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Abstract: The study of large-scale structures in the universe is fundamental to understanding cosmic 

evolution. In this paper, I explore the role of massive neutrinos in structure formation, with a particular focus 

on Jeans mass calculations and the implications for dark matter models. Using analytical derivations and 

computational analysis, I examine the Jeans wave number in different relativistic regimes and discuss the 

significance of fluctuations in the neutrino sphere. My findings highlight the impact of neutrino mass on the 

growth of cosmic structures and provide insights into the mixed dark matter model.  

 

Keywords - Massive neutrinos, hot dark matter (HDM), cold dark matter (CDM), Jeans mass, large-scale 

structure formation, gravitational instability, structure growth, cosmic evolution 

 

Introduction  
 The formation of cosmic structures remains one of the central problems in modern cosmology. The 

composition of dark matter plays a crucial role in determining the characteristics of these structures. Two 

primary models of dark matter have been proposed: hot dark matter (HDM) and cold dark matter (CDM). In 

this paper, I investigate the role of massive neutrinos, a leading HDM candidate, in structure formation by 

analyzing their effect on Jeans mass and wave numbers (Weinberg, 1972; Kolb & Turner, 1994).  

 

Theoretical Background  
 Jeans mass calculations provide insight into the ability of a region of gas or particles to collapse under self-

gravity. The Jeans wave number is derived from gravitational instability criteria, and its behavior in relativistic 

and non-relativistic regimes determines the formation of structures in the universe. Neutrinos, due to their 

relativistic nature in the early universe, contribute significantly to these calculations (Planck Collaboration, 

2020).  

 

Jeans Mass for Neutrinos  
 The mean occupation number of the neutrino background in the standard big-bang model as a function of 

momentum 𝑝 and timed 𝑡 is, 

 

𝑑𝑛𝑣 =
𝑔𝑣

ℎ3

𝑑3𝑝

(𝑒𝑝𝑐/𝐾𝑇 + 1)
                                                                (1) 

 

which is valid even in the non-relativistic regime, where it is neither fermi Dirac nor degenerate. 

 Here, K is Boltzmann's constant, T is Temperature, and 𝑔𝑣 is the spin-degeneracy equal to 2 for each 

species of Majorana neutrinos ( 𝑣 − 𝑣‾ pair) and 4 for Dirac type. 

 

 ∴ ⟨𝑛⟩ = ∫  
∞

0

 𝑑𝑛
 

http://www.ijcrt.org/


www.ijcrt.org                                                              © 2025 IJCRT | Volume 13, Issue 3 March 2025 | ISSN: 2320-2882 

IJCRT2503549 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org e807 
 

    

= ∫  
∞

0

 
𝑔𝑣

(𝑒𝑝𝑐/𝐾𝑇 + 1)
.
4𝜋𝑝2𝑑𝑝

ℎ3
                                                     (2) 

 

 Substituting    
𝑝𝑐

𝐾𝑇
= 𝑦,  we get, 

 ⟨𝑛⟩ =
4𝜋𝑔𝑣

ℎ3
(

𝐾𝑇

𝑐
)

3

∫  
3

0

 
𝑦2𝑑𝑦

(𝑒𝑦 + 1)
 

    

=
4𝜋𝑔𝑣

ℎ3
(

𝐾𝑇

𝑐
)

3

Γ(𝑘) η(𝑘)                                                             (3) 

 

 Where, η(𝑘) is the Reimann-Eta function and Γ(𝑘) is the Gamma function. 

 

 Putting,  y =
𝑝𝑐

𝐾𝑇
=

𝑚𝑐2

𝐾𝑇
= (

1 + 𝑍𝑁𝑅

1 + 𝑍
) 

 
 Where, 𝑍 is red-shift and m is the rest  mass of neutrino, we have 

 

⟨𝑛⟩ =
8𝜋𝑔𝜈𝜂(𝑘)

ℎ3
(

𝑚𝑐

𝑥
)

3

                                                              (4) 

 

 Now, the general expression for energy is: 

 

𝐸 = 𝑚rel𝑐
2 = (𝑝2𝑐2 + 𝑚2𝑐4)1/2 

 

or, 𝑚rel =
(𝑝2𝑐2 + 𝑚2𝑐4)1/2

𝑐2
                                                (5) 

 

 Also, the momentum is given by, 

𝑝 = 𝑚rel𝑣 =
𝑚𝑣

√1 − 𝑣2/𝑐2 

 

or,   𝑣 =
𝑝𝑐2

(𝑝2𝑐2 + 𝑚2𝑐4)1/2
                                                       (6) 

 

 As derived earlier, the Jeans wave number is given by, 

 

𝐾𝐽 =(
4𝜋𝐺𝜌

𝑣2
)

1

2

 = (4𝜋𝐺)
1

2  
[𝑚𝑟𝑒𝑙⟨𝑛⟩]

1

2

𝑉

 = [4𝜋𝐺⟨𝑛⟩]
1

2  .  
(𝑝2𝑐2 + 𝑚2𝑐4)1/4

𝑐
 .  

(𝑝2𝑐2 + 𝑚2𝑐4)1/2

𝑝𝑐2

 

=  
[4𝜋𝐺⟨𝑛⟩]

1

2

𝑐3
  .  

(𝑝2𝑐2 + 𝑚2𝑐4)3/4

𝑝
                                         (7) 

 

 So, the expectation value of the Jeans wave number is given by, 

 

⟨𝐾𝐽⟩ =
𝑔𝑣

⟨𝑛⟩
∫  

∞

0

 
𝐾𝐽

(𝑒𝑝𝑐/𝐾𝑇 + 1)

4𝜋𝑝2

ℎ3
𝑑𝑝 
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= (
4𝜋𝐺

⟨𝑛⟩
)

1/2 4𝜋𝑔𝑣

(𝑐ℎ)3
∫  

∞

0

 
𝑝 𝑑𝑝 (𝑝2𝑐2 + 𝑚2𝑐4)3/4

(𝑒𝑝𝑐/𝐾𝑇 + 1)
 

 

= (
4𝜋𝐺

⟨𝑛⟩
)

3/2 4𝜋𝑔𝑣

(𝑐ℎ)3
(

𝐾𝑇

𝑐
)

2

 
𝑦 𝑑𝑦 (𝑦2𝐾2𝑇2 + 𝑚2𝑐4)3/4

(𝑒𝑦 + 1)
                 [ ∵ 𝑦 =

𝑝𝑐

𝐾𝑇
 ] 

 

= (
2𝜋

𝑐ℎ
)

3/2

(
𝑔𝜈𝐺

𝜋 𝜂(𝑘)
)

1/2

(
𝑚𝑐

𝑥
)

2

∫  
∞

0

 
𝑦 𝑑𝑦 (𝑦2 + 𝑥2)3/4

(𝑒𝑦 + 1)
                                                                           (8) 

 

[∵ Putting,  𝑥 =
𝑚𝑐2

𝐾𝑇
 and substituting for ⟨𝑛⟩ from (4)] 

 

 Since, 𝑚𝑝𝑙. = Planck mass = (
𝑐ℎ

2𝜋𝐺
)

1/2

 

 

=
1

√𝐺
   for  [𝑐 =

ℎ

2𝜋
= 1] ,     we have, 

 

 

⟨𝐾𝐽⟩ =
0.6 𝑔𝑣

1/2

𝑚𝑝𝑙
 
𝑚2

𝑥2
 ∫  

∞

0

 
𝑦 𝑑𝑦 (𝑦2 + 𝑥2)3/4

(𝑒𝑦 + 1)
 

 

=
0.6 𝑔𝑣

1/2

𝑚𝑝𝑙
 
𝑚2

𝑥2
  ∫  

∞

0

  [
𝑦 𝑑𝑦 𝑥3/2

(𝑒𝑦 + 1)
(1 +

𝑦2

𝑥2
)

3/4

] 

 

=
0.6 𝑔𝑣

1/2

𝑚𝑝𝑙
 
𝑚2

𝑥2
  ∫  

∞

0

  [
𝑦 𝑑𝑦  𝑥3/2

(𝑒𝑦 + 1)
 {1 +

3

4
(

𝑦2

𝑥2
) +

3

4
(

3

4
− 1)

2!
(

𝑦2

𝑥2
)

2

+ ⋯ … … … . . . . . }] 

 
 

 =
0.6 𝑔𝑣

1/2

𝑚𝑝𝑙
 
𝑚2

𝑥2
 [𝑥3/2 ∫  

∞

0

 
𝑦𝑑𝑦

(𝑒𝑦 + 1)
+

3

4𝑥1/2
∫  

∞

0

 
𝑦3𝑑𝑦

(𝑒𝑦 + 1)
−

3

32𝑥5/2
∫  

∞

0

 
𝑦5𝑑𝑦

(𝑒𝑦 + 1)
]

 [ ∵  Neglecting other higher order terms] 

 

 
 

∴  ⟨𝐾𝐽⟩ =
0.6 𝑔𝑣

1/2 𝑚2

𝑚𝑝𝑙
 [

1

𝑥1/2
∫  

∞

0

 
𝑦𝑑𝑦

(𝑒𝑦 + 1)
+

3

4𝑥5/2
∫  

∞

0

 
𝑦3𝑑𝑦

(𝑒𝑦 + 1)
−

3

32𝑥9/2
∫  

∞

0

 
𝑦5𝑑𝑦

(𝑒𝑦 + 1)
]          (9)

 

     

 Similarly, 

⟨𝐾𝐽
2⟩ =

0.64 𝑔𝑣 𝑚4

𝑚𝑝𝑙.
2  𝑥4

∫  
∞

0

𝑑𝑦
(𝑦2 + 𝑥2)3/2

(𝑒𝑦 + 1)
 

 

or,             ⟨𝐾𝐽
2⟩ =

0.64 𝑔𝑣 𝑚4

𝑚𝑝𝑙
2   𝑥4

∫  
∞

0

[  
𝑑𝑦 𝑥3

(𝑒𝑦 + 1)
(1 +

𝑦2

𝑥2
)

3/2

] 

 

=
0.64 𝑔𝑣 𝑚4

𝑚𝑝𝑙
2  𝑥4

∫  
∞

0

[
𝑑𝑦 𝑥3

(𝑒𝑦 + 1)
 {1 +

3

2
(

𝑦2

𝑥2
) +

3

2
(

3

2
− 1)

2!
(

𝑦2

𝑥2
)

2

+ ⋯ … … … … … }] 
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=
0.64 𝑔𝑣 𝑚4

𝑚𝑝𝑙
2  𝑥4

[𝑥3 ∫  
∞

0

 
𝑑𝑦

(𝑒𝑦 + 1)
+

3𝑥

2
∫  

∞

0

 
𝑦2𝑑𝑦

(𝑒𝑦 + 1)
+

3

8𝑥
∫  

∞

0

 
𝑦4𝑑𝑦

(𝑒𝑦 + 1)
] 

[∵  Neglecting other higher order terms ] 
 

∴  ⟨𝐾𝐽
2⟩ =

0.64𝑔𝜈𝑚4

𝑚𝑝𝑙
2 [

1

𝑥
∫  

∞

0

 
𝑑𝑦

(𝑒𝑦 + 1)
+

3

2𝑥3
∫  

∞

0

 
𝑦2𝑑𝑦

(𝑒𝑦 + 1)
+

3

8𝑥5
∫  

∞

0

 
𝑦4𝑑𝑦

(𝑒𝑦 + 1)
]                            (10)  

  

 From equation (8), we se𝑒 that ⟨𝐾𝐽⟩ varies as x−2 i.e. as (1 + z)2 in extreme relativistic (ER) regime, where 

𝑦2 ≫ 𝑥2 and it varies as 𝑥−1/2 i.e., as (1 + 𝑧)1/2 in non-relativistic (NR) regime. In the semi-relativistic 

regime, the integrals involved are to be calculated numerically. For a range of 𝑥 = 0 to 10 , the values of ⟨𝐾𝐽⟩ 
have been calculated using computer programs. The values of some required integrals have been shown in 

appendix. 

 We construct a table containing the values of Jeans wave numbers, ⟨𝐾𝐽⟩ in the units of 𝑔𝑣
1/2𝑚2/𝑚𝑝𝑙 and 

their variances for different values of 𝑥.  

 Jeans mass calculations provide insight into the ability of a region of gas or particles to collapse under self-

gravity. The Jeans wave number is derived from gravitational instability criteria, and its behavior in relativistic 

and non-relativistic regimes determines the formation of structures in the universe. Neutrinos, due to their 

relativistic nature in the early universe, contribute significantly to these calculations (Planck Collaboration, 

2020).  

 

Methodology  
 I employ analytical derivations and numerical computations to evaluate the Jeans wave number. This 

involves calculating the mean occupation number of the neutrino background, integrating over momentum 

distributions, and considering dependencies on temperature and redshift factors. The computational approach 

includes numerical solutions for Jeans wave numbers across a range of relativistic to non-relativistic 

transitions.  

Results and Discussion   
 Tables and figures are integral to illustrating the computational results. The following sections present 

detailed tables and graphical representations of key findings:  

Table 1 Numerical results for Jeans wave number  

 

S. No. 

𝒙

=
𝒎𝒄𝟐

𝑲𝑻
 

Jeans 

Wave 

Number 

⟨𝑲𝑱⟩ 

⟨𝑲𝑱
𝟐⟩ ⟨𝑲𝑱⟩

𝟐
 

𝚫𝑲𝑱

= [⟨𝑲𝑱
𝟐⟩

− ⟨𝑲𝑱⟩
𝟐

 ]
𝟏/𝟐

 

1. 0.5 7.6878024 61.6004505 59.1023059 1.580 

2. 1.0 2.1218862 4.6126758 4.50240105 0.332 

3. 1.5 1.078892 1.2191037 1.16400795 0.234 

4. 1.6 1.0132675 1.1155140 1.02671103 0.298 

5. 1.7 0.9837282 1.1914502 0.96772118 0.473 

6. 1.8 0.723568 0.762673 0.52355065 0.489 

7. 1.9 0.6575213 0.7037756 0.43233426 0.521 

8. 2.0 0.506950 0.61316159 0.256998302 0.596 

9. 2.1 0.5045928 0.5352585 0.25461389 0.529 

10. 2.2 0.4974203 0.4728567 0.247426956 0.474 

11. 2.3 0.4873574 0.4221+20 0.237510724 0.429 
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12. 2.4 0.47565815 0.3803761 0.226250675 0.392 

13. 2.5 0.4631418 0.3455665 0.21450039 0.362 

14. 3.0 0.401524 0.2350246 0.16122156 0.271 

15. 3.5 0.367451 0.1777806 0.13502039 0.206 

16. 4.0 0.3136534 0.1434183 0.09837846 0.212 

17. 4.5 0.2845715 0.1206111 0.08098099 0.199 

18. 5.0 0.2622770 0.1043625 0.06878596 0.188 

19. 5.5 0.2433645 0.092174 0.05922629 0.181 

20. 6.0 0.2283643 0.0826696 0.05215029 0.171 

21. 6.5 0.215835 0.07503398 0.04658512 0.168 

22. 7 0.2051948 0.0687532 0.0421049 0.163 

23. 7.5 0.196025 0.06348756 0.03844256 0.158 

24. 8.0 0.1880235 0.05900347 0.03535284 0.153 

25. 8.5 0.809647 0.05513470 0.03274825 0.149 

26. 9.0 0.1746786 0.0517598 0.03051262 0.145 

27. 9.5 0.1690339 0.04878393 0.02857246 0.142 

28. 10.0 0.1639282 0.04614839 0.02687250 0.138 

 

 Now, a graph is plotted between 𝛥𝐾𝐽 versus 𝑥. 

Where, 

𝛥𝐾𝐽 = Deviation between ⟨𝐾𝐽
2⟩ and ⟨𝐾𝐽⟩

2
 under square root. 

𝑥 = Reciprocal of red-shifts  

 
Figure 1 Graphical representation of 𝛥𝐾𝐽 variations. The plot illustrates the variation of 𝛥𝐾𝐽 with 𝑥. It is 

observed that for 𝑥 in the range of 1.5 to 2.5, 𝛥𝐾𝐽 exhibits fluctuations, while beyond this range, it remains 

nearly constant.  
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 My results demonstrate a clear dependence of Jeans wave number on the neutrino mass and redshift. Key 

observations include: 

1. The Jeans wave number varies as 𝑥−2 in the extreme relativistic regime and 𝑥−1/2 in the non-

relativistic regime. 

2. A significant fluctuation in 𝛥𝐾𝐽 is observed in the transition range 𝑥 ∼ (1.5 to 2.5) indicating a broad 

spectrum of neutrino spheres. So a wide spectrum of the neutrino spheres may be expected to develop 

at this time. Hence, a variation of the size of the neutrino sphere dating from this time is possible. 

3. Mixed dark matter (MDM) models incorporating both Hot dark matter (HDM) and Cold dark matter 

(CDM) elements offer a more refined understanding of structure formation (Riess et al., 2021; SDSS 

Collaboration, 2019).   

 

Conclusion  

 Massive neutrinos play a critical role in cosmic structure formation, influencing the Jeans mass and wave 

number in different relativistic phases. The transition from relativistic to non-relativistic states leads to 

observable fluctuations that impact the growth of cosmic structures. These findings support the necessity of 

incorporating neutrino effects into cosmological simulations and dark matter models (The Millennium 

Simulation Project, 2005).  
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Appendix  

 

1. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 1 (𝐼1) = ∫
𝑑𝑦

(𝑒𝑦+1)

∞

0
= 0.69315  

2. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 2 (𝐼2) = ∫
𝑦 𝑑𝑦

(𝑒𝑦+1)

∞

0
= 0.82247 

3. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 3 (𝐼3) = ∫
𝑦2 𝑑𝑦

(𝑒𝑦+1)

∞

0
= 1.803 

4. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 4 (𝐼4) = ∫
𝑦3 𝑑𝑦

(𝑒𝑦+1)

∞

0
= 5.6822 

5. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 5 (𝐼5) = ∫
𝑦4 𝑑𝑦

(𝑒𝑦+1)

∞

0
= 23.331 

6. 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 6 (𝐼6) = ∫
𝑦5 𝑑𝑦

(𝑒𝑦+1)

∞

0
= 118.27 
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