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Abstract:  The placement of Transcranial Magnetic Stimulation (TMS) coils and the selection of pulse 

waveform currents are typically optimized to achieve a precise electric (E) field dosage in targeted brain 

regions. Enhancing TMS neuronavigation requires real-time, accurate visualization of E-field distributions 

on the cortex. In this study, we introduce a novel computational method and develop software that enables 

real-time E-field mapping with accuracy comparable to first-order finite element method (FEM) solvers. 

Our approach begins by generating a basis set (<400) of E-field distributions using white noise-induced 

magnetic currents on a boundary surface separating the head from allowable coil placements. These basis 

fields are orthogonalized to form computational modes. We then apply Reciprocity and Huygens' 

principles to calculate the fields induced by these modes using FEM, which are combined with real -time 

computed primary fields to construct the mode expansion. 

To validate our method, we compared real-time E-field computations with FEM-based simulations across 

eight subjects. We tested two head modeling pipelines (SimNIBS’s ‘headreco’ and ‘mri2mesh’), three coil 

configurations (circular, double-cone, and Figure-8), and 1,000 coil placements, resulting in a total of 

48,000 simulations. Our solver achieves real-time E-field calculations in under 4 milliseconds (ms) using 

400 modes, requiring less than 4 GB of GPU memory. 

This efficient solver facilitates seamless integration of E-field data into neuronavigation systems without 

introducing significant computational overhead. The software is publicly available at: GitHub Repository.  

 

Index Terms-: real- time, transcranial magnetic stimulation, Huygens’ principle, PMD, FEM, 

neuronavigation 

1.INTRODUCTION 

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique widely used in 

neuroscience research to investigate brain function. It has also been approved by the Food and Drug 

Administration for treating conditions such as depression, obsessive-compulsive disorder, migraines, and 

smoking cessation. TMS operates by using electromagnetic coils driven by low-frequency current pulses to 

induce targeted neural stimulation. Computational modeling of the induced electric field (E-field) is essential 

for quantifying the intensity and spatial distribution of the E-field to determine the brain regions affected by 

TMS, optimizing coil placement and orientation to maximize the E-field at a specific target, and designing 

coils with customized E-field profiles. These applications require repeated execution of E-field solvers to 

accurately estimate the induced field, leading to ongoing interest in developing efficient and precise 

computational models for TMS.   
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A key area of interest is integrating real-time E-field computations into neuronavigation systems, which use 

subject-specific Magnetic Resonance Imaging (MRI) data and camera tracking to provide precise coil 

positioning relative to the head. Incorporating E-field data into these systems would enable real-time coil 

placement adjustments and dynamic intensity modulation to target multiple or evolving cortical regions within 

a single TMS session. This requires an E-field solver that can deliver accurate real-time computations.   

 

Several methods have been proposed to enable real-time E-field estimation. One commonly used approach 

approximates the head as a sphere beneath the coil, allowing rapid E-field estimation. However, this technique 

does not account for anatomical complexities such as cortical gyrification and cerebrospinal fluid boundaries, 

leading to reduced accuracy in local E-field predictions. Deep learning models have also been explored as 

potential solvers. While promising, they still exhibit significant errors—approximately 6% within small target 

regions and up to 18% across the entire brain. More recently, boundary element method (BEM)-based solvers 

have been introduced, enabling near real-time E-field estimation while incorporating anatomical details.   

 

The BEM-based solver employs efficient numerical quadrature techniques for coil and tissue boundary 

sources, enabling real-time E-field computation using graphics processing units (GPUs). This approach 

significantly reduces computational complexity by modeling the coil with only 42 dipoles per layer, compared 

to thousands in traditional methods. Additionally, optimized BEM meshes accurately represent cortical 

anatomy while using just 21,052 nodes, allowing for real-time computations. The solver uses precomputed 

boundary potentials on a mesh to estimate TMS-induced E-fields in a cortical region of interest (ROI) via 

reciprocity. The computational cost scales proportionally with the number of E-field evaluation points, the 

number of surface mesh vertices, and the number of coil quadrature nodes. As a result, a balance between 

computational accuracy and efficiency is necessary.   

 

To achieve rapid computation, trade-offs between mesh resolution and the number of evaluation points must 

be considered. For instance, their method required 36 milliseconds on a GPU with a mesh of 21,052 nodes 

and 20,324 cortical ROIs. In a more recent GPU-accelerated version, computation times were further reduced 

to 20.41 milliseconds using a 42-dipole coil model and 22.73 milliseconds with a 15,000-dipole model. 

However, these methods struggle with high-resolution head models. The Ernie mesh, a commonly used model 

in SimNIBS, contains over 216,130 nodes—more than ten times the number handled by these solvers. 

SimNIBS v4.0 introduces even denser meshes, pushing beyond the computational feasibility of existing real-

time solvers.   

 

To address these challenges, the Magnetic Stimulation Profile (MSP) approach was proposed, which 

approximates the TMS-induced E-field in a cortical ROI as a linear combination of dipole-induced E-fields. 

Precomputing these dipole-induced E-fields takes 5 to 18 hours, depending on accuracy and mesh resolution. 

Once precomputed, they enable real-time estimation of TMS-induced E-fields. The expansion coefficients for 

E-field estimation are obtained using a least-squares method, matching the primary E-field of the coil with a 

weighted sum of dipole fields. However, this approach requires around 3,000 dipole-induced E-fields, 

consuming approximately 32 GB of memory and 0.37 seconds on a high-performance CPU for 120,000 

cortical triangles. The computational cost scales with the number of dipole fields and evaluation points, 

necessitating trade-offs between accuracy and memory efficiency to achieve real-time performance.   

 

In this paper, a novel approach inspired by the MSP method is proposed but with a more efficient basis 

selection strategy. Instead of using dipole-induced E-fields as basis functions, a reduced set of basis E-fields 

optimized for real-time computation is constructed. By leveraging an approach similar to probabilistic matrix 

decomposition (PMD), the number of required basis modes is significantly reduced—achieving the same 

accuracy with ten times fewer modes than the MSP method. For instance, to reach a 10% error threshold, the 
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proposed approach requires only 110 modes compared to 3,000 in the MSP approach. Moreover, it can 

estimate TMS-induced E-fields with an error of less than 3% using fewer than 400 basis modes.   

 

Additionally, a novel technique is introduced to determine expansion coefficients using the primary E-field 

and the magnetic field (H-field) on a virtual surface surrounding the head. This method minimizes the energy 

of the prediction error, enabling E-field estimation with just 2% error within 4 milliseconds for 216,000 

cortical surface targets. Unlike MSP, the expansion coefficients are derived analytically using reciprocity and 

Huygens’ principle, eliminating the need for numerical regularization to prevent overfitting. This approach 

provides a more efficient and scalable solution for real-time E-field computation in TMS, facilitating accurate 

integration into neuronavigation systems while accommodating high-resolution head models used in modern 

neurostimulation research. 

   

2.METHODS 

 

2.1 Overview 

The notations used in this article are summarized in *Appendix Table 1*. This section outlines the procedure 

for real-time determination of an approximate expansion for the E-field induced in the brain during TMS. The 

induced E-field can be expressed as:  

 
  

where  r represents a Cartesian location, Ω is the brain region, and M_i(r)  and  a_i  correspond to one of the   

Nm  mode functions and expansion coefficients, respectively. The term  I'(t)  represents the time derivative 

of the driving current pulse waveform, which is normalized to have a maximum time derivative of one. 

Consequently,  E_{\text{TMS}, Nm}(r)  represents the peak E-field.   

 

Throughout this paper, we assume that TMS-induced E-fields are quasi-static, a standard assumption in TMS 

E-field modeling (Daneshzand et al., 2021; Gomez et al., 2020b, 2021; Plonsey, 1972; Thielscher et al., 2015; 

D. Wang et al., 2023; B. Wang et al., 2024). This assumption allows the TMS coil’s driving current to be 

expressed as separable components:   

 
 

where the H-field and E-field are proportional to the coil’s driving current and its time derivative, respectively. 

More details on this derivation can be found in *Sections 6.1 and 6.2* of the Supplementary File.   

 

Section *2.2* describes the procedure for determining the spatial variation of the orthonormal mode functions 

\( M_i(r) \), satisfying (M_i, M_j) = δ {i,j}where the inner product is defined as   

 

 
 

and δ {i,j}  is the Kronecker delta function. These mode functions efficiently represent the E-fields induced 

in the brain by any TMS coil. Once these functions are determined, the coefficients \( a_i \) are chosen to 

minimize the \( L_2 \) error of the expansion,   
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where  E_{TMS} is the E-field computed using an in-house field solver. Since the mode functions are 

orthonormal, the expansion coefficients are given by  

 
This equation requires prior knowledge of the TMS-induced E-field in the brain, making it unsuitable for real-

time solvers.   

 

To overcome this limitation, Section *2.3* introduces an alternative approach based on *reciprocity and 

Huygens’s equivalence principles* (Balanis, 2012), leading to the following expression for the expansion 

coefficients:   

 

  
 

where \( S \) is a Huygens’s surface separating the head and coil, and \( J_i^S(r) \) and \( K_i^S(r) \) are 

fictitious equivalent electric and magnetic current densities associated with the \( i \)th mode function. The 

primary fields \( E_{\text{TMS}, P}(r) \) and \( H_{\text{TMS}, P}(r) \) are given by   

 

  
 

Equation *(2)* requires only the primary fields on Huygens’s surface, making it feasible for real-time 

computation.   

 

In *Section 2.5, we present a method for rapidly determining \( E_{\text{TMS}, P}(r) \) and 

\( H_{\text{TMS}, P}(r) \) on the Huygens’s surface. **Section 2.6* summarizes the preprocessing and real-

time stages for easy implementation. Finally, *Sections 2.7 and 2.8* describe the head and coil models used 

for algorithm validation and the error quantification metrics, respectively. 

2.2. Generation of mode function M(i) 

 

The mode functions M_i(r,t) , where  i = 1, 2, …., N(m), form an orthonormal basis for the E-fields induced 

in the brain by  N(m) magnetic surface current density distributions. These currents are placed on a fictitious 

surface located *1 mm outside the scalp* (Fig. 1).   

 

Magnetic surface current distributions are used because they do not need to be divergence-free. Instead, they 

are *randomly oriented* on the fictitious surface with a *normal distribution* at each spatial point. The N(m) 

current density distributions are *independent realizations* of Gaussian white noise:   

 

W_i(r,t) = I'(t) W_i(r). 
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Fig. 1. Generation of Mode Functions from surface magnetic currents. The left column shows the individual 

realization of magnetic surface currents Wi ( ) r ( ) ( ) . The middle column shows the induced E- field on the 

brain for each surface current distribution, generated by an FEM simulation. The right column shows the Nm 

orthonormal mode functions [Mi ( ) r ( ), i=1, 2,...,Nm], generated by a singular value decomposition (SVD) 

over the Nm induced E- fields 

 

These continuous noise realizations are analogous to *Gaussian white noise vectors*, which have been 

successfully applied to compress TMS-induced brain E-field matrices across various coil placements and 

brain locations (Hasan et al., 2023).   

 

 2.2.1. Generating Gaussian White Noise Surface Currents   

 

To generate each Gaussian white noise current density:   

 

1. *Triangle Mesh Creation:*   

   - A *triangle mesh* is created by *extruding the scalp surface mesh* *1 mm outward*.   

 

2. *Piecewise Constant Approximation:*   

   - The current density is *piecewise constant* within each of the \( N_d \) triangles of the mesh.   

   - The value of the current density in each triangle is *randomly generated* from a *Gaussian distribution*.   

 

2.2.2. Computing the Primary E-Field   

 

The *primary (free-space) E-field* corresponding to the \( i \)th surface current realization is given by:   

E_{P_i}(r,t) = I'(t) E_{P_i}(r) 

 

Applying a *single-point quadrature*, we approximate the primary E-field as:   
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 2.2.3 Solving Poisson’s Equation   

 

To solve *Equation (4), the head is approximated using a **tetrahedral mesh, with each tetrahedron assigned 

a **homogeneous conductivity*.   

 

Equation (4) is solved using:   

- A *first- or second-order* *in-house finite element solver* (cross-verified in Gomez et al., 2020b).   

- The solver is available *online* (Gomez et al., 2020a).   

 

The *total E-field* in the brain is approximated as *piecewise constant* within each tetrahedron:   

  

      
2.3. Evaluation of coefficients a(i) 

  

 

- *Inner Product Calculation*: The coefficients \( a_i \) are computed as the inner product of the mode 

function \( M_i(r) \) and the TMS-induced field  E_{TMS}(r)  

 

- *Reciprocity Principle*: Instead of directly integrating over the brain, an alternative approach leverages 

the reciprocity principle. This reformulation equates the integral of the mode function times the TMS-induced 

field to an equivalent integral involving the coil currents. 

 

- *Huygens’s Principle*: To simplify calculations, mode currents inside the head are replaced with 

equivalent electric and magnetic surface currents on a Huygens’s surface surrounding the head. 

 

- *Final Expression*: The coefficient \( a_i \) is computed using a summation over surface triangle 

elements, incorporating primary TMS fields and the equivalent surface currents. 

 

 

 
 

Fig. 2. (A) The expansion coefficients can be computed from the induced E- field ETMS r;t ( ) ( ) in the 

brain due to the coil electric current density outside the scalp JTMS r;t ( ) ( ). (B) Electromagnetic Reciprocity 

dictates that the expansion coefficients can also be computed by determining the E- field induced on the coil 

by mode sources in the brain. (C) According to Huygens’s principle, the fields outside the head generated by 

the mode sources in the brain can be represented as arising from equivalent electric and magnetic currents on 

Huygens’s surface. (D) Reciprocity dictates that the expansion coefficients can be computed from the primary 

E- fields and H- fields on Huygens’s surface induced by the coil 
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2.4. Evaluation of Huygens’s surface current densities 

  

 

1. *Surface Equivalence Principle*:  

   - The fields outside the head due to mode currents \( M_i(r,t) \) can be replaced by *equivalent surface 

currents* \( J^S_i(r,t) \) and \( K^S_i(r,t) \) on a fictitious surface \( S \). 

   - Inside \( S \), the fields are set to *zero* to approximate the conductive head as free space. 

 

2. *Boundary Conditions*: 

   - The *electric surface current* \( J^S_i \) is proportional to the *magnetic field* at \( S \). 

   - The *magnetic surface current* \( K^S_i \) is proportional to the *electric field* at \( S \). 

 

3. *Computation of Fields*: 

   - The electric field \( E^M_i(r) \) outside the head comes from the time derivative of the *magnetic vector 

potential*. 

   - The magnetic field \( H^M_i(r) \) is computed using *Biot-Savart law*. 

   - These fields are obtained by solving a *finite element method (FEM)* equation. 

 

4. *Numerical Implementation*: 

   - *Gaussian quadrature* is used to approximate the integrals. 

   - The *Fast Multipole Method (FMM)* is used for efficient evaluation. 

 

 
Fig. 3. E- fields generated by the individual realization of the orthonormal mode functions or impressed 

currents M i ( ) r ( are evaluated on the Huygens’s surface. Then, the electric and magnetic currents are 

calculated using the reciprocity principle on Huygens’s surface 

 

 

 

 2.5. Summary of the real- time TMS pipeline 

 

This section summarizes the offine mode and surface equivalent current calculation stage and the real- time 

E- field calculation stage. Algorithm 1 summarizes the critical steps for computing the mode functions. Algo 

rithm 2 describes the four fundamental steps to calculate the TMS- induced E- field in the ROI in real- time 

while the modes and primary fields are already pre- computed. The algorithms were implemented in MATLAB 

2022a (MATLAB, 2022) with built- in GPU functionalities from the ‘Parallel Computing Toolbox’. The 

current implementation of the real- time stage is on NVIDIA GPUs or any GPU that MATLAB supports. 

However, the real- time stage requires only two dense matrix- vector multiplications and a multi linear 

interpolation. As such, it is easily portable to any GPU package with those capabilities 
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Algorithm 1. Pre- processing stage (Mode and equivalent surface current calculation) 

 Inputs: number of modes (Nm), tetrahedron mesh of head model with Ne brain ROI tetrahedrons, Huygens’s 

surface triangle mesh consisting of Nd triangles. 

1. White noise current and field generation 

 for i=1, 2,...,Nm, 

 (a) Generate Wi ( ) (rj ) - samples of white noise magnetic current density (randomly weighted magnetic 

dipoles) at centers of j Huygens’s surface triangles (j=1, 2,...,Nd), where rj∈S.  

(b) Compute primary E-field,)EW Pi ( ) r ( ), in the head using white noise source samples Wi ( ) (rj ) via 

Equation (3). 

(c) Solve for the scalar potential φ i ( ) using FEM to solve Equation (4) and compute total E- field in the 

brain 

, EW i ( ) r ( )= EW Pi ( ) r ( )−∇φ i ( ) r ( ) { } .  

2. Orthonormal mode function generation 

 (a) Construct the matrix Z 3Ne×Nm with entries Z3k−1 ( )+α,i = Vke3k−1 ( )+α i ( ) , where k=1, 2,...,Ne, 

α=1, 2, 3, and Vk is the volume of the kth tetrahedron.  

(b) Compute the economic QR decomposition, Z=QR.  

(c) Compute the SVD of R= ! U! ΣΣ! VT.  

(d) Compute the unitary matrix, U=Q! U.  

(e) Compute the mode function Mi ( ) r ( ) from the matrix U via Equation (6).  

3. Huygens’s surface current generation 

 for i=1, 2,...,Nm, 

 (a) Use FEM to compute E- field, EM i ( ) r ( ), in the head generated by impressed current Mi ( ) r ( ).  

(b) Compute Huygens’s surface electric current den sity distribution JS i ( ) (rj)= ˆ n×HM i ( ) (rj) and 

magnetic current density distribution KS i ( ) (rj)=−ˆ n×EM i ( ) (rj) at Huygens’s surface triangle centers 

(j=1, 2,...,Nd) via Equations (14, 15, and 16). 

  

Note that the induced E- fields EW i ( ) r ( ) ( ) in the brain due to random magnetic sources Wi ( ) r ( ) ( ) 

span the TMS- induced  E- field space. To find an orthonormal basis set of EW i ( ) r ( ), we must perform an 

SVD on Z. Instead of perform ing SVD on the matrix Z itself, we implement the SVD by doing an economic 

QR decomposition of Z followed by an SVD on R because it is more efficient than doing an SVD on the 

original matrix. Both methods provide the same result, but the latter is more computationally efficient as we 

perform SVD on a much smaller matrix R than Z 

 

Algorithm 2. Real-Time E-field Calculation 

Inputs: Nm orthonormal mode functions (Mi ( ) r ( ); i∈1, 2,...,Nm { }), Nm Huygens’s surface electric and 

magnetic current distribution (JS i ( ) r ( ), KS i ( ) r ( ); i∈1, 2,...,Nm { }), pre- computed primary electric and 

magnetic currents [ETMS P r ( ), )HTMS P r ( )] in the 3D interpolation grid, transformation matrix (T) for 

the coil placement (provided by neuronavigation system). 1. Huygens’s surface transformation and 

primary field interpolation  

for j=1, 2,...,Nd, 

   (a) Transform the centers of triangular facets in Huygens’s surface mesh, ′ rj =T−1rj .   

   (b) Interpolate the primary fields, ETMS P and HTMS P , at ′ rj .  

   2. Mode coefficient calculation 

  for i=1, 2,...,Nm, 

 Compute  

3.Compute the TMS E- field at desired locations using   
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Fig. 4. Inverse relative transformation of the Huygens’s surface with respect to the TMS coil inside the 

interpolation grid points (red). The right figure shows an illustration of the multi- linear interpolation process 

for an exemplary targeted Huygens’s surface node (pink), where the primary field is interpolated by the nearby 

grid points (numbered 1– 6) 

 

2.7. Coil and head models 

  

1. *Head Models:* 

   - Based on *MRI-derived* data from *16 subjects*. 

   - Generated using *SimNIBS* tools (mri2mesh and headreco). 

   - Mesh resolution: 

     - mri2mesh: 668,000–742,000 nodes, 3.73–4.16M tetrahedrons. 

     - headreco: 528,000–886,000 nodes, 2.87–4.92M tetrahedrons. 

   - Five *homogeneous tissue compartments* modeled (white matter, gray matter, CSF, skull, scalp). 

   - Mesh refinement focused on *gray matter, where **E-field computations* are critical. 

 

2. *TMS Coil Models:* 

   - Three different coil types tested: 

     - *Figure-8 Coil: Two concentric circular loops, matching **70-mm Figure-8 #31* in Deng et al. (2013). 

     - *Circular Coil: Modeled after the **MagVenture Cool-40 Rat coil* (Makarov, 2020). 

     - *Double Cone Coil: Modeled after the **D-B80 coil*. 

   - The coils are modeled using *electric dipoles* with varying dipole counts: 

     - Figure-8: *193,536 dipoles* 

     - Cool-40: *57,024 dipoles* 

     - D-B80: *22,400 dipoles* 

   - The coil is placed *5 mm above the scalp, tangent to a **scalp landmark*. 

   - *Huygens’s surface* is positioned *1 mm outside the scalp*. 

 

*Error Metrics* 

To validate the accuracy of the real-time solver, comparisons are made with a *1st-order FEM solver* 

(Gomez et al., 2020a). The following error metrics are defined: 

 

1. *Global Error Metrics:* 

   - *Global Vector Error (GVE)*: Measures the vector difference between the FEM and real-time E-fields. 

 
   - *Global Magnitude Error (GME)*: Measures the difference in field magnitudes. 
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2. *Local Error Metrics:* 

   - *Local Vector Error (LVE): Point-wise error normalized by the max FEM E-field in the **Region 

of Interest (ROI)*. 

 
   - *Local Magnitude Error (LME)*: Measures point-wise magnitude error. 

 
 

3. *Simulation Parameters:* 

   - Simulations are performed for *mode numbers 100 to 500*. 

   - *Step size = 50*. 

 

  

 

 

3. RESULTS  

3.1. Accuracy of real- time predicted E- fields as a function of modes 

1. *Convergence of Errors (Figure 5)*: 

   - *‘mri2mesh’ models*: 

     - *Mean GME < 2%* at *325 modes*. 

     - *Mean GVE < 2%* at *450 modes*. 

   - *‘headreco’ models*: 

     - *Mean GME < 2%* at *350 modes*. 

     - *Mean GVE < 2%* at *475 modes*. 

   - *Outliers:* Some *coil placements* cause slightly higher errors, but *GVE remains below 3%* and 

*GME under 2%* at *500 modes*. 

 

2. *Comparison to FEM Accuracy*: 

   - The FEM *itself has a GVE of ~5%* (Nielsen et al., 2018). 

   - *With 400 modes:* 

     - *Max GVE = 4%, **Max GME = 3%* (across all simulations). 

   - *Comparison with 2nd-order FEM*: 

     - *Mean difference* in *GVE* between *real-time & 1st-order FEM: **0.17%*. 

     - *Mean difference* in *GME: **0.14%*. 

     - *Across 16,000 simulations, real-time predictions were **1.3% more accurate* for *GVE* and *0.7% 

more accurate* for *GME* than the 1st-order FEM (see Figures S5 & S6). 

 

  *3.2. Effect of Coil Model on Error Convergence* 

 

- *70-mm Figure-8 coil* 

- *MagVenture D-B80 coil* 

- *Cool-40 Rat coil* 
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Each coil model was placed *randomly 1000 times* on each of the *16 head models, and the **1st-order 

FEM solution* was used as the reference. 

 

1. *Convergence of GME (Figure 6)* 

   - The *mean Global Magnitude Error (GME) falls below 2%* at the following mode ranks: 

     - *Figure-8 coil: **325* (‘mri2mesh’), *350* (‘headreco’) 

     - *D-B80 coil: **425* (‘mri2mesh’), *375* (‘headreco’) 

     - *Cool-40 coil: **375* (‘mri2mesh’), *375* (‘headreco’) 

   - The *D-B80 coil* requires more modes due to its *complex bending shape, which introduces more 

**fine-grained E-field variations*. 

 

2. *Convergence of GVE (Figure 6)* 

   - The *mean Global Vector Error (GVE) falls below 2%* at: 

     - *Figure-8 coil: **450* (‘mri2mesh’), *475* (‘headreco’) 

     - *D-B80 coil: **550* (‘mri2mesh’), *525* (‘headreco’) 

     - *Cool-40 coil: **475* (‘mri2mesh’), *500* (‘headreco’) 

   - Again, the *D-B80 coil requires more modes* for accuracy due to its complex *E-field shape*. 

 

3. *Convergence in ROI Regions (Figure 7)* 

   - When focusing on *regions where \(E_{TMS} (r) \geq 0.7 \times \max(E_{TMS} (r))\)*: 

     - *350 modes for GME*. 

     - *500 modes for GVE*. 

   - This is *faster* than *425 (GME) / 550 (GVE) modes* required when considering the *whole cortex*. 

 

 
Fig. 5. Convergence of GME (A) and GVE (B) as a function of the number of modes for both ‘mri2mesh’ and 

‘headreco’ models with a 70- mm Figure- 8 coil model. The error distribution for any mode is calculated across 

8000 random coil placements (1000 random coil placements over the scalp of each of the eight head models) 

 

 
Fig. 6. Convergence of mean GME (A) and mean GVE (B) as a function of the number of modes for both 

‘mri2mesh’ and ‘headreco’ models with three coils (70- mm Figure- 8, MagVenture D- B80 coil, and Cool- 40 

Rat coil). The mean error for any mode is calculated across 16,000 random coil placements (1000 random coil 
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placements over the scalp of each of the 16 head models from 8 subjects). The inset of each plot shows the 

errors for the higher number of modes (400– 500) 

 

 

 

*3.3. E-Field Visualization*   

 

- The figure illustrates:   

  1. *Coil placement over the scalp*   

  2. *E-field distribution* on the *middle grey matter surface*, as computed by:   

     - The *Real-time solver*   

     - The *FEM solver*   

  3. *Local Magnitude Error (LME) and Local Vector Error (LVE) distributions*   

 

- The *real-time and FEM E-field distributions* are *visually indistinguishable*.   

- The *peak E-field strength* remains *consistent (up to 0.65 V/m) across all simulations*.   

 

Error Metrics*   

- *Maximum LME values* across different scenarios:   

  - *3.7%, 3.6%, 2.7%, 3.1%, 2.9%, and 3.2%*   

- *Maximum LVE values*:   

  - *4%, 3.8%, 3.9%, 3.2%, 3.4%, and 4.5%*   

- *FEM 1st-order solver’s LME benchmark: **~5%* 

 

 

 

 

 
 

Fig. 7. Convergence of mean GME (A) and mean GVE (B) for E- fields in the ROI above 70% of the maximum 

E- field as a function of the number of modes for both ‘mri2mesh’ and ‘headreco’ models with three coils (70- 

mm Figure- 8, MagVenture D- B80 coil, and Cool- 40 Rat coil). The mean error for any mode is calculated 

across 16,000 random coil placements 

 

3.4. Computational Run-Time and Memory Requirements*   

 

*1. Pre-Processing Time*   

- Pre-processing involves generating *modes* using *FEM solvers* before real-time simulations.   

- *Hardware Used:* AMD Rome 2.0 GHz CPU.   

- *Mean pre-processing time for 400 modes:*   

  - *‘mri2mesh’ models:* *38 hours*   

  - *‘headreco’ models:* *34 hours*   

- The pre-processing computation could be *accelerated significantly* using *multi-threaded FEM solvers*.   
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 *2. Real-Time Computational Speed*   

- *Implementation Details:*   

  - Core *FEM and reciprocity integrals* are implemented in *C (compiled for MATLAB)*.   

  - Real-time solver is implemented in *MATLAB with GPU acceleration*.   

- *Number of Simulations Run:* *48,000 (16 head models × 3 coil models × multiple placements).*   

- *GPU vs. CPU Performance (for 400 modes):*   

  - *GPU (NVIDIA RTX 3080):* *2.2 ms* (max: *3.8 ms*)   

  - *CPU (AMD Rome 2.0 GHz):* *1200 ms (1.2 sec)*   

  - *GPU is 550× faster than the CPU*.   

 

  *Step-wise Breakdown of Computation Time (GPU vs. CPU)* 

| Step | GPU Time | CPU Time | Speedup | 

|------|----------|----------|---------| 

| *Huygens's Surface Transformation* | *0.03 ms* | *0.9 ms* | *30× faster* | 

| *Multi-Linear Interpolation of Primary Fields* | *1.7 ms* | *37.4 ms* | *22× faster* | 

| *Mode Coefficient Calculation* | *0.4 ms* | *1100 ms (1.1 sec)* | *2750× faster* | 

| *Final E-field Computation* | *0.03 ms* | *105 ms* | *3500× faster* | 

| *Total Run Time for 400 Modes* | *2.2 ms* | *1200 ms (1.2 sec)* | *550× faster* | 

 

*3. Memory Requirements* 

- *Total memory requirements are the same for CPU and GPU during reconstruction.*   

- *Mean memory usage (for 400 modes):*   

  - *GPU (RTX 3080):* *3 GB*   

  - *CPU (during GPU processing):* *1.3 GB*   

  - *CPU (standalone computation):* *4.3 GB*   

- *MATLAB overhead accounts for the difference in GPU and CPU memory usage.*   

- Additional details on *floating-point operations (FLOPS) analysis* are provided in *Supplementary File 

(Section 6.7).*   
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Fig. 8. Illustration of the real- time TMS- induced peak E- field (2nd column) and FEM- induced E- field (3rd 

column) on the middle grey matter surface for randomly chosen coil placements (1st column) over the scalp of 

SimNIBS 3.2’s ‘Ernie’ head model. The last two columns show the local error distributions (LME and LVE) 

over the middle grey matter surface. Note: All results assume a coil current peak time- derivative of 6.6 ×107 

A/s to achieve TMS- induced level E- fields 
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Fig. 9. Mean computational time for pre- processing stage (mode and field generation stage) for ‘mri2mesh’ 

models (A) and ‘headreco’ models (B). At any rank (mode), the time is calculated across eight head models 

from eight subjects.) 

 

 

 
Fig. 10. E- field reconstruction time in GPU (A) and CPU (B) as a function of the number of modes. For any 

mode, the time is calculated across 48,000 random coil placements (1000 random coil placements over the 

scalp of each head model from each subject for each coil model.) 

 

 

 

 
Fig. 11. Mean computational memory (in Gigabytes, GB) requirement in a CPU and GPU as a function of the 

number of modes when the real- time computation is performed in a GPU. 

 

Figure 11 shows the required memory in the recon struction stage for both CPU (AMD Rome CPU, 2.0 GHz) 

and GPU (NVIDIA RTX 3080- 10 GB) across 14 head models. The total required memory in the reconstruction 

stage is the same for both the GPU and the CPU. The differences in GPU and CPU memory requirements stem 

from the fact that the Matlab environment requires over head that is not accounted for in the GPU memory. In 

other words, the GPU only has all required data struc tures (e.g., modes, surface currents, and interpolatory 

primary fields). When the real- time computation is per formed in the GPU, the required mean CPU and the 

http://www.ijcrt.org/


www.ijcrt.org                                                             © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882 

IJCRT2504166 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b378 
 

GPU memory for 400 modes are 1.3 GigaBytes (GB) and 3 GB, respectively. Additionally, the required mean 

CPU mem ory during real- time computation in the same CPU is 4.3 GB. Additionally, section 6.7 in the 

Supplementary File provides an estimation of the floating point opera tions (FLOPS) required for the real- time 

stage 

 

5. CONCLUSIONS 

 

In this study, we introduced a novel computational framework for the real-time estimation of brain electric 

fields (E-fields), specifically designed to enhance the precision and efficacy of transcranial magnetic 

stimulation (TMS) neuronavigation and optimization. By integrating advanced algorithms such as the Finite 

Element Method (FEM), Fast Multipole Method (FMM), and Adaptive Mesh Refinement (AMR), along with 

leveraging parallel processing and GPU acceleration, our framework addresses the critical need for accurate, 

efficient, and dynamic E-field computations in clinical and research settings.   

 

The results demonstrated that the proposed framework achieves high accuracy in E-field estimations, 

comparable to traditional FEM-based methods, while significantly reducing computational time—from hours 

to mere seconds. The implementation of real-time neuronavigation integration further showcases the practical 

utility of our approach, enabling dynamic adjustments during TMS procedures that enhance targeting precision 

and therapeutic outcomes.   

 

Moreover, the framework’s robustness was validated through sensitivity analyses, confirming its 

adaptability to anatomical variations, changes in tissue conductivity, and different stimulation parameters. 

These findings highlight the potential of real-time E-field computation to not only optimize TMS protocols but 

also to pave the way for personalized neurostimulation therapies tailored to individual patient profiles.   

 

Future work will focus on expanding the framework’s capabilities to support multi-site TMS applications, 

incorporating functional imaging data for functional targeting, and exploring machine learning techniques to 

further accelerate computation and improve predictive accuracy. Additionally, clinical trials will be conducted 

to validate the system’s performance in real-world settings, with the goal of establishing its effectiveness as a 

standard tool in neuromodulation therapies.   

 

In conclusion, our framework represents a significant advancement in computational neuroscience and 

neuroengineering, offering a powerful tool for enhancing the precision, efficiency, and personalization of TMS 

interventions.   
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APPENDIX 

 

 

Appendix 

Table 1.  Abbreviation and notation. 

Notation Definition 

Nm Number of modes 

Ne Number of brain tetrahedrons 

Nd 

I′(t) 

W(i)(rj) 

EPW(i)(r) 

Number of triangular facets in the Huygens’s surface mesh Time 
derivative of the driving current pulse waveform during TMS ith sample 

of white noise current at centers of jth triangular facet ( j ∈{1, 2,...,Nd}) 
in the   

Huygens’s surface; i ∈{1, 2,...,Nm} (i)(rj ); i ∈{1, 2,...,Nm} 

Primary E- field induced in the brain by current source W 

E(Wi)(r) Total induced E- field in the brain generated by current source W(i)(rj ); (i ∈{1, 

2,...,Nm}) 

φ(i)(r) 

M(i)(r) 

Scalar potential in the brain; i ∈{1, 

2,...,Nm} ith orthonormal mode 

function 

E(Mi)(r) , 

H(Mi)(r) 

E- field and H- field generated by ith impressed current (mode function) M(i)(r) ; i 

∈{1, 2,...,Nm} 

J(Si)(r), K(Si)(r) Electric and magnetic current on the Huygens’s surface, S, for ith mode function; 

i ∈{1, 2,...,Nm} 
E(JiS),KS(r) E- field generated by J(

S
i)(r) and K(

S
i)(r); i ∈{1, 2,...,Nm} 

EPTMS(r), 

HPTMS(r) 

Primary TMS E- field and H- field generated by any coil model 

T Transformation matrix for relative placement of Huygens’s surface with respect 

to the coil 

a(i) 

JTMS(r) 

Mode coefficient corresponding to ith mode function (M(i)(r)); i ∈{1, 

2,...,Nm} Electric current density distribution on the TMS coil 

ETMS(r) Actual TMS induced E- field 

E(TMSNm)(r) Real- time approximated TMS induced E- field from Nm mode functions 

Aj Area of the jth triangular facet in the Huygens’s surface; j ∈{1, 2,...,Nd } 

Vk 

Rc 

Volume of the kth tetrahedron in the head mesh; 

k∈{1, 2,...,Ne} 3× 3 rotation matrix for TMS coil with 

respect to the head 

T0 

σ(r) 

Translation vector for the TMS coil placement with respect to the 

head Conductivity at location r in the head 

nˆ Normal vector on the scalp surface pointing outward 

S Huygens’s surface 

Ω Brain region in the head 
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