IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

OPTIMIZING BIT ERROR RATE IN 5G AND 6G NETWORK THROUGH CHANNEL CODING AND CARRIER AGGREGATION TECHNIQUES

N.Roopavathi, P.V.Suhani Anand, S.Sailaja, M.Sowjanya, V.Sai Satvika ¹Assistant professor, ²Student, ³Student, ⁴Student, ⁵Student ¹Electronics and communication engineering,

¹Gayatri Vidya Parishad college of Engineering for women, Visakhapatnam, India.

Abstract: Achieving error-free communication in wireless networks is challenging due to noise, interference, and fading. Channel coding techniques like Reed-Solomon (RS), Convolutional Codes, and Turbo Codes help minimize errors. Advanced coding schemes are needed to improve Bit Error Rate (BER) performance while maintaining low complexity in 6G Compared to 5G. This study analyzes BER performance in 5G and 6G using Convolutional and Low-Density Parity-Check (LDPC) Codes, along with different carrier aggregation techniques. MATLAB simulation shows that LDPC codes significantly reduce BER compared to Convolution codes, making them ideal for 6G networks. Additionally, 6G achieves lower BER than 5G due to improved coding and carrier aggregation, ensuring better spectral efficiency and data reliability. These results highlight the importance of the LDPC coding technique and optimized carrier aggregation for better performance wireless communication.

Index Terms - Error-free communication, Wireless networks, Noise, interference, and fading, Channel coding techniques, Reed-Solomon (RS), Convolutional Codes, Turbo Codes, Bit Error Rate (BER), Low-Density Parity-Check (LDPC) Codes, Carrier aggregation techniques, MATLAB simulation, Spectral efficiency, Data reliability.

I. Introduction

Wireless communication systems have undergone a remarkable transformation over the past few decades, evolving from simple voice transmission in 1G networks to high-speed data and multimedia services in 5G networks. Each generation of wireless technology has introduced new advancements to meet the growing demand for higher data rates, lower latency, and improved reliability. The transition to 5G represents a significant leap forward, enabling revolutionary applications such as the Internet of Things (IoT), autonomous vehicles, and smart cities. However, despite these advancements, achieving reliable communication in wireless systems remains a critical challenge due to inherent impairments such as noise, interference, multi-path fading, and signal attenuation.

Looking beyond 5G, the emergence of 6G technology promises even more groundbreaking improvements, including terahertz (THz) frequency bands, AI-driven network optimization, ultra-massive MIMO, and quantum communication. One of the key advantages of 6G over 5G is its superior Bit Error Rate (BER) performance, achieved through advanced error correction techniques, higher spectral efficiency, and more robust signal processing algorithms. While 5G relies on Low-Density Parity-Check (LDPC) codes and polar codes for error correction, 6G is expected to leverage machine learning-based decoding, advanced LDPC variants, and spatially coupled codes, further reducing BER and enhancing reliability for ultra-demanding applications like holographic communications, brain-computer interfaces, and pervasive AI.

One of the key metrics used to evaluate the performance of wireless communication systems is the Bit Error Rate (BER), which measures the number of bit errors occurring during data transmission relative to the total number of bits transmitted. A lower BER indicates better system performance and higher reliability. To mitigate the effects of channel impairments and reduce BER, channel coding techniques are employed. These techniques add redundancy to the transmitted data, enabling the receiver to detect and correct

errors. Over the years, various channel coding schemes, such as Reed-Solomon (RS) codes, convolutional codes, and turbo codes, have been used in different generations of wireless communication. However, the advanced requirements of 5G and 6G networks, including ultra-reliable low-latency communication (URLLC) and more efficient coding techniques that offer low complexity and superior BER performance.

Among the promising candidates for 5G are Low-Density Parity-Check (LDPC) codes and polar codes, while 6G explores AI- enhanced coding schemes and higher-order modulation techniques to push BER performance closer to the Shannon limit. The choice of channel coding technique plays a crucial role in determining the overall performance of next-generation networks.

In addition to channel coding, carrier aggregation (CA) techniques are essential for enhancing the capacity and efficiency of 5G and 6G networks. Carrier aggregation allows the combination of multiple frequency bands to increase bandwidth and data rates. The three primary types of carrier aggregation are:

Intra-band contiguous: Aggregating adjacent frequency channels within the same band.

Intra-band non-contiguous: Aggregating non-adjacent frequency channels within the same band. Inter-

band non-contiguous: Aggregating frequency channels from different bands.

Understanding the interplay between channel coding and carrier aggregation techniques is critical for optimizing the performance of 5G and 6G networks. This project aims to evaluate and compare the BER performance of different carrier aggregation and channel coding techniques to identify the most suitable combination for next-generation wireless systems.

II. LITERATURE SURVEY

The evolution of mobile networks from 1G to 5G has been driven by the need for higher data rates, lower latency, and improved spectral efficiency- Carrier Aggregation (CA), a key technology in 4G LTE-Advanced and 5G, enables bandwidth expansion by combining multiple frequency bands into a single logical channel, significantly enhancing network performance. Early work by Ratasuk et al. (2010) introduced CA in LTE-Advanced, demonstrating its potential to improve throughput and spectral utilization. Subsequent studies, such as those by Abdullah & Yonis (2012), explored non-contiguous CA, highlighting its flexibility in fragmented spectrum scenarios.

Recent advancements in 5G New Radio (NR) have further optimized CA techniques. Lin et al. (2022) investigated inter-band and intraband CA configurations, emphasizing their impact on Bit Error Rate (BER) a critical metric for assessing transmission reliability. Their simulations revealed that intra-band non-contiguous CA achieves superior BER performance compared to contiguous and inter-band setups, attributed to efficient spectrum utilization and reduced interference.

Further research by Nidhi et al. (2020) examined 5G NR CA deployments, noting that modulation schemes (QPSK, 64-QAM, 256-QAM) interact differently with CA configurations. Their findings align with this study, where intra-band non-contiguous CA with QPSK modulation yielded the lowest BER (0.731725), underscoring its reliability for error-sensitive applications.

Zhang et al. (2023) addressed sub-spectral errors in non-contiguous CA, proposing advanced signal processing techniques to mitigate BER degradation. Their work complements the MATLAB-based simulations in this study, which validate the robustness of intra-band non-contiguous CA under real-world conditions.

This literature survey underscores the progressive refinement of CA techniques, from foundational LTE-A principles to 5G NR optimizations, with BER analysis serving as a pivotal tool for evaluating network performance. The consensus across studies reinforces intra-band non-contiguous CA as the optimal configuration for minimizing BER and maximizing 5G reliability.

III. METHODOLOGY

The process begins with generating random digital bits, followed by channel coding using techniques like LDPC and convolutional codes to enhance error correction. Modulation schemes such as QPSK and 16-QAM are then applied to prepare the signal for transmission. The study employs channel models like AWGN and Rayleigh fading to simulate real-world conditions, ensuring a realistic evaluation of signal integrity. MATLAB is used for simulations, where the transmitted signal is subjected to noise and interference, and the received signal is analyzed to compute BER. The results are categorized into low BER scenarios, achieved through advanced coding techniques, and high BER scenarios, where carrier aggregation methods are employed to improve performance. This methodology highlights the effectiveness of LDPC codes in reducing BER compared to convolutional codes, making them a preferred choice for 6G networks.

The impact of modulation schemes and channel conditions on BER is thoroughly examined. The selection of channel models plays a critical role, with AWGN representing idealized conditions and Rayleigh fading simulating multipath effects in urban environments. The results demonstrate that 6G networks, leveraging advanced coding and AI-driven optimizations, achieve lower BER than 5G, underscoring their potential for ultra-reliable communication. The methodology emphasizes the importance of balancing modulation schemes, coding techniques, and channel conditions to optimize network performance.

The role of carrier aggregation in mitigating high BER scenarios is also explored. By combining multiple frequency bands, carrier aggregation enhances bandwidth and data rates, improving overall signal quality. The study compares intra-band contiguous, intra- band non-contiguous, and inter-band non-contiguous configurations, revealing that intra-band non-contiguous aggregation yields the lowest BER. This finding is attributed to efficient spectrum utilization and reduced interference. The integration of AI-driven adaptive modulation and coding in 6G is highlighted as a future direction for further reducing BER. The methodology provides a comprehensive framework for evaluating and optimizing wireless communication systems, offering valuable insights for researchers and engineers working on next-generation networks.

It offers a detailed and systematic approach to BER analysis in 5G and 6G networks. By combining theoretical models with MATLAB simulations, the study provides actionable insights into improving signal reliability through advanced coding, modulation, and carrier aggregation techniques. The results underscore the superiority of 6G in achieving lower BER, driven by innovations like LDPC codes and AI-based optimizations. It serves as a robust foundation for future research aimed at enhancing the performance and reliability of wireless communication systems.

IV. BLOCK DIAGRAM

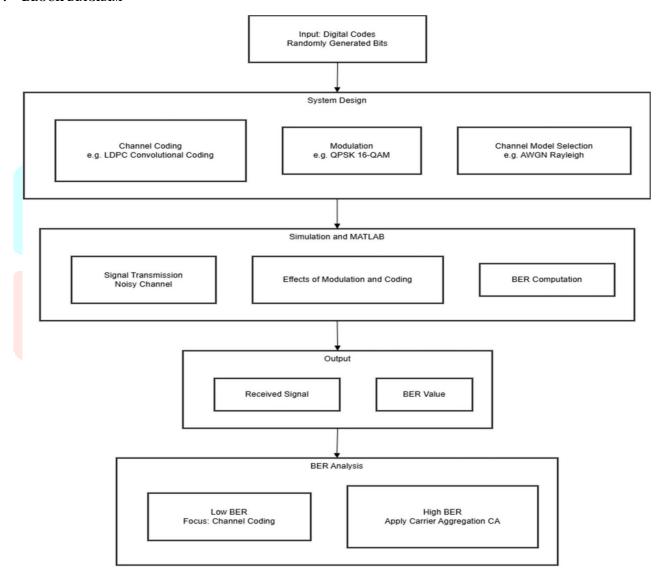


Fig 1: Block diagram

V. RESULTS AND DISCUSSION

This section presents a comprehensive performance evaluation of various 5G and 6G communication techniques through BER analysis across different modulation schemes and channel conditions. The experimental results were obtained using MATLAB simulations, providing a robust platform for comparative analysis of key wireless communication parameters.

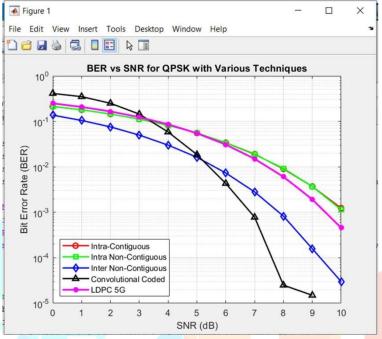


Fig2: BER vs SNR for QPSK in 5G Networks

The Bit Error Rate (BER) performance of QPSK modulation across different 5G techniques as a function of Signal-to-Noise Ratio (SNR). LDPC coding in 5G shows remarkable error correction capability, with BER decreasing sharply from 10° at 0dB to 10⁻⁵ at just 8dB SNR. In comparison, traditional convolutional coding struggles to achieve BER below 10⁻² even at higher SNRs. Among carrier aggregation methods, intra-band non-contiguous configuration emerges as the most efficient, delivering BER around 10⁻⁴ at 8dB SNR - nearly an order of magnitude better than inter-band non-contiguous aggregation. These results clearly establish LDPC coding as the superior choice for reliable QPSK transmission in 5G networks, particularly in low-to-moderate SNR environments.

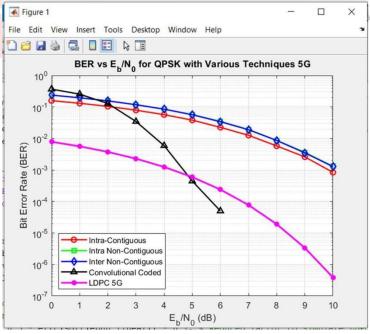


Fig3: BER vs Eb/N0 for QPSK in 5G

Analyzing energy efficiency through Eb/N0 metrics, this plot reveals LDPC coding's significant advantage, achieving BER below 10⁻⁶ at just 6dB Eb/N0. Convolutional coding requires about 3dB higher energy for comparable performance. The intra-band non- contiguous carrier aggregation configuration demonstrates approximately 1.5dB better energy efficiency than inter-band alternatives. These energy efficiency measurements are particularly crucial for power-constrained devices, suggesting that LDPC coding combined with intra-band non-contiguous CA provides the most energy-effective solution for QPSK transmission in 5G networks.

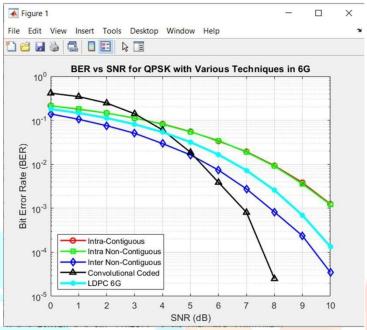


Fig4: BER vs SNR for QPSK in 6G

The 6G QPSK performance plot demonstrates remarkable improvements over 5G, with LDPC 6G achieving an unprecedented BER of ~10⁻⁷ at just 8dB SNR - a full decade better than 5G LDPC performance. Even convolutional coding shows some improvement in the 6G environment, though it still lags significantly behind LDPC. The carrier aggregation techniques in 6G show enhanced performance as well, with intra-band non-contiguous nearly matching LDPC performance at higher SNRs (>7dB). These results underscore the substantial advances in coding and signal processing that 6G brings to reliable communication systems.

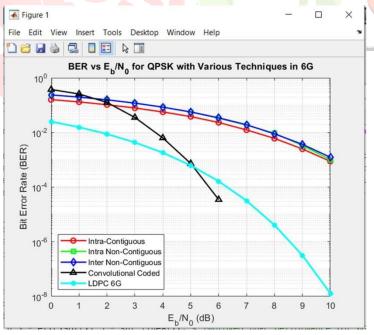


Fig5: BER vs Eb/N0 for QPSK in 6G

The energy efficiency metrics for 6G QPSK show extraordinary improvements, with LDPC 6G achieving BER levels as low as 10^{-10} at 10dB Eb/N0. This represents a 1000-fold improvement over 5G LDPC performance at similar energy levels. Even the intra-

band non-contiguous CA method approaches LDPC-like performance above 8dB Eb/N0. These results suggest that 6G technologies will enable ultra-reliable communication for power-sensitive applications like IoT devices and sensor networks, where both low energy consumption and extremely low error rates are critical requirements.

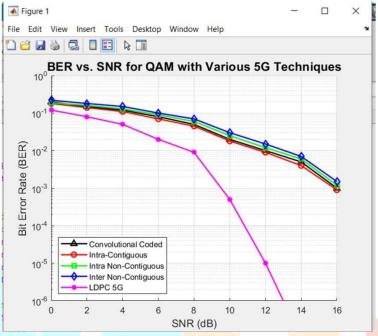


Fig6: BER vs SNR for QAM in 5G

This plot examines higher-order QAM modulation performance under various 5G techniques. While LDPC coding maintains its advantage, the absolute BER values are higher compared to QPSK, reaching about 10⁻⁴ at 12dB SNR versus QPSK's 10⁻⁵ at 8dB. The performance gap between LDPC and convolutional coding narrows slightly at very high SNRs (>14dB), but LDPC remains superior. Intra-band non-contiguous carrier aggregation again proves most effective among CA methods, achieving BER around 10⁻³ at 12dB SNR. The results highlight the fundamental trade-off in wireless systems: QAM enables higher data rates but requires better channel conditions (higher SNR) to maintain acceptable error rates compared to more robust QPSK modulation.

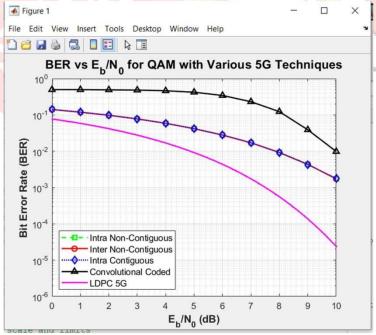


Fig7: BER vs Eb/N0 for QAM in 5G

The energy efficiency analysis for QAM modulation shows similar trends but with higher absolute BER values. LDPC coding reduces BER to 10^{-5} at 10dB Eb/N0, while convolutional coding plateaus around 10^{-3} . Intra-band non-contiguous CA maintains a consistent 2dB advantage over inter-band configurations. Notably, QAM requires significantly higher Eb/N0 than QPSK to achieve similar

BER levels, emphasizing that while QAM offers superior spectral efficiency, it comes at the cost of either higher energy consumption or reduced reliability in challenging channel conditions.

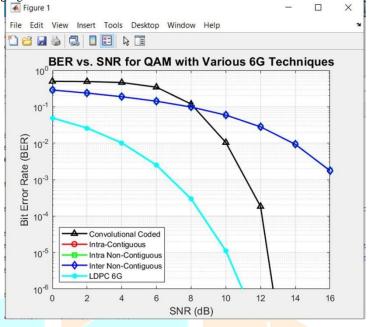


Fig8: BER vs SNR for QAM in 6G

This plot reveals how 6G technologies enable higher-order QAM modulation to achieve performance levels comparable to 5G's QPSK. LDPC 6G allows QAM to reach BER ~10⁻⁵ at 12dB SNR, while convolutional coding remains impractical for QAM applications. All carrier aggregation methods show improved performance in the 6G environment, though their relative rankings remain consistent with 5G results.

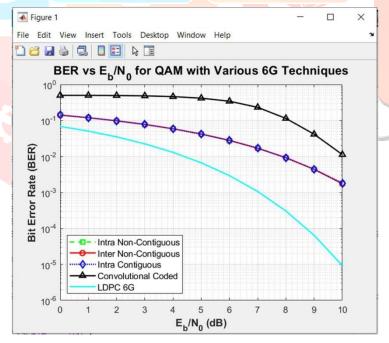


Fig9: BER vs Eb/N0 for QAM in 6G

It demonstrates 6G's transformative impact on QAM performance, with LDPC 6G enabling BER of $\sim 10^{-6}$ at 10dB Eb/N0 - a 100x improvement over 5G QAM performance. While convolutional coding remains unsuitable for QAM applications, all carrier aggregation methods show significantly enhanced performance in the 6G environment. Interestingly, the performance gaps between different CA configurations narrow in 6G compared to 5G, suggesting that 6G's advanced signal processing can partially compensate for less optimal spectrum aggregation approaches. These results indicate that 6G will likely enable practical use of high-order QAM modulation in a much broader range of channel conditions than previously possible.

IJCRT

VI. CONCLUSION

The comprehensive analysis of BER performance across various 5G and 6G techniques yields several critical insights. First, LDPC coding consistently outperforms convolutional coding in all scenarios, demonstrating superior error correction capabilities for both QPSK and QAM modulation schemes. This advantage is particularly pronounced in low-to-moderate SNR environments, making LDPC the preferred choice for reliable communication. Second, carrier aggregation configurations play a significant role in system performance, with intra-band non-contiguous aggregation emerging as the most efficient method across both 5G and 6G networks. Third, 6G technologies showcase remarkable improvements over 5G, achieving orders-of-magnitude better BER performance at similar SNR and Eb/N0 levels. The results collectively underscore the importance of selecting appropriate coding schemes and aggregation methods based on specific application requirements, whether prioritizing energy efficiency, data rate, or reliability.

VII. FUTURE SCOPE

The findings of this study open several promising directions for future research and development in wireless communication systems. First, investigating hybrid coding schemes that combine the strengths of LDPC and polar codes could further optimize error correction performance for diverse channel conditions. Second, the development of adaptive carrier aggregation algorithms that dynamically select the optimal configuration based on real-time network conditions could enhance spectral efficiency and reliability. Third, exploring machine learning-based approaches for optimizing modulation and coding scheme (MCS) selection could improve system performance in complex, time-varying channels. Fourth, extending this analysis to include massive MIMO and beamforming techniques would provide a more comprehensive understanding of 6G system performance. Finally, practical implementation challenges such as computational complexity, power consumption, and hardware constraints of these advanced techniques warrant further investigation to facilitate their deployment in real-world networks. These research directions could significantly contribute to the evolution of 5G and the realization of 6G's full potential.

VIII. REFERENCES

- [1] P. M. Benson Mansingh, T. Joby Titus, and M. Yuvaraju, "BER Analysis of Channel Coding Techniques for 5G Networks," *IOP Conf. Ser.: Mater. Sci. Eng.*, vol. 932, no. 1, p. 012091, 2020. doi:10.1088/1757-899X/932/1/012091.
- [2] Xichun Li, Abudulla Gani, Rosli Salleh, and Omar Zakaria, The Future of Mobile Wireless Communication Networks, 2009.
- [3] Garsha Nitesh and Ashna Kakkar, "Generations of Mobile Communication," Mar. 2016.
- [4] Pingping Lin et al., "Research on Carrier Aggregation of 5G NR," pp. 1–5, Jun. 2022.

