeningFunction

The Gui_Code_OpeningFcn initializes the GUI, initializes default
output, and sets up the GUI for interactive use by a user.

3. OutputFunction:

The Gui_Code_OutputFcn gets back the handle of the GUI main
output.

IJCRT2504519

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e462

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

4. ButtonCallbacks:

Every button will perform some associated action such as opening,
resizes, gray-scale conversion, filters application, segmenting and
classification Images with CNN. Each button performs certain
operations such as opening, resizing, gray scale conversion,
filtering, segmenting, and classifying images using a CNN.

5. EditBoxCallbacks:

Functions control edit box operations for text display or input.

6. ToggleButtonCallback:

Controls the toggle button state.

Convolutional Neural Networks (CNNs):

Convolutional Neural Networks (CNNs) are among deep learning's
building blocks that are revolutionizing application in a multitude
of fields, particularly computer vision, with their record- breaking
ability to recognize and learn challenging patterns in image data.
MATLAB Convolutional Neural Networks have caused a lot of
excitement with their record-breaking ability to process image-
based complex data. Fundamentally, a CNN captures the
organization of the visual cortex in possessing many layers that
learn successively and obtain hierarchical features from raw pixel
inputs. Hierarchical feature extraction allows CNNs to
automatically detect prominent information such as edges, texture,
and shapes and thus are very potent at image classification, object
detection, and image segmentation tasks. It is relatively simple to
train and develop CNNs using the MATLAB development
environment with the assistance of the deep learning toolbox to
provide pre-defined layers, training parameters, and visualization
functionality. MATLAB flexibility also facilitates preprocessing,
augmentation, and addition of custom architectures and makes it
straightforward for researchers and practitioners to personalize
CNNs for different purposes. This overview delves into the
applicability of Convolutional Neural Networks in MATLAB and
how they push computer vision possibility horizons. MATLAB and
deep learning combining in more ways, CNNs push horizons from
medical diagnosis in imaging to autonomous vehicles, showing their
wide- ranging effect across today's technology frontiers. The design
of the network may vary depending on the type and the number of
layers utilized. The type and the number of layers utilized are
determined by the application or data in question. For example,
classification networks may utilize a classification layer and a soft
max layer, while regression networks must utilize a regression layer
as the network's output layer. You can utilize a straightforward
network with a variety of convolutional layers to learn from a small
set of black-and- white image data. When it comes to the more
complex data with millions of color images, though, you might find
yourself using a more sophisticated network with numerous
convolutional and fully connected layers.

Image Input Layer:

The MATLAB Image Input Layer is the most important factor in
successfully feeding image data to different deep learning
operations. Since it is the input layer of the neural network
architecture, the layer facilitates image data input of different
dimensions and types. The layer provides provision for
preprocessing and normalization requirements of model training so
that the network can learn key features efficiently. Furthermore, the
Image Input Layer allows for simplicity of use when using
augmented datasets, which also encourages model resistance.
Simple to use and supporting most neural network
frameworks, this layer allows it to be extremely easy to
integrate image data into MATLAB-based deep learning
operations.

Convolutional Layer:

A 2-D convolutional layer applies sliding convolutional filters to
2-D input. Create a 2-D convolutional layer using convolution
2-D layer. The convolutional layer consists of various
component.

Filters and Stride:

A convolutional layer consists of neurons that connect to subregions
of the input images or the outputs of the previous layer. The layer
learns the features localized by these regions while scanning through
an image. When creating a layer using the convolution2dLayer
function, you can specify the size of these regions using the filter
Size input argument. For each region, the train Network function
computes a dot product of the weights and the input, and then adds a
bias term. A set of weights that is applied to a region in the image is
called afilter. The filter moves along the input image vertically and
horizontally, repeating the same computation for each region. In
other words, the filter convolves the input. The image shows a 3- by-
3 filter scanning through the input. The lower map represents the
input and upper map represents the output. The step size with which
the filter moves is called a stride. We can specify the step size with
the Stride name-value pair argument. The local regions that the
neurons connect to can overlap depending on the filter Size and
‘Stride’ values.

This figure 2 shows a 3-by-3 filter scanning through the input with
a stride of 2. The lower map represents the input and the upper map
represents the output.

Figure 2: Filters.and Stride

The number of weights in a filter is h*w * ¢, where h is the height,
and w is the width of the filter,.respectively, and c is the number of
channels in the input. For-example, if the input is a colour image,
the number of colour channels is 3. The number of filters determines
the number of channels in the output of a convolutional layer.
Specify the number of filters using the Num filter argument with the
convolution2dLayer function.

Dilated Convolution:

A dilated convolution is a convolution in which the filters are
expanded by spaces inserted between the elements of the filter.
Specify the dilation factor using the 'Dilation Factor' property. Use
dilated convolutions to increase the receptive field (the area of the
input which the layer can see) of the layer without increasing the
number of parameters or computation. The layer expands the filters
by inserting zeros between each filter element. The dilation factor
determines the step size for sampling the input or equivalently the
up-sampling factor of the filter. It corresponds to an effective filter
size of (Filter Size — 1). * Dilation Factor + 1.

IJCRT2504519

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e463

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

For example, a 3-by-3 filter with the dilation factor [2 2] is
equivalent to a 5-bv-5 filter with zeros between the elements. This
figur ated by a factor of two scanning
throu represents the input and the upper
map

Figure 3: Dilated Convolution

Feature Maps:

As a filter moves along the input, it uses the same set of weights
and the same bias for the convolution, forming a feature map. Each
feature map is the result of a convolution using a different set of
weights and a different bias. Hence, the number of feature maps is
equal to the number of filters. The total number of parameters in a
convolutional layer is ((h*w*c + 1) *Number of Filters), where 1 is
the bias.

Padding:

We can also apply padding to input image borders vertically and
horizontally using the 'Padding' name-value pair argument. Padding
is values appended to the borders of the input to increase its size. By
adjusting the padding, you can control the output size of the layer.
This figure 4 shows a 3-by-3 filter scanning through the input with
padding of size 1. The lower map represents the input and the upper
map represents the output.

Figure 4: Padding

Output size:

The output height and width of a convolutional is

(Input Size — ((Filter Size — 1) *Dilation Factor + 1) +
2*Padding)/Stride + 1.

This value must be an integer for the whole image to be fully
covered. If the combination of these options does not lead the image
to be fully covered, the software by default ignores the remaining
part of the image along the right and bottom edges in the
convolution.

Number of Neurons:

The product of the output height and width gives the total number
of neurons in a feature map, say Map Size. The total number of
neurons (output size) in a convolutional layer is Map Size*Number
of Filters.

Usually, the results from these neurons pass through some form of
nonlinearity, such as rectified linear units (ReLU).

Number of Layers:

A convolutional neural network can consist of one or multiple
convolutional layers. The number of convolutional layers depends
on the amount and complexity of the data.

Batch Normalization Layer:

Create a batch normalization layer using batch Normalization
Layer. A batch normalization layer normalizes a mini-batch of data
across all observations for each channel independently. To speed up
training of the convolutional neural network and reduce the
sensitivity to network initialization, use batch normalization layers
between convolutional layers and nonlinearities, such as ReLU
layers. The layer first normalizes the activations of each channel by
subtracting the mini-batch mean and dividing by the mini-batch
standard deviation. Then, the layer shifts the input by a learnable
offset B and scales it by a learnable scale factor y. B and vy are
themselves learnable parameters that are updated during network
training.

Batch normalization layers normalize the activations and gradients
propagating through a neural network, making network training an
easier optimization problem. To take full advantage of this fact, you
can try increasing the learning rate. Since the optimization problem
is easier, the parameter updates can be larger and the network can
learn faster. You can also try reducing the L2 and dropout
regularization. With batch normalization layers, the activations of a
specific image during training depend on which images happen to
appear in the same mini-batch. To take full advantage of this
regularizing effect, try shuffling the training data before every
training epoch. To specify how often to shuffle the data during
training, use the 'Shuffle' name-value pair argument of training
Options.

ReLU Layer:

Create a ReLU layer using reluLayer. A ReLU layer performs a
threshold operation to each element of the input, where any value
less than zero is set-to zero. Convolutional and batch normalization
layers are usually followed by a nonlinear activation function such
as a rectified linear unit (ReLU), specified by a ReLU layer. A
ReLU layer performs a threshold operation to each element, where

any input value less than zero is set to zero, that is,

x, x>0

F® =90, x<o

The ReLU layer does not change the size of its input. There are other
nonlinear activation layers that perform different operations and can
improve the network accuracy for some applications. For a list of
activation layers, see Activation Layers.

IJCRT2504519

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| ed64

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Cross Channel Normalization (Local Response Normalization)Layer:

Create a cross-channel normalization layer using cross Channe
Normalization Layer. A channel-wise local response (cross-
channel) normalization layer carries out channel-wise
normalization. This layer performs a channel-wise local response
Normalization. It usually follow the ReLU activation layer.

This layer replaces each element with a normalized value it obtains
using the elements from a certain number of neighboring

channels (elements in the normalization window).

That is, for each element x in the input, train Network computes a
normalized value x ' Using

(k+

where K, a, and p are the hyperparameters in the normalization, and
ss is the sum of squares of the elements in the normalization window.
You must specify the size of the normalization window using the
window Channel Size argument of the cross Channel Normalization
Layer function. You can also specify the hyperparameters using the
Alpha, Beta, and K name-value pair arguments. The previous
normalization formula is slightly different than what is presented.
You can obtain the equivalent formula by multiplying the alpha
value by the windowChannelSize.

X

i
(X * 5§).r
windowChannelSize

Max and Average Pooling Layers:

A 2-D max pooling layer performs down sampling by dividing the
input into rectangular pooling regions, then computing the
maximum of each region. Create a max pooling layer using
maxPooling2dLayer. A 2-D average pooling layer performs down
sampling by dividing the input into rectangular pooling regions,
then computing the average of each region. Create an average
pooling layer using averagePooling2dLayer. Pooling layers
follow the convolutional layers for down-sampling, hence, reducing
the number of connections to the following layers. They do not
perform any learning themselves, but reduce the number of
parameters to be learned in the following layers. They also help
reduce overfitting. A max pooling layer returns the maximum
values of rectangular regions of its input. The size of the rectangular
regions is determined by the poolSize argument of max Polling
Layer. For example, if poolSize is [2 3], then the layer returns
the maximum value in regions of height 2 and width 3.

An average pooling layer outputs the average values of rectangular
regions of its input. The size of the rectangular regions is determined
by the poolSize argument of averagePoolingLayer. For example, if
poolSize is [2 3], then the layer returns the average value of regions
of height 2 and width 3.

Pooling layers scan through the input horizontally and vertically in
step sizes you can specify using the 'Stride’ name-value pair
argument. If the pool size is smaller than or equal to the stride, then
the pooling regions do not overlap.

For nonoverlapping regions (Pool Size and Stride are equal), if the
input to the pooling layer is n-by-n, and the pooling region size is h-
by- h, then the pooling layer down-samples the regions by h. That
is, the output of a max or average pooling layer for one channel of
a convolutional layer is n/h-by-n/h. For overlapping regions, the
output of a pooling layer is (Input Size — Pool Size +
2*Padding)/Stride + 1.

Fully Connected Layer:

Create a fully connected layer using fully Connected Layer. A fully
connected layer multiplies the input by a weight matrix and then
adds abias vector. The convolutional (and down-sampling) layers
are followed by one or more fully connected layers. As the name
suggests, all neurons in a fully connected layer connect to all the
neurons in the previous layer. This layer combines all of the features
(local information) learned by the previous layers across the image
to identify the larger patterns. For classification problems, the last
fully connected layer combines the features to classify the images.
This is the reason that the output Size argument of the last fully
connected layer of the network is equal to the number of classes of
the data set. For regression problems, the output size must be equal
to the number of response variables. You can also adjust the
learning rate and the regularization parameters for this layer
using the related name-value pair arguments when creating the
fully connected layer. If you choose not to adjust them, then train
Network uses the global training parameters defined by the training
Options function. For details on global and layer training options.

Output Layers:
Softmax and Classification Layers:

A softmax layer applies a softmax function to the input. Create a
softmax layer using SoftMax Layer. A classification layer computes
the cross-entropy loss for classification and weighted classification
tasks with mutually exclusive classes. Create a classification layer
using classification Layer.

For classification problems, a softmax layer and then a classification
layer usually follows the final fully connected layer. The output unit
activation function is the softmax function:

expla,(x))

"1-"'(-1'} = k J
Z exp(a;(x))
j=I
Were,
k
D<y,<1and Z_}-‘_,‘ =1.
=l

The softmax function is the output unit activation function after
the last fully connected layer for multi-class classification
problems:

P(x,0)|c,)P(c,)

P(c]x,0) = — = ;
Z:, P(x, 0lc)P(c)) ZJ: exp(a;(x. 0))
j= j=

Where, the conditional probability of the samp'le given class r,and
P(cr) is the class prior probability:

exp(a,(x,6))
k

k
x,0) <1 and Z Plcj|x.0)=1.

f

0 < Pler

IJCRT2504519 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e465

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

where N is the number of samples, K is the number of classes, wi is
the weight for class i, tni is the indicator that the nth sample belongs
to the ith class, and yni is the output for sample n for class i, which
in this case, is the value from the softmax function. In other words,
yni is the probability that the network associates the nth input with
class i.

CNN Classification:

Mild Fracture:

A mild fracture, also known as a hairline fracture or stress fracture,
is a small crack in the bone. A mild fracture is most often brought
on by repeated stress or trauma on the bone.

Characteristics of a mild fracture:

- Small, thin crack in the bone

- Little or no displacement of bone fragments

- Little pain and inflammation

- Little impairment of daily activity

-Typically treated with immobilization, pain management, and
exercise therapy.

Examples of minimal fractures are:

-Asmall crack in the fibula (lower leg bone on the lateral side) due to
running or jumping

- Ahairline fracture of the wrist caused by falling on the hand.

Moderate Fracture:

Moderate fracture is a larger break in the bone that can be treated
more intensely. A fracture can be caused by a multitude of reasons
such as trauma, injury during sport or osteoporosis.

Characteristics of a moderate fracture:

- Wider crack or fracture in the bone

- Some displacement of the bone fragments, but still stable

- Slight swelling and pain

-Some interference with daily functioning, but able to do some tasks
-Surgical treatment may be required, including reduction and
fixation, in addition to immobilization and physical therapy
Moderate fractures consist of:

-A humerus (upper arm bone) fracture due to a fall on an
outstretched arm

-Atibia (shin bone) fracture due to a sports injury, such as a soccer or
football injury.

Severe Fracture:

A severe fracture is a comminuted or complex fracture (multiple
fragments) which requires immediate medical attention. The
fracture may be caused by high-energy trauma, i.e., an auto accident
or fall from a height.

Characteristics of a severe fracture:

- A comminuted or complex fracture (many fragments)

-A high degree of displacement of the bone fragments, making it
unstable

-Severe pain and swelling

-Has a significant impact on everyday activities, as even small things
are difficult to accomplish

-Typically must be treated surgically, i.e., ORIF, in order to align the
bone and permit it to heal

Severe fractures are illustrated as follows:

-A femoral (thigh bone) fracture that is a complex fracture and
resulted from an automobile accident.

-A pelvic comminuted fracture resulting from a fall from a
height.

Accuracy:

"A accuracy" is also a common performance measure in MATLAB
utilized to calculate the overall accuracy of a classification model,
particularly on binary and multi-class classification models.
Accuracy is just the number of correctly classified samples to the
number of all the samples in the data set. To better comprehend
Accuracy, familiarity with jargon terms for True Positives (TP),
False Positives (FP), True Negatives (TN), and False Negatives
(FN) will be helpful:

-True Positives (TP): Number of positive instances that have been
correctly predicted by the classifier.

-False Positives (FP): Number of negative instances that have been

incorrectly predicted as positive by the classifier.

-True Negatives (TN): Number of negative instances that have

been correctly predicted by the classifier.

-False Negatives (FN): Number of positive instances that have been
incorrectly predicted as negative by the classifier. Accuracy can be
obtained by using the following formula:

Accuracy = (TP +TN)/ (TP + TN + FP + FN)

i.e., Accuracy is the proportion of correct classification of the
samples as positive or negative to the number of available samples
in the data set.

High Accuracy value indicates that classifier is good and classifying
correctly majority of the samples. However, Accuracy may not be
the best metric of model performance when working with datasets
that are imbalanced and in which one of the classes is significantly
larger than the other. For example, if in an imbalanced dataset one
class is significantly larger than the other class, a classifier may have
high Accuracy by simply predicting the majority class all the time
even if it would fail to predict the minority class correctly.

Precision:

Precision refers to the precision of the positive predictions by the
classifier. Precision indicates what percentage of the positive cases
predicted were actually positive. Precision is defined as:

Precision =TP / (TP + FP)

-TP (True Positives): The number of true positive samples, i.e., the
samples which are actually positive and classified correctly.

-FP (False Positives): The number of false positive samples, i.e., the
samples which are not actually positive but incorrectly classified as
positive.

A high Precision measure means that if theclassifier labels a sample
positive, it most likely is positive. Precision-is particularly crucial in
situations where there is a high cost of False Positives (e.g., spam
filtering or disease diagnosis).

Recall:

Recall estimates the classifier's capacity to recognize all the true
positive cases. It responds to the question: "Out of all the true
positives, how many did the model identify correctly?" Recall is
computed as: Recall = TP / (TP + FN)

-TP (True Positives): The number of samples that were correctly
classified as positive.

-FN (False Negatives): The number of positive samples that were
mistakenly labeled as negative.

High Recall value indicates that the classifier performs well in
finding positive cases. Recall is important when it is expensive to
miss positive cases, for example, disease detection or fraud
detection.

IJCRT2504519

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e466

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

F1 Score:

The F1 Score is the harmonic mean of Precision and Recall, which
gives a single measure that averages both. It's especially useful
when you need to achieve a balance between Precision and Recall,
particularly in datasets with imbalanced classes. The formula is:
F1 Score = 2 x (Precision x Recall / Precision + Recall)

A high F1 Score means that the classifier achieves a good balance
between Precision and Recall.

If Precision and Recall are very different in value, the F1 Score will
be nearer to the lower value.

V. Results and Discussion

This paper is a comparative analysis of three categories of fractures.
Different classification methods such as CNN algorithm and
graphical user interface are employed for fracture type detection.
For this purpose, we gathered a normal human's bone x- ray
MATLAB is employed to implement various CNN algorithm and
graphical user interface for detection of whether an image is mild,
moderate, severe, and also provides the information about Accuracy,
Precision, F1 score, Recall.

Input Color Image

Figure 5:Input image

This figure 5 represent Process begins with capturing an input X-
ray image that is preprocessed to resize for standardization.

Resized RGB Image

Figure 6 :Resized image

This Figure 6 represent Preprocessed images are employed together
with CNNs for training the model, doing feature extraction, and
learning the fracture patterns.

§ 8 oy g 25 i 25) - o x

Training Progress (25~Jan-2025 11:24:06)

Resuits
Veidsicnacuag 750K
Traning st Rescheg g tlin

Tramag Tima
Stathme 2432005 1 2408
nd Clapsedinne amindse

TrmogCrch
treh wto
MNergicn, Bore0
e 1
M 0

0 Velidation
Frauency 10MrEEons

omermomanea
1 2 3 © 50 &0 Hadvue esouce. SealeCPU
0 7 x z = 3 e Consart

S ¥ Leamngae 101

\ Lo
Traing emacted)

LN 0 B 0 50 30 Trafing
0 0 ») “)) - o= Vit

eraton
i3 ol

Figure 7 : Training Progress Image

This figure 7 represent trained model classifies the severity of
fracture into categories such as mild, moderate, or severe.

Initializing input data normalization.

Fpoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Velidation | Base Learning

| (Rh:mm:ss) Iecuracy | Accuracy Loss Loss | Ratz

1] 1 46,658 | 1.50% 1.1215 20479 | 0.0010
10 1 §7.50% | T.30% 0.6322 26167 |

01 i 95448 | 1250 0.0364 34222 |

30 Ell 8318 | T2.50% 0.5643 3.0936 |

0 Ll 95.44% | 75.00% 0.0882 Lan

A 30 .44 | 80.00% 0.0340 1.7085 |

80| 60 96.88% | T1.50% 0.4519 141 |

Figure 8 : Training Iterations Image

This figure 8 represent Training Iterations Image

4 — X

Severe Fractunes

OK

Figure 9 : Classification Result Image

This figure 9 represent performance metrics including accuracy,
precision, recall, and F1- score are outputted in the MATLAB
command line, indicating overall performance of the model.

IJCRT2504519 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e467

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Tablel: Accuracy,Precision,Recall,f1Score

Command window

Accuracy : 85.48%
Precision : 84.88%
Recall : 85.11%
f1Score : 84.82%

In addition, a confusion matrix is generated to see how the actual and
predicted classes relate to each other, and it gives more insight into
how well the classification is performing.

Table2: Confusion Matrix

47 6 1
4 27 2
5 32

This paper represents a good plan for medical image analysis that will
result in better diagnosis and help medical professionals make faster,
better decisions.

GUI OUTPUT:

The system initiates by importing input X-ray image through
Graphical User Interface (GUI), offering an user-friendly interface.
Pre-processing input image is resizing so input sizes will be the
same for the Convolutional Neural Network (CNN). The model of
CNN learns to classify the severity of the fracture into mild,
moderate, or severe based on features obtained from it. The
“classification result” is displayed prominently along with
important performance measures like accuracy, precision, recall, and
fl-score on the command window for proper verification. A
“confusion matrix” is also created to project the relationship of
actual and estimated classes for profound understanding of how well
the model is performing. The integration of the GUI improves user
interaction, making the system accessible to medical

professionals, enhancing diagnostic accuracy, and supporting more
efficient decision-making. This figure 10 represents a GUI Image and
This figure 11 represents the GUI Image — Output.

—

Figure 10 : GUI Image

Confusion Chart Image

CNN Classification

Classification Results
=

X

I ==

Figure 11 : GUI Image — Output

VI. CONCLUSION

This paper introduces an optimized and automated bone fracture
detector based on Convolutional Neural Networks (CNN) on
MATLAB. Through preprocessing of X-ray images, resizing, and
data augmentation, the CNN model was trained to differentiate
fractures into categories such as mild, moderate, and severe. Its
structure consists of convolutional layers, batch normalization,
dropout for regularization, and fully connected layers, with high
accuracy without overfitting.

Performance assessment by accuracy, precision, recall, and F1-
score validates the model's efficacy and stability. The confusion
matrix indicates the right and wrongly classified cases, providing
further insight into class-wise performance. An intuitive GUI was
created to facilitate ease of use, enabling clinicians or users to
upload X-ray images and obtain real-time classification results.

The model had up to 87% accuracy, and this indicates that CNNs
are appropriate for classifying medical images. With additional
advancements such as bigger datasets, transfer learning, or real-
time use, the system can go a long way in assisting clinical
diagnostics and facilitating early, correct treatment decisions.

VIl. REFERENCES

[1] V. Vijaykumar, P. Vanathi, and P. Kanagasabapathy, "Fast and
efficient algorithm to remove Gaussian noise in digital images,"
IAENG Int. J. Comput. Sci., vol. 37, no. 1, 2010.

[2] H. Al-Khaffaf, A. Z. Talib, and R. A. Salam, "Removing salt-
and-pepper noise from binary images of engineering drawings,"
in Proc. 19th Int. Conf. Pattern Recognit. (ICPR), 2008, pp. 1-4.
[3] S. K. Mahndran and S. Santhosh BaBoo, "An enhanced tibia
fracture detection tool using image processing and classification
fusion techniques in X-ray images," Int. J. Comput. Appl., vol. 11,
no. 14, Aug. 2011. [Online]. Available: http://www.ijcaonline.org
(Online ISSN: 0975-4172, Print ISSN: 0975-4350)

[4] S. K. Mahndran and S. Santhosh BaBoo, "An ensemble system
for automatic fracture detection," IACIT Int. J. Eng. Technol., vol.
4, no. 1, Feb. 2012.

[5] Rashmi, M. Kumar, and R. Saxena, "Algorithm and technique
on various edge detection: A survey," Int. J. Eng. Sci. Emerg.
Technol., vol. 4, no. 3, Jun. 2013.

[6] S. Hao, Y. Han, J. Zhang, and Z. Ji, "Automatic isolation of
carpal-bone in hand X-ray medical image," in Proc. [Conference
name not provided], 2013

IJCRT2504519 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

| e468

http://www.ijcrt.org/
http://www.ijcaonline.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

IJCRT2504519 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | e469

http://www.ijcrt.org/

