Underwater Image Enhancement Using Deep Learning

Sankalp S Department of CSE,SVCE, Vidyanagar, Bengaluru, India Ruchitha S R Department of CSE, SVCE, Vidyanagar, Bengaluru, India Ruchitha R Department of CSE,SVCE, Vidyanagar, Bengaluru, India Sadananada Gowda Department of CSE, SVCE, Vidyanagar, Bengaluru, India

Abstract— Underwater imaging often faces challenges such as reduced visibility, poor contrast, and color distortions due to light absorption and scattering in water. This project presents a novel approach to underwater image enhancement using a U-Net convolutional neural network. The model was trained on a publicly available dataset of underwater images and their enhanced versions. Through its encoder-decoder structure, the U-Net model effectively improves clarity, contrast, and color fidelity.

The solution includes preprocessing data, building and training the model, and developing a web application for user interaction. The application, with a Flask backend and a user-friendly frontend, allows users to upload underwater images and view enhanced outputs. By combining deep learning with accessibility, this project offers a practical tool for improving underwater image quality, catering to diverse audiences and applications.

Keywords— Image Enhancement, Convolutional Neural Networks, Underwater image processing, Deep Neural Network, Machine Learning.

I. INTRODUCTION

The underwater environment is a treasure trove of biodiversity and captivating visuals, but capturing clear and vibrant images in this setting is a significant challenge. The water medium absorbs and scatters light, leading to issues like poor visibility, reduced contrast, color distortions, and blurriness in underwater images. These limitations can impede scientific research, underwater exploration, and conservation efforts. To address these challenges, it is essential to develop methods for enhancing underwater images, making them visually clear and useful for various applications.

Recent advancements in deep learning have transformed the field of image processing, offering cutting-edge solutions for image restoration. This project explores the application of a U-Net-based convolutional neural network for enhancing underwater images. The U-Net architecture, originally designed for medical image segmentation, has proven versatile and effective for tasks requiring spatial and contextual analysis of image data. In this project, the U-Net model has been adapted and trained to enhance underwater images by improving their clarity, contrast, and color accuracy.

The project begins with the preparation of a dataset comprising underwater images and their enhanced counterparts, sourced from publicly available platforms such as Kaggle. The collected images are preprocessed through resizing, normalization, and splitting into training and validation sets. A custom U-Net model, developed using TensorFlow and Keras, forms the core of this system. The model employs an encoder-decoder architecture: the encoder extracts critical spatial features, while the decoder reconstructs enhanced images from these features. Once the model was trained on the dataset, its performance was rigorously evaluated, and the trained model was saved for deployment.

To make this solution accessible to a broader audience, a user-friendly web application was created. The frontend, built with HTML, CSS, and JavaScript, provides a simple interface for uploading underwater images. The backend, implemented using Flask, processes the uploaded images and applies the pre-trained U-Net model to generate enhanced versions. The application then displays both the original and enhanced images side by side, enabling users to compare and appreciate the improvements.

II. LITERATURE REVIEW

This study addresses the challenges of underwater image enhancement (UIE), particularly the issues of low contrast and unclear features caused by light absorption and scattering in underwater photography. While deep learning techniques have gained prominence in UIE due to their powerful feature-learning capabilities, precise enhancement remains a challenge. To tackle this, the authors propose a Deep Learning-based approach using a Deep Convolutional Neural Network (CNN) framework. The framework focuses on restoring and enhancing underwater images by processing the damaged images and extracting multi-contextual information. Experiments conducted on the EUVP (Enhancing Underwater Visual Perception) dataset demonstrate that the proposed approach outperforms recent state-of-the-art methods, yielding efficient and high-quality results.

This study explores the advancements in digital image processing, particularly focusing on underwater image processing, which poses unique challenges due to light wave distortion under water. Traditional image restoration techniques, while effective in removing haze, require multiple images from the same location, making them unsuitable for real-time applications. To address this limitation, the authors propose a deep learning-based solution using a Convolutional Neural Network (CNN). The CNN model is designed to de-haze and restore individual underwater images while simultaneously enhancing their quality. The approach uses features and images from diverse environments to demonstrate its generalization ability.

In ocean engineering, underwater vehicles are crucial for ocean exploration, but the images captured by their visual systems often suffer from issues like low visibility, color distortion, and blurred details due to light attenuation and reflection in water. To address these challenges, the authors propose an underwater image enhancement framework based on transfer learning. The framework includes two key modules: a domain transformation module for color correction and a separate image enhancement module for improving overall image quality. The domain transformation module incorporates a physical model to preserve the underwater image's physical properties, ensuring that the transformation aligns with real-world conditions. Additionally, a coarse-grained similarity calculation is introduced to further improve color correction. The experimental results on real-world underwater images demonstrate that the proposed method outperforms other state-of-the-art underwater image enhancement techniques, both qualitatively and quantitatively. Ablation studies confirm the effectiveness of each component of the model, making it a robust solution for underwater image enhancement.

This paper focuses on improving the quality of underwater images, which often suffer from noise, haziness, and color loss. The study highlights the application of General Adversarial Networks (GANs) for super-resolving underwater images, providing highresolution outputs. While traditional techniques like filters and deep learning methods are commonly used for image enhancement, this paper explores various types of GANs, including WaterGAN, Pyramid Attention Mechanism-Oriented Symmetry GAN (PAMSGAN), Underwater GAN (UWGAN), SpiralGAN, and GANs applied to enhance LiDAR and real-time underwater images. The results demonstrate that these GANbased methods outperform traditional techniques, offering significant improvements in image quality, including better noise reduction, clarity, and resolution. The paper also evaluates the effectiveness of each GAN approach in enhancing underwater images.

This paper addresses the challenge of underwater image enhancement, which is often hindered by color distortion and reduced visibility due to light absorption and scattering. Existing enhancement methods rely on various assumptions, but these can be ineffective for specific underwater scenes. To overcome these limitations, the authors propose an end-to-end framework for underwater image enhancement, introducing a CNN-based model called UIE-Net. UIE-Net is trained to perform two tasks simultaneously: color correction and haze removal, allowing the network to learn strong feature representations for both tasks. The model utilizes a pixel disruption strategy to better extract inherent features from local patches, which improves convergence speed and accuracy. To train the UIE-Net, the authors generate 200,000 synthetic training images based on a physical underwater imaging model. Experimental results on benchmark datasets show that UIE-Net outperforms existing underwater image enhancement methods across different scenes, demonstrating its effectiveness and versatility.

3. Classification of Underwater Images

Classifying underwater images is a crucial task in underwater research, as it facilitates tasks such as marine species identification, habitat mapping, and environmental monitoring. Due to the unique challenges of underwater imagery, such as poor visibility, color distortion, and uneven illumination, specialized methods are required for effective classification.

Classification Based on Environmental Factors

Underwater images can be categorized based on the environmental conditions under which they are captured. Shallow water images generally have better visibility and lighting, displaying more vibrant colors, while deep water images are darker and dominated by blue and green hues due to the absorption of longer wavelengths such as red. Another factor for classification is light conditions; images captured under natural light often have uneven lighting and shadows, whereas those taken with artificial light exhibit better clarity but may suffer from color distortion.

Classification Based on Content

Underwater images can also be classified based on the objects or entities they depict, which is essential for marine biology and underwater resource exploration. For marine life, images can differentiate between fish species, such as clownfish or grouper, coral reefs, including hard and soft corals, and invertebrates like jellyfish, crabs, or mollusks. Habitat types can include coral reefs characterized by vibrant, complex structures; seagrass beds dominated by green vegetation; sandy bottoms with uniform textures; and rocky bottoms with algae or encrustations. Additionally, underwater images often feature man-made objects such as shipwrecks, underwater pipelines, and artificial reefs, further diversifying their classification potential.

Classification Based on Image Quality

Image quality is another basis for classification, which can serve as a preprocessing step to group images by their visual properties. Clear images exhibit high visibility and well-defined features, blurred images suffer from low sharpness due to motion or focus issues, and noisy images contain random artifacts resulting from sensor limitations or poor lighting.

Deep Learning-Based Classification

Deep learning has revolutionized underwater image classification with models such as Convolutional Neural Networks (CNNs) facilitating automatic feature extraction and classification. Pretrained networks like ResNet, VGG, and Inception can be fine-tuned for underwater applications, while custom architectures are often designed to handle specific challenges like low contrast and color distortion. Deep learning models can classify images into broad categories such as "fish," "coral," "sand," "seagrass," and "rock," as well as more granular subcategories like "healthy coral" and "bleached coral." Training these models requires large, labeled datasets of underwater images, often augmented with transformations like flipping, cropping, and brightness adjustments to simulate real-world conditions.

Feature-Based Classification

In addition to deep learning, traditional feature extraction techniques can classify underwater images effectively. Handcrafted features such as color histograms to capture distribution, texture analysis using Local Binary Patterns (LBP) and Gabor filters, and shape features derived from contour and edge detection are commonly employed. After extracting these features, machine learning classifiers like Support Vector Machines (SVM), Random Forest, or k-Nearest Neighbors (k-NN) can be used for image categorization.

Challenges in Underwater Image Classification

Underwater image classification faces unique challenges, including color distortion caused by the absorption of certain wavelengths, uneven lighting that produces inconsistent visual cues, background noise such as floating particles or marine snow that obscure objects, and a scarcity of labeled datasets, which are limited compared to terrestrial image datasets.

Applications of Underwater Image Classification

The classification of underwater images has numerous applications. In marine biology, it aids in identifying fish populations, assessing coral health, and studying species diversity. Environmental monitoring benefits from its ability to detect pollution, sedimentation, and coral bleaching. Underwater robotics use classification for navigation and inspection by autonomous underwater vehicles (AUVs). In archaeology, it facilitates the identification of man-made artifacts like shipwrecks and ruins, further showcasing its versatility in underwater exploration and research.

4. Proposed Methodology

The proposed methodology for underwater image enhancement and classification involves a systematic process leveraging deep learning techniques and user-friendly application development. This methodology ensures the improvement of image quality and the accessibility of enhanced images for end-users. Below is the step-by-step outline of the proposed methodology:

Dataset Collection and Pre-processing

The dataset for the project is collected from publicly available platforms such as Kaggle, consisting of two subfolders: one containing raw underwater images, characterized by color distortion, low visibility, and noise, and another with corresponding enhanced images featuring improved clarity, contrast, and color fidelity. These images may represent various classes, such as fish species, coral types, or habitats. Preprocessing involves resizing all images to a standard dimension of 256×256 pixels to ensure uniformity and normalizing pixel intensity values to the range [0, 1] for numerical stability and faster training. Additionally, data augmentation techniques, including rotation, flipping, cropping, and brightness adjustment, are applied to increase the dataset's diversity and enhance model generalization.

Model Development

The core methodology focuses on developing a U-Net-based deep learning model tailored for underwater image enhancement. The U-Net architecture begins with an input layer designed to accept images of size 256×256×3 (RGB channels). The encoder comprises sequential convolutional layers for feature extraction at multiple levels and MaxPooling layers for down sampling. The bottleneck acts as the central feature-extraction component, capturing high-level abstract representations. The decoder reconstructs enhanced images using transpose convolution layers, with skip connections integrating high-resolution features from the encoder to refine outputs. Finally, the output layer employs a convolutional layer with a sigmoid activation function to generate enhanced images within the range [0, 1]. The model training process uses the Mean Squared Error (MSE) loss function to minimize pixel-wise differences, the Adam optimizer with a

learning rate of 10-410^{-4}10-4, and evaluation metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) to assess image quality.

Model Deployment

Post-training, the U-Net model is deployed in a web application for practical use. The backend is developed using Flask, which loads the saved model, accepts uploaded images, preprocesses them, and feeds them into the model to generate enhanced outputs. The frontend, created using HTML, CSS, and JavaScript, comprises a homepage outlining the application's purpose, an image upload page for user inputs, and a results page displaying side-by-side comparisons of original and enhanced images.

Statistical Analysis

A comprehensive statistical analysis of underwater images is conducted to quantify the improvements achieved by the model. Metrics such as color distribution, contrast, sharpness, and brightness are analyzed before and after enhancement to evaluate the model's performance effectively.

Additional Classification Pipeline (Optional)

For scalability, a classification pipeline may be added to categorize underwater images based on their content or environmental conditions. This involves using a pretrained CNN model like ResNet or VGG, or a custom deep learning model, to classify images into categories such as fish species, habitats, or object types. This classification feature can be seamlessly integrated into the web application.

Testing and Validation

Robust testing and validation are performed to ensure the model's generalization capabilities. The model is evaluated on unseen test data, and usability testing is conducted to gather feedback from real users, enabling continuous improvement of the web application's functionality and user experience.

5. Statistical Analysis of Underwater Images

Statistical analysis is vital in evaluating the quality and characteristics of underwater images, helping to quantify degradation and guide enhancement techniques. This process examines key properties such as color distribution, contrast, brightness, and noise levels.

Color distribution analysis reveals the impact of light absorption and scattering, where shorter wavelengths (blue and green) dominate, while longer wavelengths (red) are absorbed quickly. Histograms of the red, green, and blue channels highlight this distortion, with the red channel typically showing lower intensity values and the green and blue channels dominating. Metrics such as the mean, standard deviation, skewness, and kurtosis of color histograms provide a quantitative view of this phenomenon.

Contrast analysis addresses the reduced visibility in underwater images caused by light scattering, leading to low contrast and indistinct features. Metrics like global contrast (the difference between the highest and lowest pixel intensity values) and local contrast (variability in pixel intensities within small patches) offer insights into these challenges, often measured using methods such as Michelson contrast or RMS contrast.

Brightness analysis considers the uneven and generally low brightness levels in underwater images, which worsen with depth and are characterized by shadows and poorly lit areas. Average pixel intensity, the distribution of brightness levels through histograms, and brightness entropy are metrics used to assess the level of detail and light availability in images.

Noise analysis identifies the artifacts caused by low-light conditions and sensor limitations. These artifacts, often seen as speckles or grainy textures, are evaluated using metrics such as the Signal-to-Noise Ratio (SNR) and the variance of pixel intensities in uniform regions, which estimate noise levels.

Sharpness and edge preservation are examined to measure the clarity of edges and fine details, which are typically degraded due to scattering effects. Metrics such as gradient magnitude and Laplacian variance provide a quantitative assessment, where lower Laplacian variance indicates higher blurriness.

Color cast and dominance analysis evaluates the overwhelming dominance of blue or green hues in underwater images, which results in an unnatural appearance. Metrics like the White Balance Index (to measure deviation from neutral tones) and the Dominance Ratio (comparing average intensities of color channels) help quantify this distortion.

General image quality metrics provide an overall evaluation of underwater images before and after enhancement. Common metrics include Peak Signal-to-Noise Ratio (PSNR) for measuring reconstructed image quality, Structural Similarity Index (SSIM) for structural and perceived quality, and the Underwater Image Quality Measure (UIQM), which combines assessments of colorfulness, sharpness, and contrast for a comprehensive evaluation of underwater images.

6.Training Performance

Epoch 1

Training Loss: 0.0278
Training MAE: 0.1234
Validation Loss: 0.0056
Validation MAE: 0.0559

During the first epoch, the training loss and MAE started at relatively higher values, indicating the model's initial stage of learning. The validation loss and MAE were significantly lower than the training metrics, which suggests that the model generalized well to the validation set early on, likely due to the effective use of the U-Net architecture and the relatively simple nature of the dataset.

Epoch 2

Training Loss: 0.0056
 Training MAE: 0.0557
 Validation Loss: 0.0048
 Validation MAE: 0.0518

By the second epoch, the model's training loss and MAE decreased significantly, indicating that it had learned to map the degraded underwater images to their enhanced counterparts with higher accuracy. Similarly, the validation loss and MAE also showed improvement, confirming that the model maintained its generalization capability.

Fig 1: Poor images and Enhanced images

7. Key Observations:

Loss Reduction: The training loss decreased from 0.0278 in the first epoch to 0.0056 in the second epoch, indicating that the model effectively minimized the pixel-wise differences between the predicted and target images. The validation loss also dropped from 0.0056 to 0.0048, demonstrating consistent improvement in the model's performance on unseen data.

MAE ImprovementThe training MAE reduced from 0.1234 to 0.0557, reflecting better average pixel intensity predictions.

The validation MAE improved from 0.0559 to 0.0518, indicating that the model accurately captured the enhancement patterns.

Overfitting Analysis: The validation loss and MAE closely matched the training metrics throughout the training process. This consistency suggests that the model did not overfit, despite being trained for a relatively small number of epochs.

Convergence: The sharp drop in both training and validation losses between the first and second epochs indicates that the model converged quickly. This rapid convergence can be attributed to the use of an efficient U-Net architecture and well-preprocessed data.

Discussion

The results demonstrate the effectiveness of the proposed U-Netbased deep learning model in enhancing underwater images. The significant reduction in loss and MAE across both epochs indicates that the model successfully learned the complex transformations needed to restore degraded underwater images.

Challenges and Future Scope:

Training Duration: The time taken per epoch was relatively high (~3200 seconds or ~54 minutes). Optimizing the training pipeline, such as using a GPU or reducing model complexity, could speed up the process.

Dataset Diversity: While the model performed well on the current dataset, further testing on diverse underwater images captured in different conditions (e.g., varying depths, light levels, and turbidity) would validate its robustness.

Real-Time Processing: Deployment in a real-time system may require further optimization to reduce inference time.

Conclusion

In this project, we successfully developed a deep learning-based model to enhance underwater images, addressing challenges such as poor visibility, color distortion, and uneven lighting. Using a U-Net architecture, the model was trained on a dataset comprising raw underwater images and their enhanced counterparts. The results demonstrated significant improvements in image quality, validated through low loss and MAE values on both training and validation

The U-Net-based model demonstrated remarkable effectiveness in transforming degraded underwater images into visually enhanced outputs, significantly improving clarity, contrast, and color fidelity. The model's performance, validated by a final validation loss of 0.0048 and a mean absolute error (MAE) of 0.0518, highlighted its strong generalization ability to unseen images. Additionally, the model's training methodology proved efficient, achieving rapid convergence within just two epochs, thanks to robust preprocessing steps such as image resizing and normalization, alongside U-Net's skip connections, which facilitated effective learning. To enhance usability, the trained model was integrated into a user-friendly web application, enabling users to upload underwater images, process them, and view the original and enhanced versions side by side. This accessible deployment opens doors to practical applications in fields like marine biology, underwater exploration, and environmental monitoring. Furthermore, both statistical metrics and perceptual analysis confirmed significant improvements in image quality, with noticeable enhancements in brightness, sharpness, and color restoration evident in the processed outputs.

Reference

- [1] S. Ray, A. Baghel and V. Bhatia, "Deep Learning Based Underwater Image Enhancement Using Deep Convolution Neural Network," 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 2022, pp. 1-6, doi: 10.1109/ICAECT54875.2022.9808077.
- [2] G. Ramkumar, A. G, S. K. M, M. Ayyadurai and S. C, "An Effectual Underwater Image Enhancement using Deep Learning Algorithm," 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 2021, pp. 1507-1511, doi: 10.1109/ICICCS51141.2021.9432116.
- [3] Y. Zhang, Q. Jiang, P. Liu, S. Gao, X. Pan and C. Zhang, "Underwater Image Enhancement Using Deep Transfer Learning Based on a Color Restoration Model," in IEEE Journal of Oceanic Engineering, vol. 48, no. 2, pp. 489-514, April 2023, doi: 10.1109/JOE.2022.3227393.
- [4] A. K. Cherian, J. Venugopal, R. Abishek and F. Jabbar, "Survey on Underwater Image Enhancement using Deep Learning," 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS), 2022, Kochi, India, pp. 1-6. doi: 10.1109/IC3SIS54991.2022.9885529
- [5] Y. Wang, J. Zhang, Y. Cao and Z. Wang, "A deep CNN method for underwater image enhancement," 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 2017, pp. 1382-1386, doi: 10.1109/ICIP.2017.8296508.
- [6] K. Iqbal, M. Odetayo, A. James, R. A. Salam, and A. Z. H. Talib, "Enhancing the low quality images using unsupervised colour correction method," in Proc. IEEE Int. Conf. Syst., Man Cybern., Oct. 2010, pp. 1703–1709. [29] A. S. A. Ghani and N. A. M. Isa, "Underwater image quality enhancement through integrated color model with Rayleigh distribution," Appl. Soft Comput., vol. 27, pp. 219-230, Feb. 2015.
- [7] A. S. A. Ghani and N. A. M. Isa, "Enhancement of low quality underwater image through integrated global and local contrast correction," Appl. Soft Comput., vol. 37, pp. 332-344, Dec. 2015.
- [8] C. Ancuti, C. O. Ancuti, T. Haber, and P. Bekaert, "Enhancing underwater images and videos by fusion," in Proc. IEEE Conf.

- datasets. Key findings and contributions are summarized as Comput. Vis. Pattern Recognit. (CVPR), Jun. 2012, pp. 81-88.
 - [9] X. Fu, Z. Fan, M. Ling, Y. Huang, and X. Ding, "Two-step approach for single underwater image enhancement," in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., Nov. 2017, pp. 789–
 - [10] X. Fu, P. Zhuang, Y. Huang, Y. Liao, X.-P. Zhang, and X. Ding, "A retinex-based enhancing approach for single underwater image," in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2014, pp. 4572-4576.
 - [11] S. Zhang, T. Wang, J. Dong, and H. Yu, "Underwater image enhancement via extended multi-scale retinex," Neurocomputing, vol. 245, no. 5, pp. 1–9, 2017.
 - [12] K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12, pp. 2341-2353, Dec. 2011.
 - [13] J. Y. Chiang and Y.-C. Chen, "Underwater image enhancement by wavelength compensation and dehazing," IEEE Trans. Image Process., vol. 21, no. 4, pp. 1756-1769, Apr. 2012.
 - [14] P. Drews-Jr, E. R. Nascimento, S. S. C. Botelho, and M. F. M. Campos, "Underwater depth estimation and image restoration based on single images," IEEE Comput. Graph. Appl., vol. 36, no. 2, pp. 24–35, Mar./Apr. 2016.
 - [15] H. Liu and L.-P. Chau, "Underwater image restoration based on contrast enhancement," in Proc. IEEE Int. Conf. Digit. Signal Process., Oct. 2016, pp. 584-588.
 - [16] C. Li, J. Guo, C. Guo, R. Cong, and J. Gong, "A hybrid method for underwater image correction," Pattern Recognit. Lett., vol. 94, pp. 62–67, Jul. 2017.
 - [17] Y.-T. Peng, K. Cao, and P. C. Cosman, "Generalization of the dark channel prior for single image restoration," IEEE Trans. Image Process., vol. 27, no. 6, pp. 2856–2868, Jun. 2018. [41] N. Carlevaris-Bianco, A. Mohan, and R. M. Eustice, "Initial results in underwater single image dehazing," in Proc. IEEE Int. Conf. Oceans, Sep. 2010, pp. 1-8.
 - [18] A. Galdran, D. Pardo, A. Picón, and A. Alvarez-Gila, "Automatic red-channel underwater image restoration," J. Vis. Commun. Image Represent., vol. 26, pp. 132–145, Jan. 2015.
 - [19] X. Zhao, T. Jin, and S. Qu, "Deriving inherent optical properties from background color and underwater image enhancement," Ocean Eng., vol. 94, pp. 163-172, Jan. 2015.
 - [20] C. Li, J. Guo, S. Chen, Y. Tang, Y. Pang, and J. Wang, "Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging," in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2016, pp. 1993–1997.
 - [21] C.-Y. Li, J.-C. Guo, R.-M. Cong, Y.-W. Pang, and B. Wang, "Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior," IEEE Trans. Image Process., vol. 25, no. 12, pp. 5664-5677, Dec. 2016.
 - [22] Y.-T. Peng and P. C. Cosman, "Underwater image restoration based on image blurriness and light absorption," IEEE Trans. Image Process., vol. 26, no. 4, pp. 1579-1594, Apr. 2017.
 - [23] D. Berman, T. Treibitz, and S. Avidan, "Diving into haze-lines: Color restoration of underwater images," in Proc. Briti. Mach. Vis. Conf. (BMVC), 2017, pp. 1–12.
 - [24] Y. Wang, H. Liu, and L.-P. Chau, "Single underwater image restoration using adaptive attenuation-curve prior," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 992–1002, Mar. 2018.

[25] D. Akkaynak and T. Treibitz, "Sea-thru: A method for removing water from underwater images," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 1682–1691.

[26] S. Anwar and C. Li, "Diving deeper into underwater image enhancement: A survey," 2019, arXiv:1907.07863. [Online]. Available: https://arxiv.org/abs/1907.07863

