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Abstract: The placement of Transcranial Magnetic Stimulation (TMS) coils and the selection of pulse
waveform currents are typically optimized to achieve a precise electric (E) field dosage in targeted brain
regions. Enhancing TMS neuronavigation requires real-time, accurate visualization of E-field distributions
on the cortex. In this study, we introduce a novel computational method and develop software that enables
real-time E-field mapping with accuracy comparable to first-order finite element method (FEM) solvers.

Our approach begins by generating a basis set (<400) of E-field distributions using white noise-induced
magnetic currents on a boundary surface separating the head from allowable coil placements. These basis
fields are orthogonalized to form computational modes. We then apply Reciprocity and Huygens'
principles to calculate the fields induced by these modes using FEM, which are combined with real -time
computed primary fields to construct the mode expansion.

To validate our method, we compared real-time E-field computations with FEM-based simulations across
eight subjects. We tested two head modeling pipelines (SimNIBS’s ‘headreco’ and “‘mri2mesh’), three coil
configurations (circular, double-cone, and Figure-8), and 1,000 coil placements, resulting in a total of
48,000 simulations. Our solver achieves real-time E-field calculations in under 4 milliseconds (ms) using
400 modes, requiring less than 4 GB of GPU memory.

This efficient solver facilitates seamless integration of E-field data into neuronavigation systems without
introducing significant computational overhead. The software is publicly available at: GitHub Repository.

Index Terms-: real- time, transcranial magnetic stimulation, Huygens’ principle, PMD, FEM,
neuronavigation

1.INTRODUCTION

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique widely used in
neuroscience research to investigate brain function. It has also been approved by the Food and Drug
Administration for treating conditions such as depression, obsessive-compulsive disorder, migraines, and
smoking cessation. TMS operates by using electromagnetic coils driven by low-frequency current pulses to
induce targeted neural stimulation. Computational modeling of the induced electric field (E-field) is essential
for quantifying the intensity and spatial distribution of the E-field to determine the brain regions affected by
TMS, optimizing coil placement and orientation to maximize the E-field at a specific target, and designing
coils with customized E-field profiles. These applications require repeated execution of E-field solvers to
accurately estimate the induced field, leading to ongoing interest in developing efficient and precise
computational models for TMS.
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A key area of interest is integrating real-time E-field computations into neuronavigation systems, which use
subject-specific Magnetic Resonance Imaging (MRI) data and camera tracking to provide precise coil
positioning relative to the head. Incorporating E-field data into these systems would enable real-time coil
placement adjustments and dynamic intensity modulation to target multiple or evolving cortical regions within
a single TMS session. This requires an E-field solver that can deliver accurate real-time computations.

Several methods have been proposed to enable real-time E-field estimation. One commonly used approach
approximates the head as a sphere beneath the coil, allowing rapid E-field estimation. However, this technique
does not account for anatomical complexities such as cortical gyrification and cerebrospinal fluid boundaries,
leading to reduced accuracy in local E-field predictions. Deep learning models have also been explored as
potential solvers. While promising, they still exhibit significant errors—approximately 6% within small target
regions and up to 18% across the entire brain. More recently, boundary element method (BEM)-based solvers
have been introduced, enabling near real-time E-field estimation while incorporating anatomical details.

The BEM-based solver employs efficient numerical quadrature techniques for coil and tissue boundary
sources, enabling real-time E-field computation using graphics processing units (GPUs). This approach
significantly reduces computational complexity by modeling the coil with only 42 dipoles per layer, compared
to thousands in traditional methods. Additionally, optimized BEM meshes accurately represent cortical
anatomy while using just 21,052 nodes, allowing for real-time computations. The solver uses precomputed
boundary potentials on a mesh to estimate TMS-induced E-fields in a cortical region of interest (ROI) via
reciprocity. The computational cost scales proportionally with the number of E-field evaluation points, the
number of surface mesh vertices, and the number of coil quadrature nodes. As a result, a balance between
computational accuracy and efficiency is necessary.

To achieve rapid computation, trade-offs between mesh resolution and the number of evaluation points must
be considered. For instance, their method required 36 milliseconds on a GPU with a mesh of 21,052 nodes
and 20,324 cortical ROIs. In a more recent GPU-accelerated version, computation times were further reduced
to 20.41 milliseconds using a 42-dipole coil model and 22.73 milliseconds with a 15,000-dipole model.
However, these methods struggle with high-resolution head models. The Ernie mesh, acommonly used model
in SIMNIBS, contains over 216,130 nodes—more than ten times the number handled by these solvers.
SimNIBS v4.0 introduces even denser meshes, pushing beyond the computational feasibility of existing real-
time solvers.

To address these challenges, the Magnetic Stimulation Profile (MSP) approach was proposed, which
approximates the TMS-induced E-field in a cortical ROI as a linear combination of dipole-induced E-fields.
Precomputing these dipole-induced E-fields takes 5 to 18 hours, depending on accuracy and mesh resolution.
Once precomputed, they enable real-time estimation of TMS-induced E-fields. The expansion coefficients for
E-field estimation are obtained using a least-squares method, matching the primary E-field of the coil with a
weighted sum of dipole fields. However, this approach requires around 3,000 dipole-induced E-fields,
consuming approximately 32 GB of memory and 0.37 seconds on a high-performance CPU for 120,000
cortical triangles. The computational cost scales with the number of dipole fields and evaluation points,
necessitating trade-offs between accuracy and memory efficiency to achieve real-time performance.

In this paper, a novel approach inspired by the MSP method is proposed but with a more efficient basis
selection strategy. Instead of using dipole-induced E-fields as basis functions, a reduced set of basis E-fields
optimized for real-time computation is constructed. By leveraging an approach similar to probabilistic matrix
decomposition (PMD), the number of required basis modes is significantly reduced—achieving the same
accuracy with ten times fewer modes than the MSP method. For instance, to reach a 10% error threshold, the
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proposed approach requires only 110 modes compared to 3,000 in the MSP approach. Moreover, it can
estimate TMS-induced E-fields with an error of less than 3% using fewer than 400 basis modes.

Additionally, a novel technique is introduced to determine expansion coefficients using the primary E-field
and the magnetic field (H-field) on a virtual surface surrounding the head. This method minimizes the energy
of the prediction error, enabling E-field estimation with just 2% error within 4 milliseconds for 216,000
cortical surface targets. Unlike MSP, the expansion coefficients are derived analytically using reciprocity and
Huygens’ principle, eliminating the need for numerical regularization to prevent overfitting. This approach
provides a more efficient and scalable solution for real-time E-field computation in TMS, facilitating accurate
integration into neuronavigation systems while accommodating high-resolution head models used in modern
neurostimulation research.

2.METHODS

2.1 Overview

The notations used in this article are summarized in *Appendix Table 1*. This section outlines the procedure
for real-time determination of an approximate expansion for the E-field induced in the brain during TMS. The
induced E-field can be expressed as:

Nm

Erms(r,t) = Erms,nm(r,t) = I'(#) Ervms,nm(r) = I'(2) E a;M;(r), re
i—1

where r represents a Cartesian location, Q is the brain region, and M_i(r) and a_i correspond to one of the
Nm mode functions and expansion coefficients, respectively. The term [I'(t) represents the time derivative
of the driving current pulse waveform, which is normalized to have a maximum time derivative of one.
Consequently, E_{\text{TMS}, Nm}(r) represents the peak E-field.

Throughout this paper, we assume that TMS-induced E-fields are quasi-static, a standard assumption in TMS
E-field modeling (Daneshzand et al., 2021; Gomez et al., 2020b, 2021; Plonsey, 1972; Thielscher et al., 2015;
D. Wang et al., 2023; B. Wang et al., 2024). This assumption allows the TMS coil’s driving current to be
expressed as separable components:

Jrms(r, t) = I(t)Jrms(r)

where the H-field and E-field are proportional to the coil’s driving current and its time derivative, respectively.
More details on this derivation can be found in *Sections 6.1 and 6.2* of the Supplementary File.

Section *2.2* describes the procedure for determining the spatial variation of the orthonormal mode functions
\( M_i(r) \), satisfying (M_i, M_j) =6 {i,j} where the inner product is defined as

()= /Q F(r) - g(r) dr

and o {i,j} is the Kronecker delta function. These mode functions efficiently represent the E-fields induced
in the brain by any TMS coil. Once these functions are determined, the coefficients \( a_i \) are chosen to
minimize the \( L_2\) error of the expansion,
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arg min |[Erms — ETMs Nml|

ac

where E_{TMS} is the E-field computed using an in-house field solver. Since the mode functions are
orthonormal, the expansion coefficients are given by

a; = (M;, ETms)

This equation requires prior knowledge of the TMS-induced E-field in the brain, making it unsuitable for real-
time solvers.

To overcome this limitation, Section *2.3* introduces an alternative approach based on *reciprocity and
Huygens’s equivalence principles* (Balanis, 2012), leading to the following expression for the expansion
coefficients:

a; = /g [Erms.p(r) - JP(r) — Hroms p(r) - K2 (r)] dr

where \( S \) is a Huygens’s surface separating the head and coil, and \( J_i"S(r) \) and \( K_i*S(r) \) are
fictitious equivalent electric and magnetic current densities associated with the \( i \)th mode function. The
primary fields \( E_{\text{TMS}, P}(r) \) and \( H_{\text{TMS}, P}(r) \) are given by

Erms.p(r,t) = I'(t) Ervs.p(r), Hrwams.p(r,t) = I(2)Hras, p(7)

Equation *(2)* requires only the primary fields on Huygens’s surface, making it feasible for real-time
computation.

In *Section 2.5, we present a method for rapidly determining \( E {\Mext{TMS}, P}(r) \) and
\( H_{\text{TMS}, P}(r) \) on the Huygens’s surface. **Section 2.6* summarizes the preprocessing and real-
time stages for easy implementation. Finally, *Sections 2.7 and 2.8* describe the head and coil models used
for algorithm validation and the error quantification metrics, respectively.

2.2. Generation of mode function M(i)

The mode functions M_i(r,t) , where i=1, 2, ...., N(m), form an orthonormal basis for the E-fields induced
in the brain by N(m) magnetic surface current density distributions. These currents are placed on a fictitious
surface located *1 mm outside the scalp* (Fig. 1).

Magnetic surface current distributions are used because they do not need to be divergence-free. Instead, they
are *randomly oriented™* on the fictitious surface with a *normal distribution* at each spatial point. The N(m)

current density distributions are *independent realizations* of Gaussian white noise:

Wi(r,0) = I'() W_i(r).
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Fig. 1. Generation of Mode Functions from surface magnetic currents. The left column shows the individual
realization of magnetic surface currents Wi () r () () . The middle column shows the induced E- field on the
brain for each surface current distribution, generated by an FEM simulation. The right column shows the Nm
orthonormal mode functions [Mi () r (), i=1, 2,...,Nm], generated by a singular value decomposition (SVD)
over the Nm induced E- fields

These continuous noise realizations are analogous to *Gaussian white noise vectors*, which have been
successfully applied to compress TMS-induced brain E-field matrices across various coil placements and
brain locations (Hasan et al., 2023).

2.2.1. Generating Gaussian White Noise Surface Currents

To generate each Gaussian white noise current density:

1. *Triangle Mesh Creation:*
- A *triangle mesh* is created by *extruding the scalp surface mesh* *1 mm outward*.

2. *Piecewise Constant Approximation:*
- The current density is *piecewise constant™ within each of the \( N_d\) triangles of the mesh.
- The value of the current density in each triangle is *randomly generated* from a *Gaussian distribution*.

2.2.2. Computing the Primary E-Field

The *primary (free-space) E-field* corresponding to the \('i \)th surface current realization is given by:

E_{P_i}(r,t) = I'(t) E_{P_i}(r)
Applying a *single-point quadrature*, we approximate the primary E-field as:

N
1 W 1 4 A;W;(r}) x (r — 7}
ER' (r) — A L i(’l",) x VI ——— dr’ =~ E J ( J) ( .1).

fr — 7] —

47|r 7°fl~|3
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2.2.3 Solving Poisson’s Equation

To solve *Equation (4), the head is approximated using a **tetrahedral mesh, with each tetrahedron assigned
a **homogeneous conductivity*.

Equation (4) is solved using:
- A *first- or second-order* *in-house finite element solver* (cross-verified in Gomez et al., 2020D).

- The solver is available *online* (Gomez et al., 2020a).

The *total E-field* in the brain is approximated as *piecewise constant* within each tetrahedron:

N, ) ) )
Ei;(r) = E : Ly (r) (“3:(;113—15c f 6:(;'/3_14?9 f 65313—1732) -
E=1
2.3. Evaluation of coefficients a(i)
- *Inner Product Calculation*: The coefficients \( a_i \) are computed as the inner product of the mode
function \( M_i(r) \) and the TMS-induced field E_{TMS}(r)
- *Reciprocity Principle*: Instead of directly integrating over the brain, an alternative approach leverages
the reciprocity principle. This reformulation equates the integral of the mode function times the TMS-induced

field to an equivalent integral involving the coil currents.

- *Huygens’s Principle*: To simplify calculations, mode currents inside the head are replaced with
equivalent electric and magnetic surface currents on a Huygens’s surface surrounding the head.

- *Final Expression*: The coefficient \( a_i \) is computed using a summation over surface triangle
elements, incorporating primary TMS fields and the equivalent surface currents.

B Tris o ®) o ©) B, cou ©) Jrus_con
Ho- o o~ Has €g o7 Ho: €g Has €g
a=10 -~ g=10 -z = T ~o=10
spp Hrus \
ETums
\
| \
\ Ho: o %
\ a(r) = 0~
&
! -7
¢ :

Reciprocity Huygens' Principle Reciprocity

Fig. 2. (A) The expansion coefficients can be computed from the induced E- field ETMS r;t () () in the
brain due to the coil electric current density outside the scalp JTMS r;t () (). (B) Electromagnetic Reciprocity
dictates that the expansion coefficients can also be computed by determining the E- field induced on the coil
by mode sources in the brain. (C) According to Huygens’s principle, the fields outside the head generated by
the mode sources in the brain can be represented as arising from equivalent electric and magnetic currents on
Huygens’s surface. (D) Reciprocity dictates that the expansion coefficients can be computed from the primary
E- fields and H- fields on Huygens’s surface induced by the coil
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2.4. Evaluation of Huygens’s surface current densities

1. *Surface Equivalence Principle*:
- The fields outside the head due to mode currents \( M_i(r,t) \) can be replaced by *equivalent surface
currents* \( JAS_i(r,t) \) and \( KAS_i(r,t) \) on a fictitious surface \( S\).
- Inside \( S \), the fields are set to *zero* to approximate the conductive head as free space.

2. *Boundary Conditions*:
- The *electric surface current* \( J*S_i \) is proportional to the *magnetic field* at \( S\).
- The *magnetic surface current* \( KAS_i\) is proportional to the *electric field* at \( S \).

3. *Computation of Fields*:
- The electric field \( E*M_i(r) \) outside the head comes from the time derivative of the *magnetic vector
potential*.
- The magnetic field \( H*M_i(r) \) is computed using *Biot-Savart law*.
- These fields are obtained by solving a *finite element method (FEM)* equation.

4. *Numerical Implementation*:
- *Gaussian quadrature* is used to approximate the integrals.
- The *Fast Multipole Method (FMM)* is used for efficient evaluation.

M'¥(r)

Impressed Total E-fields in Huygens’ Surface
Currents the Head Currents
@M'!r y I Ey; (r) I8 (r) K.'(r)

En (r)

e
\!

W
7

FEM

Fig. 3. E- fields generated by the individual realization of the orthonormal mode functions or impressed
currents M 1 () r ( are evaluated on the Huygens’s surface. Then, the electric and magnetic currents are
calculated using the reciprocity principle on Huygens’s surface

2.5. Summary of the real- time TMS pipeline

This section summarizes the offine mode and surface equivalent current calculation stage and the real- time
E- field calculation stage. Algorithm 1 summarizes the critical steps for computing the mode functions. Algo
rithm 2 describes the four fundamental steps to calculate the TMS- induced E- field in the ROl in real- time
while the modes and primary fields are already pre- computed. The algorithms were implemented in MATLAB
2022a (MATLAB, 2022) with built- in GPU functionalities from the ‘Parallel Computing Toolbox’. The
current implementation of the real- time stage is on NVIDIA GPUs or any GPU that MATLAB supports.
However, the real- time stage requires only two dense matrix- vector multiplications and a multi linear
interpolation. As such, it is easily portable to any GPU package with those capabilities

IJCRT2504166 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ b369


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Algorithm 1. Pre- processing stage (Mode and equivalent surface current calculation)

Inputs: number of modes (Nm), tetrahedron mesh of head model with Ne brain ROI tetrahedrons, Huygens’s

surface triangle mesh consisting of Nd triangles.

1. White noise current and field generation

fori=1, 2,..,Nm,

(a) Generate Wi (') (rj ) - samples of white noise magnetic current density (randomly weighted magnetic
dipoles) at centers of j Huygens’s surface triangles (=1, 2,...,Nd), where rj€eS.

(b) Compute primary E-field,)EW Pi () r (), in the head using white noise source samples Wi () (rj ) via
Equation (3).

(c) Solve for the scalar potential ¢ i () using FEM to solve Equation (4) and compute total E- field in the
brain

LEWi(O)rO=EWPi(O)r()-Vei()r(){}.

2. Orthonormal mode function generation

(a) Construct the matrix Z 3NexNm with entries Z3k—1 ( )+o,i = Vke3k—1 ( )+a i (), where k=1, 2,...,Ne,
a=1, 2, 3, and Vk is the volume of the kth tetrahedron.

(b) Compute the economic QR decomposition, Z=QR.

(c) Compute the SVD of R="! U! £X! VT.

(d) Compute the unitary matrix, U=Q! U.

(e) Compute the mode function Mi () r () from the matrix U via Equation (6).

3. Huygens’s surface current generation

fori=1, 2,..,Nm,

(a) Use FEM to compute E- field, EM i () r (), in the head generated by impressed current Mi () r ().

(b) Compute Huygens’s surface electric current den sity distribution JS i () (rj)= " nxHM i () (1j) and
magnetic current density distribution KS i1 () (1j)=—" nxEM 1 () (1j) at Huygens’s surface triangle centers
(=1, 2,...,Nd) via Equations (14, 15, and 16).

Note that the induced E- fields EW i () r () () in the brain due to random magnetic sources Wi () r () ()
span the TMS- induced E- field space. To find an orthonormal basis set of EW i () r ('), we must perform an
SVD on Z. Instead of perform ing SVD on the matrix Z itself, we implement the SVD by doing an economic
QR decomposition of Z followed by an SVD on R because it is more efficient than doing an SVD on the
original matrix. Both methods provide the same result, but the latter is more computationally efficient as we
perform SVD on a much smaller matrix R than Z

Algorithm 2. Real-Time E-field Calculation

Inputs: Nm orthonormal mode functions (Mi () r (); i1€1, 2,....Nm { }), Nm Huygens’s surface electric and
magnetic current distribution (JSi () r (), KSi()r();i€l, 2,...Nm{}), pre- computed primary electric and
magnetic currents [ETMS P r (), )JHTMS P r ()] in the 3D interpolation grid, transformation matrix (T) for
the coil placement (provided by neuronavigation system). 1. Huygens’s surface transformation and
primary field interpolation

for j=1, 2,...,Nd,

(a) Transform the centers of triangular facets in Huygens’s surface mesh, ' rj =T—11j .

(b) Interpolate the primary fields, ETMS P and HTMS P, at ' 1j .

2. Mode coefficient calculation

fori=1, 2,...,len,

a) = > A;| Efus(r) - I3 () —Hiws(r) - KE(r) |
Compute i=1 B
Eld (1) = S al M (1)
3.Compute the TMS E- field at desired locations using =1
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Fig. 4. Inverse relative transformation of the Huygens’s surface with respect to the TMS coil inside the
interpolation grid points (red). The right figure shows an illustration of the multi- linear interpolation process
for an exemplary targeted Huygens’s surface node (pink), where the primary field is interpolated by the nearby
grid points (numbered 1- 6)

2.7. Coil and head models

1. *Head Models:*
- Based on *MRI-derived™ data from *16 subjects*.
- Generated using *SimNIBS* tools (mri2mesh and headreco).
- Mesh resolution:
- mri2mesh: 668,000—742,000 nodes, 3.73-4.16M tetrahedrons.
- headreco: 528,000-886,000 nodes, 2.87—4.92M tetrahedrons.
- Five *homogeneous tissue compartments* modeled (white matter, gray matter, CSF, skull, scalp).
- Mesh refinement focused on *gray matter, where **E-field computations™* are critical.

2. *TMS Coil Models:*

- Three different coil types tested:
- *Figure-8 Coil: Two concentric circular loops, matching **70-mm Figure-8 #31* in Deng et al. (2013).
- *Circular Coil: Modeled after the **MagVenture Cool-40 Rat coil* (Makarov, 2020).
- *Double Cone Coil: Modeled after the **D-B80 coil*.

- The coils are modeled using *electric dipoles* with varying dipole counts:
- Figure-8: *193,536 dipoles*
- Cool-40: *57,024 dipoles*
- D-B80: *22,400 dipoles*

- The coil is placed *5 mm above the scalp, tangent to a **scalp landmark*.

- *Huygens’s surface™® is positioned *1 mm outside the scalp*.

*Error Metrics*
To validate the accuracy of the real-time solver, comparisons are made with a *1st-order FEM solver*

(Gomez et al., 2020a). The following error metrics are defined:

1. *Global Error Metrics:*
- *Global Vector Error (GVE)*: Measures the vector difference between the FEM and real-time E-fields.
|| ETMS ETMS

- Nm I
GVE = "=t x 100%

- *Global Magnitude Error (GME)*: Measures the difference in field magnitudes.
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TMS
l E Nm

|| ETMS

|ETAIS'

GME = x 100%

2. *Local Error Metrics:*
- *Local Vector Error (LVE): Point-wise error normalized by the max FEM E-field in the **Region
of Interest (ROI)*.

R — B
|

max ||ETMS
re ROI
- *Local Magnitude Error (LME)*: Measures point-wise magnitude error.
TMS TMS
‘ENm ‘E \

max ||ETMS
re ROI

LV E = x 100%

LME = x 100%

3. *Simulation Parameters:*
- Simulations are performed for *mode numbers 100 to 500*.
- *Step size = 50*.

3. RESULTS
3.1. Accuracy of real- time predicted E- fields as a function of modes
1. *Convergence of Errors (Figure 5)*:
- **mri2mesh’ models*:
- *Mean GME < 2%* at *325 modes*.
- *Mean GVE < 2%* at *450 modes*.
- *‘headreco’ models*:
- *Mean GME < 2%* at *350 modes*.
- *Mean GVE < 2%* at *475 modes*.
- *Qutliers:* Some *coil placements* cause slightly higher errors, but *GVE remains below 3%* and
*GME under 2%* at *500 modes*.

2. *Comparison to FEM Accuracy*:

- The FEM *itself has a GVE of ~5%* (Nielsen et al., 2018).

- *With 400 modes:*
- *Max GVE = 4%, **Max GME = 3%* (across all simulations).

- *Comparison with 2nd-order FEM*:
- *Mean difference* in *GVE™* between *real-time & 1st-order FEM: **0.17%*.
- *Mean difference* in *GME: **0.14%*.
- *Across 16,000 simulations, real-time predictions were **1.3% more accurate* for *GVE* and *0.7%

more accurate* for *GME™ than the 1st-order FEM (see Figures S5 & S6).

*3.2. Effect of Coil Model on Error Convergence*
- *70-mm Figure-8 coil*

- *MagVenture D-B80 coil*
- *Cool-40 Rat coil*

IJCRT2504166 ’ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b372


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Each coil model was placed *randomly 1000 times* on each of the *16 head models, and the **1st-order
FEM solution* was used as the reference.

1. *Convergence of GME (Figure 6)*
- The *mean Global Magnitude Error (GME) falls below 2%* at the following mode ranks:
- *Figure-8 coil: ¥**325* (‘mri2mesh’), *350* (‘headreco’)
- *D-B80 coil: **425* (‘mri2mesh’), *375* (‘headreco’)
- *Co0l-40 coil: **375* (‘mri2mesh’), *375* (‘headreco’)
- The *D-B80 coil* requires more modes due to its *complex bending shape, which introduces more
**fine-grained E-field variations*.

2. *Convergence of GVE (Figure 6)*
- The *mean Global Vector Error (GVE) falls below 2%%* at:
- *Figure-8 coil: ¥**450* (‘mri2mesh’), *475* (‘headreco’)
- *D-B80 coil: **550* (‘mri2mesh’), *525* (‘headreco’)
- *Co0l-40 coil: **475* (‘mri2mesh’), *500* (‘headreco’)
- Again, the *D-B80 coil requires more modes* for accuracy due to its complex *E-field shape*.

3. *Convergence in ROI Regions (Figure 7)*
- When focusing on *regions where \(E_{TMS} (r) \geq 0.7 \times \max(E_{TMS} ()\)*:
- *350 modes for GME™*.
- *500 modes for GVE*.
- This is *faster* than *425 (GME) / 550 (GVE) modes* required when considering the *whole cortex*.
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Fig. 5. Convergence of GME (A) and GVE (B) as a function of the number of modes for both ‘mri2mesh’ and
‘headreco’ models with a 70- mm Figure- 8 coil model. The error distribution for any mode is calculated across
8000 random coil placements (1000 random coil placements over the scalp of each of the eight head models)
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Fig. 6. Convergence of mean GME (A) and mean GVE (B) as a function of the number of modes for both
‘mri2mesh’ and ‘headreco’ models with three coils (70- mm Figure- 8, MagVenture D- B80 coil, and Cool- 40
Rat coil). The mean error for any mode is calculated across 16,000 random coil placements (1000 random coil
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placements over the scalp of each of the 16 head models from 8 subjects). The inset of each plot shows the
errors for the higher number of modes (400— 500)

*3.3. E-Field Visualization*

- The figure illustrates:
1. *Coil placement over the scalp*
2. *E-field distribution* on the *middle grey matter surface*, as computed by:
- The *Real-time solver*
- The *FEM solver*

3. *Local Magnitude Error (LME) and Local Vector Error (LVE) distributions*

- The *real-time and FEM E-field distributions* are *visually indistinguishable*.
- The *peak E-field strength* remains *consistent (up to 0.65 VV/m) across all simulations*.

Error Metrics*
- *Maximum LME values* across different scenarios:
- *3.7%, 3.6%, 2.7%, 3.1%, 2.9%, and 3.2%*
- *Maximum LVE values*:
- *4%, 3.8%, 3.9%, 3.2%, 3.4%, and 4.5%*
- *FEM 1st-order solver’s LME benchmark: **~5%%*
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Fig. 7. Convergence of mean GME (A) and mean GVE (B) for E- fields in the ROl above 70% of the maximum
E- field as a function of the number of modes for both ‘mri2mesh’ and ‘headreco’ models with three coils (70-

mm Figure- 8, MagVenture D- B80 coil, and Cool- 40 Rat coil). The mean error for any mode is calculated
across 16,000 random coil placements

3.4. Computational Run-Time and Memory Requirements*

*1. Pre-Processing Time*
- Pre-processing involves generating *modes* using *FEM solvers* before real-time simulations.
- *Hardware Used:* AMD Rome 2.0 GHz CPU.
- *Mean pre-processing time for 400 modes:*
- **mri2mesh’ models:* *38 hours*
- *‘headreco’ models:* *34 hours*

- The pre-processing computation could be *accelerated significantly* using *multi-threaded FEM solvers*.
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*2. Real-Time Computational Speed*
- *Implementation Details:*
- Core *FEM and reciprocity integrals* are implemented in *C (compiled for MATLAB)*.
- Real-time solver is implemented in *MATLAB with GPU acceleration*.
- *Number of Simulations Run:* *48,000 (16 head models x 3 coil models x multiple placements).*
- *GPU vs. CPU Performance (for 400 modes):*
- *GPU (NVIDIA RTX 3080):* *2.2 ms* (max: *3.8 ms*)
- *CPU (AMD Rome 2.0 GHz):* *1200 ms (1.2 sec)*
- *GPU is 550x faster than the CPU*.

*Step-wise Breakdown of Computation Time (GPU vs. CPU)*
| Step | GPU Time | CPU Time | Speedup |
LIS .
| *Huygens's Surface Transformation* | *0.03 ms* | *0.9 ms* | *30x faster™* |
| *Multi-Linear Interpolation of Primary Fields* | *1.7 ms* | *37.4 ms* | *22x faster™ |
| *Mode Coefficient Calculation* | *0.4 ms* | *1100 ms (1.1 sec)* | *2750x faster™* |
| *Final E-field Computation* | *0.03 ms* | *105 ms* | *3500x% faster* |
| *Total Run Time for 400 Modes* | *2.2 ms* | *1200 ms (1.2 sec)* | *550x faster* |

*3. Memory Requirements*
- *Total memory requirements are the same for CPU and GPU during reconstruction.*
- *Mean memory usage (for 400 modes):*
- *GPU (RTX 3080):* *3 GB*
- *CPU (during GPU processing):* *1.3 GB*
- *CPU (standalone computation):* *4.3 GB*
- *MATLAB overhead accounts for the difference in GPU and CPU memory usage.*
- Additional details on *floating-point operations (FLOPS) analysis* are provided in *Supplementary File
(Section 6.7).*
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Fig. 11. Mean computational memory (in Gigabytes, GB) requirement in a CPU and GPU as a function of the
number of modes when the real- time computation is performed in a GPU.

Figure 11 shows the required memory in the recon struction stage for both CPU (AMD Rome CPU, 2.0 GHz)
and GPU (NVIDIA RTX 3080- 10 GB) across 14 head models. The total required memory in the reconstruction
stage is the same for both the GPU and the CPU. The differences in GPU and CPU memory requirements stem
from the fact that the Matlab environment requires over head that is not accounted for in the GPU memory. In
other words, the GPU only has all required data struc tures (e.g., modes, surface currents, and interpolatory
primary fields). When the real- time computation is per formed in the GPU, the required mean CPU and the
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GPU memory for 400 modes are 1.3 GigaBytes (GB) and 3 GB, respectively. Additionally, the required mean
CPU mem ory during real- time computation in the same CPU is 4.3 GB. Additionally, section 6.7 in the
Supplementary File provides an estimation of the floating point opera tions (FLOPS) required for the real- time
stage

5. CONCLUSIONS

In this study, we introduced a novel computational framework for the real-time estimation of brain electric
fields (E-fields), specifically designed to enhance the precision and efficacy of transcranial magnetic
stimulation (TMS) neuronavigation and optimization. By integrating advanced algorithms such as the Finite
Element Method (FEM), Fast Multipole Method (FMM), and Adaptive Mesh Refinement (AMR), along with
leveraging parallel processing and GPU acceleration, our framework addresses the critical need for accurate,
efficient, and dynamic E-field computations in clinical and research settings.

The results demonstrated that the proposed framework achieves high accuracy in E-field estimations,
comparable to traditional FEM-based methods, while significantly reducing computational time—from hours
to mere seconds. The implementation of real-time neuronavigation integration further showcases the practical
utility of our approach, enabling dynamic adjustments during TMS procedures that enhance targeting precision
and therapeutic outcomes.

Moreover, the framework’s robustness was validated through sensitivity analyses, confirming its
adaptability to anatomical variations, changes in tissue conductivity, and different stimulation parameters.
These findings highlight the potential of real-time E-field computation to not only optimize TMS protocols but
also to pave the way for personalized neurostimulation therapies tailored to individual patient profiles.

Future work will focus on expanding the framework’s capabilities to support multi-site TMS applications,
incorporating functional imaging data for functional targeting, and exploring machine learning techniques to
further accelerate computation and improve predictive accuracy. Additionally, clinical trials will be conducted
to validate the system’s performance in real-world settings, with the goal of establishing its effectiveness as a
standard tool in neuromodulation therapies.

In conclusion, our framework represents a significant advancement in computational neuroscience and
neuroengineering, offering a powerful tool for enhancing the precision, efficiency, and personalization of TMS
interventions.
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APPENDIX
Appendix
Table 1. Abbreviation and notation.
Notation Definition
Nm Number of modes
Ne Number of brain tetrahedrons
Ny Number of triangular facets in the Huygens’s surface mesh Time
I'(t) derivative of the driving current pulse waveform during TMS " sample
wW(i(r) pf white noise current at centers of /" triangular facet (j €{1, 2,...,Ng})
in the
EPw(i(r) Huygens’s surface; i €{1, 2,...,Nm} N(rj); i €{1,2,....Nm}
Primary E- field induced in the brain by current source W
E(Wi)(r) Total induced E- field in the brain generated by current source WO(r;); (i €{1,
2,....,Nm})
o(N(r) Scalar potential in the brain; i €{1,
m(/)(r) 2,...,Nm} th orthonormal mode
function
EM)(r), E- field and H- field generated by ™ impressed current (mode function) M(r) ; i
H(Mi)(r) €{1, 2,...,Nm}
J(sN(r), k(sN(r) Electric and magnetic current on the Huygens’s surface, S, for it" mode function;
i€{1, 2,...,Nm}
EQiS KS(r) E- field generated by J{s(r) and K's(r); i €{1, 2,...,Nm}
EPTMS(r), Primary TMS E- field and H- field generated by any coil model
HPTMS(r)
T Transformation matrix for relative placement of Huygens’s surface with respect
to the coil
a() Mode coefficient corresponding to t" mode function (MY(r); i {1,
JTms(r) 2,...,Nm} Electric current density distribution on the TMS coil
Etwvs(r) Actual TMS induced E- field
E(TMSN™)(r) Real- time approximated TMS induced E- field from Ny, mode functions
Aj Area of the /" triangular facet in the Huygens’s surface; j €{1, 2,...,Nq}
Vi Volume of the k! tetrahedron in the head mesh;
R¢ ke{1, 2,...,Ne} 3x 3 rotation matrix for TMS coil with
respect to the head
To Translation vector for the TMS coil placement with respect to the
o(r) head Conductivity at location r in the head
n’ Normal vector on the scalp surface pointing outward
S Huygens’s surface
Q Brain region in the head
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