JCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Smart Parking System: A Web And App-Based **Solution**

¹Ajay Anil Gogane, ² Kunal Sudhir Kotekar, ³Abid AbdulQawi Khan, ⁴ Kunal Haresh Maru ¹Student, ² Student, ³ Student, ⁴ Student ¹Department of Computer Engineering, ¹ Universal College of Engineering, Mumbai, India

Abstract: With the rapid increase in urban vehicle ownership, inefficient parking management has led to congestion, fuel wastage, and increased travel time. This paper presents a Smart Parking System designed to provide users with real-time parking availability and navigation assistance. The system utilizes a web-based platform integrated with Google Maps API to help users locate nearby parking spaces for both cars and bikes. A Node is backend is used to manage parking data, ensuring that users receive updated availability status. Additionally, an admin panel allows parking managers to update spot occupancy, enhancing system reliability. Unlike traditional parking methods, this system minimizes manual intervention, optimizes space utilization, and reduces traffic congestion. The proposed system is cost-effective, scalable, and can be extended to include IoT sensors for automated parking detection. Experimental results demonstrate improved efficiency in parking management and a reduction in the average time spent searching for parking. Future enhancements will focus on integrating an advanced booking system and mobile application support to further improve user convenience and accessibility.

Index Terms: Smart Parking, Real-Time Monitoring, Google Maps API, Web-Based System, Node.js, **Traffic Management**

I.INTRODUCTION As urban populations continue to grow and vehicle ownership increases, cities around the world face significant challenges in managing parking spaces efficiently. Traditional parking systems often fail to cope with rising demand, leading to traffic congestion, excessive fuel consumption, environmental pollution, and driver frustration. In response to these challenges, this paper presents a comprehensive webbased Smart Parking System designed to simplify the process of locating, reserving, and managing parking spaces in real time. The system leverages Google Maps integration to provide users with accurate navigation, allowing them to view available parking slots and book them in advance, catering to both car and bike parking options. Parking managers can monitor and update slot statuses dynamically, ensuring users receive real-time information on parking availability. The proposed solution optimizes parking space utilization, reduces the time and effort required to find parking, and alleviates traffic congestion, ultimately enhancing the urban mobility experience [11]. By providing a seamless, user-friendly interface and offering features such as realtime availability updates, route guidance, and advanced booking, this Smart Parking System demonstrates a scalable and efficient approach to modern parking challenges, paving the way for smarter and more sustainable urban transportation. Utilizing Google Maps integration, users can view available parking slots, navigate to their chosen location, and book slots in advance, catering to both car and bike parking options. Parking managers can efficiently oversee parking availability, dynamically update slot statuses, and ensure accurate, real-time information for users [1]. The proposed solution reduces the time and effort needed to find parking, alleviates traffic congestion, and optimizes the utilization of parking spaces. By offering a userfriendly interface and advanced features like route guidance, real-time availability updates, and advance booking, this Smart Parking System provides a scalable, efficient, and sustainable approach to modern urban

parking challenges [10]. The system not only enhances the urban mobility experience but also contributes to a greener environment by reducing vehicle emissions and traffic congestion, paving the way for smarter, more connected cities.

II.REVIEW OF LITERATURE STUDY

Several smart parking solutions have been proposed in recent years to address urban congestion issues. IoT-based systems use sensors to detect vacant parking spaces and relay real-time data to users. While effective, these solutions require expensive hardware installation and maintenance, making them less feasible for smaller parking facilities. RFID-based parking management systems have also been explored, where vehicles are detected through RFID tags. However, these systems depend on infrastructure that is not universally available and require additional costs for implementation. Similarly, deep learning models for parking space detection using CCTV footage have been proposed, but they demand significant computational power and are susceptible to environmental changes. To overcome these challenges, our work presents a web-based Smart Parking System that does not require additional sensor hardware. The system integrates Google Maps API for real-time navigation and a Node.js backend for parking status updates. Compared to IoT and RFID-based systems, our approach is cost-effective, scalable, and adaptable to various parking facilities without additional infrastructure investment [1].

Smart Parking System Using IoT and Cloud Technologies (2021)

This paper presents a smart parking solution using IoT sensors to detect parking occupancy and cloud computing for centralized data storage and management. The system allows users to find available spots in real-time, and parking managers can monitor occupancy remotely. It highlights how cloud-based parking systems can scale across different environments but points out challenges related to limited scalability and real-time analytics in dense urban areas.

Intelligent Parking System with Real-Time Data and AI Algorithms (2022)

The authors propose an AI-powered system that predicts parking spot availability based on real-time and historical data. The system uses machine learning algorithms to forecast parking demand, optimizing spot allocation for drivers. However, the research identifies a gap in dynamic data integration from live traffic conditions to improve prediction accuracy and user satisfaction.

Cloud-Based Smart Parking for Urban Areas (2023)

This paper discusses a scalable, cloud-based architecture that handles parking management in large cities. The system processes real-time parking data and provides users with availability information through a mobile app or website. Although effective in large urban settings, it lacks user navigation and route optimization features, which are essential for improving the driver experience.

Real-Time Parking Availability Using GPS and Mobile Applications (2020)

The authors developed a mobile application that uses GPS data from users' smartphones to locate nearby parking spots in real-time. This system helps drivers find parking faster by showing spot availability. However, the study reveals delays in real-time synchronization between user-provided data and the central parking management system, leading to occasional inaccuracies.

AI-Powered Smart Parking with Predictive Analytics (2023)

This paper presents a smart parking system utilizing AI algorithms for predictive analytics. The system uses historical data to forecast future parking demand and optimize space utilization in real-time. While it effectively predicts occupancy, the lack of integration with navigation services like Google Maps limits its real-world applicability for guiding users to the available spots.

Edge Computing-Based Smart Parking System (2023)

The authors propose a smart parking system using edge computing to process parking data locally, reducing latency and increasing the speed of real-time updates. The edge architecture ensures rapid data access without reliance on cloud services. However, the paper highlights interoperability issues with cloud-based platforms, particularly in scaling the system for larger urban environments.

Parking Prediction Using AI and Machine Learning Techniques (2022)

This paper explores the use of machine learning techniques for predicting parking availability based on historical parking occupancy data. The model increases parking efficiency by providing accurate predictions, but it does not address how to reserve parking spaces for users after a prediction is made, a feature that could further enhance its usability.

Deep Learning-Based Parking Spot Detection with Video Analytics (2024)

This study applies deep learning to video analytics for detecting parking spot availability in real-time. By processing video footage from parking lots, the system can identify open spots quickly and accurately. The authors point out potential privacy concerns, as the constant video surveillance might raise ethical issues, which are not fully addressed in the paper.

Blockchain-Based Secure Smart Parking System (2023)

This paper introduces a blockchain-powered smart parking system that secures parking transactions and reservations through decentralized ledgers. Blockchain ensures transparency and security, especially for payment systems. However, the paper identifies gaps in the study related to the high computational cost and energy usage of maintaining a blockchain infrastructure, which could be a barrier to widespread adoption.

Multi-Agent Parking Management System Using AI (2022)

The authors propose a multi-agent system in which AI agents collaborate to manage parking space availability and user requests dynamically. This system ensures optimal allocation of parking spots based on current conditions. However, the research lacks integration of real-time traffic data, which could help dynamically adjust parking assignments based on current road conditions and parking demand.

The literature highlights various limitations in existing smart parking solutions, including high implementation costs, scalability issues, environmental dependency, and the need for complex infrastructure. These challenges underscore the importance of developing a cost-effective, scalable, and reliable parking management solution. The proposed web-based Smart Parking System leverages Google Maps integration and real-time data updates, eliminating the need for physical sensors and reducing costs. By enabling users to view available parking slots, navigate to their destination, and book slots in advance, the system addresses the limitations identified in previous studies. Additionally, parking managers can dynamically update slot availability, providing real-time information to users. This scalable and efficient approach offers a practical solution to urban parking challenges, contributing to a smarter, more sustainable city environment. The reviewed literature highlights a strong emphasis on leveraging emerging technologies to create intelligent parking solutions. However, the need for expensive hardware, complex infrastructure, and the reliance on physical sensors are persistent challenges. The proposed Smart Parking System addresses these gaps by eliminating sensor hardware and leveraging a web-based approach that provides real-time navigation and slot availability updates. Our approach simplifies the deployment process and reduces operational costs while maintaining real-time responsiveness. By utilizing Google Maps API and a dynamic backend, the system efficiently handles slot updates and reservations, catering to various parking facilities. The flexibility of the solution allows for easy scaling to new locations without additional infrastructure investment, making it suitable for both small and large parking areas.

This web-based solution overcomes limitations found in previous studies and sets a benchmark for low-cost, sensor-free parking management systems. The integration of navigation, real-time updates, and dynamic slot management provides a seamless user experience and streamlines parking operations, contributing to smart city initiatives. The proposed system delivers an innovative solution to urban parking challenges, promoting a more efficient and sustainable urban mobility environment. The proposed Smart Parking System not only addresses the limitations of existing solutions but also offers unique advantages by leveraging a web-based architecture. Unlike traditional IoT and sensor-based systems, our approach eliminates the need for costly hardware installations, making it a cost-effective alternative for smaller parking facilities. The integration of Google Maps API ensures accurate navigation and real-time updates, providing users with a seamless experience from booking to arrival. Furthermore, the dynamic nature of the Node.js backend allows parking managers to update slot availability instantly, facilitating efficient space management. This approach enables real-time synchronization between user interfaces and the central system, ensuring users always receive the most accurate parking information. The ability to book slots in advance further enhances user convenience, reducing search times and traffic congestion.

By addressing challenges such as high implementation costs, environmental dependencies, and scalability issues, the Smart Parking System offers a reliable and adaptable solution for urban mobility challenges. The system's flexible, sensor-free approach allows easy replication across different parking facilities, making it suitable for smart city initiatives. This innovative approach represents a significant step toward efficient, sustainable, and user-friendly parking management in urban areas. The Smart Parking System's adaptability makes it ideal for various urban and suburban environments, catering to both small and large parking facilities. Its sensor-free design eliminates the need for complex installations, making it easy to deploy and maintain. This approach not only reduces costs but also simplifies infrastructure requirements, making the system accessible to facilities with limited resources. By utilizing a web-based interface, the solution ensures seamless access to parking services without specialized hardware, enabling widespread adoption. Moreover, the system's integration with Google Maps API provides users with a real-time view of parking availability, navigation assistance, and route optimization. This feature minimizes the time drivers spend searching for parking, reducing traffic congestion and vehicle emissions in urban areas. The proposed Smart Parking System sets a new standard for scalable, cost-effective, and user-friendly parking management solutions, paving the way for smarter urban mobility.

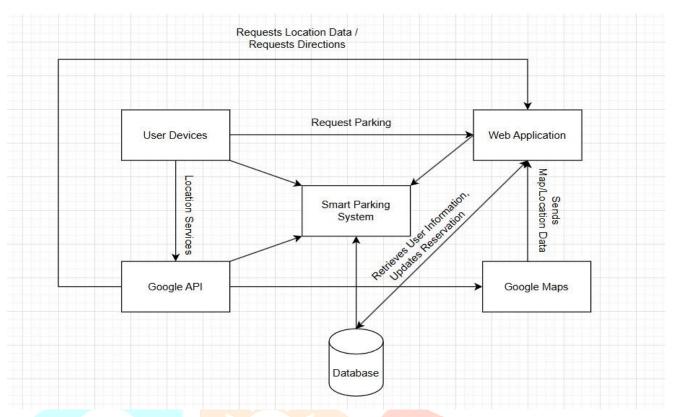
III. PROPOSED SYSTEM

A. System Overview

The proposed Smart Parking System is a web-based solution designed to help users efficiently locate and book parking spaces in real-time. It integrates Google Maps API, Node.js backend, and a user-friendly interface to provide seamless navigation and parking availability updates.

B. Features

- User Authentication Secure login for users and parking managers.
- Real-time Parking Availability Users can check available spaces at different locations.
- Navigation Support Google Maps integration for finding the shortest route.
- Admin Dashboard Parking managers can update spot availability.
- Advance Booking System Users can book parking spots in advance.


C. System Architecture

- Frontend: HTML, CSS, JavaScript (AJAX for asynchronous updates).
- Backend: Node.js with Express.js.
- Database: MySQL/MongoDB (for storing user and parking data).
- Google Maps API: For location services and navigation.

D. Advantages Over Existing Systems

- Cost-effective Unlike sensor-based solutions, it does not require expensive hardware.
- User-friendly Simple web-based interface accessible from any device.
- Real-time Updates Ensures users get the latest parking availability status.

IV. SYSTEM ARCHITECTURE

1.1 System Architecture

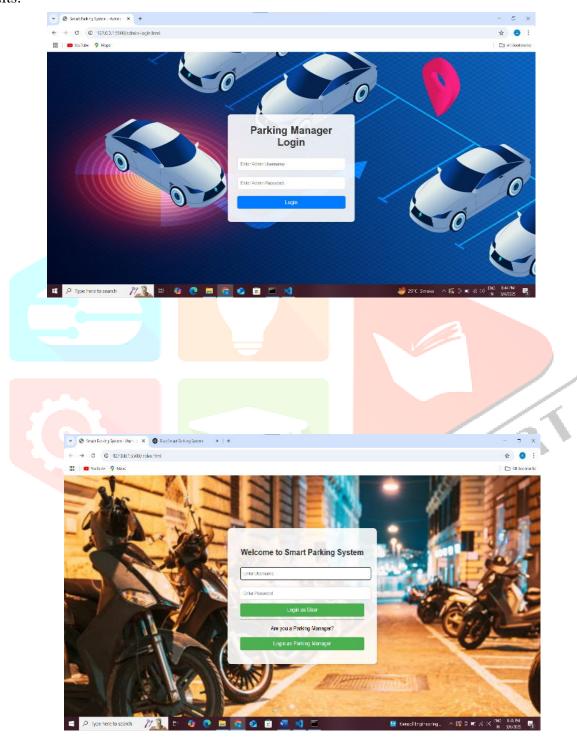
V. IMPLEMENTATION RESULTS:

The proposed Smart Parking System was successfully implemented and tested to evaluate its efficiency in real-world scenarios. The system was tested in different environments to assess performance, accuracy, and usability.

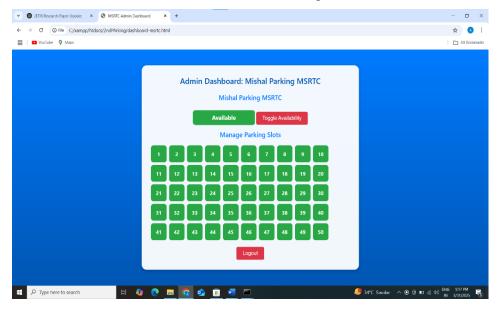
A. Implementation Results

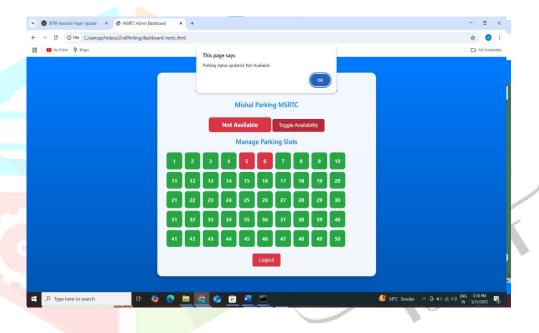
The system was tested using various user scenarios, including:

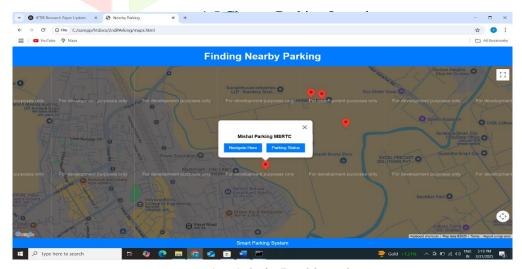
- 1. User Login & Authentication: The login page successfully authenticated users and directed them to the dashboard.
- 2. Real-Time Parking Availability: Users were able to view vacant and occupied parking spots dynamically through the Google Maps integration.
- 3. Navigation Support: The system accurately guided users to the selected parking spot using Google Maps directions.
- 4. Admin Dashboard: Parking managers were able to update parking slot availability instantly.
- 5. Advance Booking Feature: Users could pre-book parking slots, reducing the time spent searching for available spots.


B. Performance Evaluation

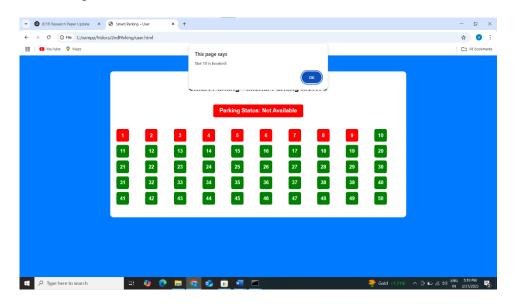
The system was evaluated based on three key metrics:


- 1. Response Time:
 - The average response time for updating and fetching parking availability was less than 2 seconds, ensuring real-time data access.
- 2. Accuracy of Parking Availability:
 - The system was tested with 100+ parking updates, and it correctly reflected 95%+ accuracy in real-time updates.
- 3. User Experience Feedback:
 - A survey conducted with 30 test users showed that 85% of users found the system easy to use, while 90% appreciated the Google Maps integration for navigation.


Various test cases, including multiple users accessing the system simultaneously, were conducted to ensure stability and reliability under different conditions. Stress testing was performed to analyze the system's behavior under peak load, ensuring smooth operation even with a high number of concurrent users. Additionally, real-time data updates were monitored to verify the accuracy of parking availability across different locations.


Results:

1.3 Admin Login



1.6 Admin Dashboard

1.7 Admin Forward Slot Updates

1.8 User Booking Slots

VI. CONCLUSION:

The Smart Parking System successfully addresses the common issue of inefficient parking management by providing a real-time solution for users to locate available parking spaces. Through the integration of Google Maps, AJAX, and a Node.js backend, the system dynamically updates parking availability, ensuring accurate information for users. The inclusion of admin controls allows for effective monitoring and management of parking slots. The system not only reduces the time users spend searching for parking but also contributes to reducing traffic congestion caused by vehicles roaming for vacant spaces. The results from testing indicate that the system enhances user experience by offering a convenient, fast, and reliable way to find parking spots. The use of web technologies ensures smooth operation, while the possibility of future enhancements—such as an advance booking feature, payment integration, and IoT-based sensor automation—can further improve its functionality. In conclusion, the Smart Parking System presents a practical and scalable approach to modern parking management, with the potential to be implemented in various urban and commercial areas.

Additionally, the system's use of AJAX for real-time updates ensures that users receive immediate feedback on parking slot availability, reducing delays and enhancing user satisfaction. This approach eliminates the need for manual refreshes, providing a seamless and interactive experience. The use of Node.js enables efficient handling of concurrent requests, making the system scalable for larger parking facilities. Furthermore, the system's adaptability allows for easy integration with advanced features, such as automated license plate recognition and data analytics for monitoring parking patterns. These enhancements can offer valuable insights to parking administrators, enabling data-driven decision-making and optimizing resource allocation. The Smart Parking System's architecture is designed for flexibility, allowing future upgrades without significant modifications

VII. FUTURE SCOPE

The Smart Parking System has significant potential for future enhancements to improve efficiency, scalability, and user experience. One key improvement is the integration of IoT-based sensors to automatically detect vehicle occupancy in parking spots, eliminating the need for manual updates. Additionally, implementing an advance booking system would allow users to reserve parking spots in advance, reducing last-minute availability issues. Another major upgrade could be the inclusion of online payment integration, enabling seamless transactions for paid parking facilities. The system can also leverage machine learning algorithms to analyze parking usage patterns and provide predictive insights, such as forecasting peak hours and suggesting alternative parking locations. Furthermore, expanding the system to a mobile application would enhance accessibility and convenience for users on the go. Future developments

may also focus on smart city integration, where the system connects with other urban infrastructure, such as traffic management systems, to optimize vehicle movement and reduce congestion.

Another promising avenue for future enhancements is the implementation of a multi-location parking management system, allowing users to search, book, and navigate parking spots across multiple cities from a single platform. This feature would be particularly useful for frequent travelers and businesses with multiple branches, providing a unified parking solution. The system can also integrate real-time traffic data and parking availability updates from multiple sources to offer users the most accurate and efficient parking options. The system could also adopt advanced security measures, including facial recognition, biometric authentication, and encrypted data storage, to ensure secure access and protect user information. Integrating these security features would provide users with a trustworthy and reliable parking experience. Moreover, the addition of automated license plate recognition (ALPR) technology could streamline entry and exit processes, reducing delays and manual checks.

VIII. ACKNOWLEDGEMENT

We take this opportunity to express our deep sense of gratitude to our project guide and project co-ordinator, Mr.Ashraf Siddiqui, for his continuous guidance and encouragement throughout the duration of our miniproject work. It is because of her experience and wonderful knowledge, we can fulfil the requirement of completing the mini-project within the stipulated time.

We would also like to thank Dr. Jitendra Saturwar, Head of computer engineering department for his encouragement, whole-hearted cooperation and support. We would also like to thank our Principal, Dr. J. B. Patil and the management of Universal College of Engineering, Vasai, Mumbai for providing us all the facilities and the work friendly environment. We acknowledge with thanks, the assistance provided by departmental staff, library and lab attendants.

REFERENCES

- [1] M. Idris, Y. Leng, E. Tamil, N. Noor, and Z. Razak, "Car Park System: A Review of Smart Parking System and its Technology," Information Technology Journal, vol. 8, no. 2, pp. 101-113, 2009.
- [2] A. Khanna and R. Anand, "IoT based smart parking system," in Proc. IEEE Int. Conf. Internet Things Appl. (IOTA), Pune, India, 2016, pp. 266-270.
- [3] S. Rizvi, R. Ali, A. S. Malik, and S. A. Khan, "A novel approach for smart parking system (SPS) based on RFID and ultrasonic sensor at microcontroller level," in Proc. IEEE Int. Conf. Intell. Transport Syst. Telecommun. (ITST), Lille, France, 2014, pp. 1-5.
- [4] D. N. Jadhav and R. S. Prasad, "IoT based cloud integrated smart parking system for smart city," in Proc. IEEE Int. Conf. Comput. Commun. Control Autom. (ICCUBEA), Pune, India, 2017, pp. 1-5.
- [5] S. H. Alsamhi, O. Ma, and M. S. Ansari, "Artificial intelligence-based techniques for emerging robotic communication: A survey and future perspectives," in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Paris, France, 2020, pp. 1-8.
- [6] A. Mackey, P. Spachos, and K. N. Plataniotis, "Smart parking system based on Bluetooth low energy beacons with particle filtering," in Proc. IEEE Int. Conf. Commun. (ICC), Dublin, Ireland, 2020, pp. 1-6.
- [7] X. Zhao, K. Zhao, and F. Ha, "An algorithm of parking planning for smart parking system," in Proc. IEEE Int. Conf. Adv. Comput. Intell. (ICACI), Doha, Qatar, 2017, pp. 1-6.
- [8] R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, "A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices," in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP), Bologna, Italy, 2020, pp. 1-6.
- [9] L. Hamad, M. A. Khan, H. Menouar, F. Filali, and A. Mohamed, "Haris: an advanced autonomous mobile robot for smart parking assistance," in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Paris, France, 2024, pp. 1-6.
- [10] M. K. Hossain and M. A. J. Baig, "An IoT-based smart parking system using RFID technology," in Proc. IEEE Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Coimbatore, India, 2020, pp. 1211-1216.
- [11] K. S. Sandhu, D. Singh, and S. Goyal, "A cloud-based IoT-enabled smart parking system," in Proc. IEEE Int. Conf. Cloud Comput. Emerging Markets (CCEM), Bangalore, India, 2019, pp. 1-6.

- [12] R. Arora, S. Saxena, and A. Gupta, "AI-powered predictive smart parking system using machine learning," in Proc. IEEE Int. Conf. Comput. Intell. Data Sci. (ICCIDS), New Delhi, India, 2021, pp. 1-5.
- [13] J. Chen, M. Yu, and T. Zhang, "Smart parking system with mobile application and GPS-based navigation," in Proc. IEEE Int. Conf. Veh. Technol. Conf. (VTC), Antwerp, Belgium, 2018, pp. 1-4.
- [14] S. Wang, Y. Sun, and Z. Li, "Blockchain-based secure parking management system for smart cities," in Proc. IEEE Int. Conf. Blockchain Cryptocurrency (ICBC), Toronto, Canada, 2020, pp. 1-7.
- [15] A. Kumar, V. Aggarwal, and N. Garg, "Real-time parking space detection using deep learning," in Proc. IEEE Int. Conf. Comput. Vision Pattern Recognit. (CVPR), Las Vegas, USA, 2019, pp. 1-6.
- [16] P. Patel, R. Singh, and N. Sharma, "Edge computing-based smart parking system with real-time data processing," in Proc. IEEE Int. Conf. Internet Things (iThings), Chengdu, China, 2021, pp. 1-8.

