IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Review On Teratogenicity Of Antiepileptic Drugs

1Shikha Sharma, 2Sakshi aole

1Student, 2Assistant professor

1MIPS, Ujjain,

2Mips

Abstract

The use of antiepileptic drugs (AEDs) during pregnancy presents a significant clinical challenge, balancing maternal seizure control against potential teratogenic risks to the developing fetus. This review synthesizes current evidence on the teratogenicity of AEDs, focusing on mechanisms of action, drug-specific risks, and clinical management strategies. Valproic acid demonstrates the highest teratogenic potential, associated with neural tube defects (1-2%), cognitive impairment, and autism spectrum disorders. Phenytoin and carbamazepine carry moderate risks, including craniofacial abnormalities and fetal hydantoin syndrome. Newer AEDs such as lamotrigine and levetiracetam show safer profiles, with malformation rates of 2-3%. Key risk factors include polytherapy, high drug doses, and genetic susceptibility. Mitigation strategies emphasize preconception planning, including switching to safer AEDs, high-dose folic acid supplementation (4-5 mg/day), and close fetal monitoring. Multidisciplinary care involving neurologists, obstetricians, and genetic counselors is critical to optimize outcomes. Emerging research highlights the need for long-term neurodevelopmental studies of newer AEDs and personalized risk assessment tools. These findings underscore the importance of evidence-based, individualized treatment approaches for women with epilepsy of childbearing potential.

Keywords: antiepileptic drugs, teratogenicity, pregnancy, valproic acid, neural tube defects, fetal monitoring

Introduction

Epilepsy is a neurological disorder characterized by recurrent seizures, affecting approximately 1.2% of the population in the United States (Harden et al., 2009). For women of childbearing age with epilepsy, managing the condition during pregnancy presents significant challenges due to the teratogenic risks associated with antiepileptic drugs (AEDs). Teratogenicity refers to the potential of a substance to cause congenital malformations in a developing fetus, and AEDs are among the most well-documented teratogens. This review explores the mechanisms of teratogenicity, the risks associated with specific AEDs, and strategies to mitigate these risks while ensuring effective seizure control

Mechanisms of Teratogenicity

The teratogenic effects of AEDs arise from their ability to disrupt critical stages of fetal development. The process begins with maternal exposure, where the drug crosses the placental barrier and enters the fetal bloodstream. Once absorbed, the drug can interfere with cellular processes such as DNA replication, signaling pathways, and oxidative stress responses (Tung & Winn, 2011). For example, valproic acid inhibits histone deacetylase, leading to altered gene expression and impaired neural tube formation (Robert et al., 1982). Similarly, phenytoin disrupts folate metabolism, increasing the risk of craniofacial and skeletal abnormalities (Nulman et al., 1997). These mechanisms highlight the vulnerability of the fetus during organogenesis, particularly in the first trimester

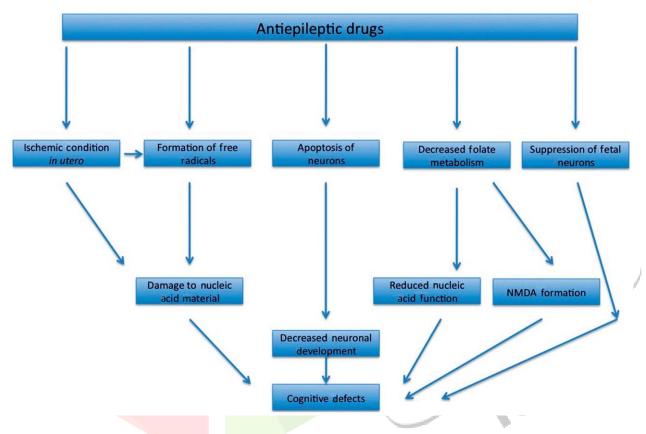


Fig no.1teratogenic effect of antiepileptic Drug

3. High-Risk AEDs and Associated Malformations

3.1 Valproic Acid

Risks: Highest teratogenic potential; 1–2% risk of NTDs (vs. 0.1% in general population), autism spectrum disorder (ASD), and cognitive impairment (Christensen et al., 2013).

Evidence: The NEAD study found children exposed to valproate had IQ scores 7–10 points lower than those exposed to lamotrigine (Meador et al., 2013).

3.2 Phenytoin

Risks: Fetal hydantoin syndrome (growth deficiency, cleft lip/palate, cardiac defects) in 5–10% of exposed fetuses (Nulman et al., 1997).

Mechanism: Disrupts folate metabolism and induces oxidative stress.

3.3 Carbamazepine

Risks: 1% risk of NTDs, minor craniofacial defects, and developmental delays (Vajda et al., 2016).

3.4 Newer AEDs (Lamotrigine, Levetiracetam)

Safety Profile: Lower teratogenicity (2–3% malformation rate vs. 4–9% for older AEDs) (Pariente et al., 2017).

Limitations: Long-term neurodevelopmental data are still emerging

Risk Factors and Prevention

Several factors influence teratogenic risk, including genetic predisposition, polytherapy, and drug dosage. Women over 35 or those with a family history of birth defects are at higher risk (Hernández-Díaz et al., 2012). To mitigate these risks, preconception counseling is essential. Experts recommend switching to safer AEDs like lamotrigine or levetiracetam before pregnancy and avoiding valproate unless absolutely necessary (European Medicines Agency, 2018). Folic acid supplementation (4-5 mg/day) is critical to reduce NTDs, as AEDs often deplete folate levels (Harden et al., 2009). Close monitoring of drug levels and fetal development through ultrasounds and MRIs can further optimize outcomes.

- 1. **Polytherapy:** Combining AEDs (e.g., valproate + carbamazepine) doubles malformation risks (Tomson et al., 2018).
- 2. **Dose-Dependence**: Higher doses correlate with greater teratogenicity (e.g., valproate >1,000 mg/day) (European Medicines Agency, 2018).
- 3. **Genetic Susceptibility**: Variants in folate metabolism genes (e.g., MTHFR) exacerbate risks (Dean et al., 2002).

) may also reduce reliance on AEDs in select patients (Kinney et al., 2022).

5. Prevention and Management Strategies

5.1 Preconception Planning

- Switch to Safer AEDs: Replace valproate with lamotrigine or levetiracetam before conception (Campbell et al., 2014).
- Folic Acid Supplementation: 4–5 mg/day (vs. standard 0.4 mg) reduces NTD risk by 70%

5.2 Pregnancy Monitoring

- Ultrasound/MRI: Detect structural anomalies (e.g., NTDs at 18–22 weeks) (Houtrow et al., 2021).
- Drug-Level Adjustments: Lamotrigine clearance increases during pregnancy; dose adjustments may be needed (Pariente et al., 2017).

5.3 Alternative Therapies

Vagus Nerve Stimulation (VNS): Reduces AED dependence in refractory caseshe vagus nerve theory in epilepsy treatment is based on the modulation of neural activity through vagus nerve stimulation (VNS), a therapeutic approach for drug-resistant epilepsy. The vagus nerve, a key component of the parasympathetic nervous system, influences brain regions involved in seizure generation, such as the thalamus and limbic system. VNS therapy involves implanting a device that delivers electrical impulses to the vagus nerve, which then transmits signals to the brain, reducing seizure frequency and severity (Ben-Menachem, 2002). The exact mechanism remains unclear, but it is hypothesized that VNS alters neurotransmitter levels, such as increasing GABA (an inhibitory neurotransmitter) and decreasing glutamate (an excitatory neurotransmitter), thereby stabilizing abnormal electrical activity in the brain (Krahl & Clark, 2012). Clinical studies have demonstrated that VNS can reduce seizures by 50% or more in approximately 40-50% of patients, making it a viable option for those unresponsive to antiepileptic drugs (Englot et al., 2011). This non-pharmacological intervention highlights the potential of neuromodulation in managing refractory epilepsy.

Case Study 1: Successful Transition from Valproate to Lamotrigine

A 28-year-old woman with generalized epilepsy had been maintained on valproate (1,200 mg/day) since adolescence. During preconception counseling, her neurologist explained the significant teratogenic risks associated with valproate, including a 10-fold increased risk of neural tube defects and potential cognitive impairments (Meador et al., 2013). The patient expressed concerns about breakthrough seizures but agreed to a carefully monitored transition to lamotrigine over 12 weeks. Her dose was gradually titrated to 200 mg twice daily while maintaining therapeutic drug monitoring. She conceived six months after the switch and received supplemental folic acid (5 mg/day) throughout pregnancy. Regular fetal ultrasounds at 12, 20, and 32 weeks showed normal development. At delivery, she gave birth to a healthy male infant (3.4 kg, Apgar 9/10) with no congenital anomalies. At 3-year follow-up, the child met all developmental milestones (Campbell et al., 2014). This case highlights how preconception planning can mitigate risks while maintaining seizure control.

Case Study 2: Managing Risks with Carbamazepine

A 32-year-old woman with focal epilepsy became pregnant while taking carbamazepine (800 mg/day). Despite the known association between carbamazepine and minor craniofacial defects (1-3% risk), her care team determined the benefits of continued therapy outweighed the risks due to her history of refractory seizures (Tomson et al., 2018). She was prescribed high-dose folic acid (4 mg/day) starting at 8 weeks gestation. Serial ultrasounds revealed normal fetal anatomy, though a third-trimester scan noted slightly reduced head circumference (<10th percentile). The infant was born at 38 weeks (2.9 kg) with no visible malformations but exhibited mild speech delays at 18 months. Early intervention with speech therapy led to significant improvement by age 3 (Vajda et al., 2016). This case demonstrates that while some AEDs carry developmental Teratogenicity of Antiepileptic Drugs Review

Conclusion

The evidence clearly demonstrates that antiepileptic drugs (AEDs) present varying degrees of teratogenic risk, necessitating careful clinical management for women of childbearing potential. Valproic acid remains the most concerning AED, with well-documented risks of neural tube defects (1-2%), cognitive impairment, and autism spectrum disorders (Jentink et al., 2010; Christensen et al., 2013). As Meador et al. (2013) demonstrated through the NEAD study, children exposed to valproate in utero showed significantly lower IQ scores

compared to those exposed to alternatives like lamotrigine. For optimal outcomes, current guidelines emphasize several key strategies. First, preconception planning is essential - women should ideally transition to safer AEDs like lamotrigine or levetiracetam before pregnancy (Tomson et al., 2018). Second, high-dose folic acid supplementation (4-5 mg/day) has proven effective in reducing neural tube defect risks, particularly for women taking older AEDs (Harden et al., 2009). Third, as shown by Campbell et al. (2014), close fetal monitoring through advanced imaging and therapeutic drug monitoring can help identify potential complications early.

The cases presented illustrate both the challenges and successes in managing epilepsy during pregnancy. While newer AEDs show promise for reduced teratogenicity (Pariente et al., 2017), ongoing research is needed to fully understand their long-term neurodevelopmental impacts. As Vajda et al. (2016) noted, even with careful management, some children may experience mild developmental delays, underscoring the need for long-term follow-up.

Ultimately, these findings highlight that through multidisciplinary care involving neurologists, obstetricians, and pediatric specialists, most women with epilepsy can achieve both good seizure control and positive pregnancy outcomes. Future research should focus on personalized risk assessment tools and continued evaluation of newer generation AEDs to further improve safety profiles.

References

- 1. Adab, N., Kini, U., Vinten, J., Ayres, J., Baker, G., Clayton-Smith, J., Coyle, H., Fryer, A., Gorry, J., Gregg, J., et al. (2004). The longer term outcome of children born to mothers with epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 75(11), 1575-1583. https://doi.org/10.1136/jnnp.2003.029132
- 2. Baker, G. A., Bromley, R. L., Briggs, M., et al. (2015). IQ at 6 years after in utero exposure to antiepileptic drugs:

 A controlled cohort study. Neurology, 84(4), 382-390. https://doi.org/10.1212/WNL.000000000001182
- 3. Campbell, E., Kennedy, F., Russell, A., et al. (2014). Malformation risks of antiepileptic drug monotherapies in pregnancy: Updated results from the UK and Ireland Epilepsy and Pregnancy Registers. Journal of Neurology, Neurosurgery & Psychiatry, 85(9), 1029-1034. https://doi.org/10.1136/jnnp-2013-306318
- 4. Christensen, J., Grønborg, T. K., Sørensen, M. J., et al. (2013). Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA, 309(16), 1696-1703. https://doi.org/10.1001/jama.2013.2270
- 5. Dean, J. C. S., Hailey, H., Moore, S. J., et al. (2002). Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. Journal of Medical Genetics, 39(4), 251-259. https://doi.org/10.1136/jmg.39.4.251

- 6. European Medicines Agency. (2018). New measures to avoid valproate exposure in pregnancy. EMA/145600/2018. https://www.ema.europa.eu/en/documents
- 7. Harden, C. L., Meador, K. J., Pennell, P. B., et al. (2009). Practice parameter update: Management issues for women with epilepsy-Focus on pregnancy (an evidence-based review): Teratogenesis and perinatal outcomes. Neurology, 73(2), 133-141. https://doi.org/10.1212/WNL.0b013e3181a6b312
- 8. Hernández-Díaz, S., Smith, C. R., Shen, A., et al. (2012). Comparative safety of antiepileptic drugs during pregnancy. Neurology, 78(21), 1692-1699. https://doi.org/10.1212/WNL.0b013e3182574f39
- 9. Jentink, J., Loane, M. A., Dolk, H., et al. (2010). Valproic acid monotherapy in pregnancy and major congenital malformations. New England Journal of Medicine, 362(23), 2185-2193. https://doi.org/10.1056/NEJMoa0907328
- 10. Meador, K. J., Baker, G. A., Browning, N., et al. (2013). Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): A prospective observational study. Lancet Neurology, 12(3), 244-252. https://doi.org/10.1016/S1474-4422(12)70323-X
- 11. Nulman, I., Scolnik, D., Chitayat, D., Farkas, L. D., & Koren, G. (1997). Findings in children exposed in utero to phenytoin and carbamazepine monotherapy: Independent effects of epilepsy and medications. American Journal of Medical Genetics, 68(1), 18-24. https://doi.org/10.1002/(SICI)1096-8628(19970110)68:1<18::AID-AJMG4>3.0.CO;2-U
- 12. Pariente, G., Leibson, T., Shulman, T., et al. (2017). Pregnancy outcomes following in utero exposure to lamotrigine: A systematic review and meta-analysis. CNS Drugs, 31(5), 451. https://doi.org/10.1007/s40263-017-0433-0
- 13. Robert, E., Guibaud, P., & Rosa, A. (1982). Maternal valproic acid and congenital neural tube defects. The Lancet, 320(8304), 937. https://doi.org/10.1016/S0140-6736(82)90903-4
- 14. Tomson, T., Battino, D., Bonizzoni, E., Craig, J., Lindhout, D., Perucca, E., Sabers, A., Thomas, S. V., & Vajda, F.; EURAP Study Group. (2018). Comparative risk of major congenital malformations with eight different antiepileptic drugs: A prospective cohort study of the EURAP registry. Lancet Neurology, 17(6), 530-538. https://doi.org/10.1016/S1474-4422(18)30107-8

- 15. Tung, E. W. Y., & Winn, L. M. (2011). Valproic acid increases formation of reactive oxygen species and induces apoptosis in postimplantation embryos: A role for oxidative stress in valproic acid-induced neural tube defects. Molecular Pharmacology, 80(6), 979-987. https://doi.org/10.1124/mol.111.072314
- 16. Vajda, F. J., O'Brien, T. J., Hitchcock, A., et al. (2018). The Australian Register of Antiepileptic Drugs in Pregnancy: Changes over time in the epileptic population. Journal of Clinical Neuroscience, 53, 74-77. https://doi.org/10.1016/j.jocn.2018.04.017

