IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Mechanism Design Approach To Resource Allocation And Optimization In Cloud Computing Using Containers

¹Miss.V.SUBASRI ².Mr.A.THAMARAI SELVAN

¹Master of Computer Application, MASS College of Arts and Science, Kumbakonam.

². Assistant Professor Department of Computer Science, MASS College of Arts and Science, Kumbakonam.

ABSTRACT

With the rapid adoption of cloud computing, ensuring efficient, scalable, and cost-effective resource allocation has become a critical challenge. This project introduces a novel optimization model for cloud environments utilizing container technology to enhance data allocation processes. The system focuses on the relationships among Cloud Service Providers (CSPs), tenants, and end-users to provide a holistic solution for optimizing resource allocation and data management.

The proposed model integrates a Profit/Loss Calculator to predict the financial impact of allocation strategies, ensuring cost-effectiveness for tenants while improving CSP profitability. Additionally, the system implements a trust mechanism to evaluate data transfer rates, security, reliability, and anonymized maintenance, safeguarding the data's integrity during the allocation process. The optimizer component intelligently manages resources, making real-time adjustments to meet performance demands without overburdening the cloud infrastructure.

Key features include a Probabilistic Demand Allocation (PDA) system that accurately predicts tenant demands using historical data and optimizes server resource allocation to minimize costs while ensuring Service Level Agreement (SLA) compliance. The system leverages cutting-edge container technology, enabling elastic and scalable operations for real-time applications. This project is implemented

using Java and MySQL, with the frontend powered by Java Swing and the backend employing advanced data processing techniques. The innovative approach enhances cloud resource allocation by addressing critical aspects such as data reliability, security, and energy efficiency. The system also introduces monitoring mechanisms to continuously assess performance and ensure trust in container-based cloud services.

By integrating optimization, trust mechanisms, and predictive analytics, this project offers a comprehensive solution for modern cloud resource management challenges, providing a robust framework for scalable, reliable, and efficient cloud computing.

Keywords: Cloud Computing, Resource Allocation, Container Technology, Predictive Analytics, Trust Mechanism.

INTRODUCTION: Cloud computing has evolved into an essential paradigm that offers scalability, reliability, and cost efficiency for data storage and processing. Cloud service providers (CSPs) generally offer services in the form of Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS), utilizing a pay-as-you-go model. However, the establishment of vast data centers and numerous computing nodes leads to high energy consumption, requiring optimization strategies to enhance profitability while maintaining performance. Recent advancements in cloud processing integrate fog

computing resources with cloud services, forming a hybrid model to efficiently handle demand spikes. This approach employs container-based platforms, ensuring real-time resource elasticity and high efficiency in cloud operations. The proposed project introduces a system that optimizes cloud resource allocation by leveraging container technology, predictive analytics, and cost-effective strategies.

LITERATURE SURVEY

Several studies have explored cloud resource allocation techniques, particularly focusing on optimization, costefficiency, and security enhancements.

Prasad and Rao [1] proposed a mechanism design approach for resource procurement in cloud computing, emphasizing economic models to enhance CSP profitability. Pal and Hui [2] explored pricing and capacity planning models for cloud services, aiming to balance cost-effectiveness and performance.

Kaur and Chana [3] introduced a resource elasticity framework for QoS-aware execution of cloud applications, addressing dynamic workload fluctuations. Li et al. [4] presented a cost and energy-aware scheduling algorithm for scientific workflows, reducing operational costs while maintaining SLA compliance.

Zhu et al. [5] discussed energy-efficient deep reinforcement techniques for traffic grooming in elastic optical networks, which support cloud-fog computing environments. Their approach optimized data transfer processes, improving reliability and reducing power consumption.

Other research efforts have focused on integrating trust mechanisms in cloud environments. Wu et al. [6] proposed QShield, a

multi-user access control system leveraging SGX for secure data queries, ensuring data integrity. Wang et al. [7] introduced an elastic scheduling framework for microservice applications in cloud infrastructures, optimizing real-time resource allocation.

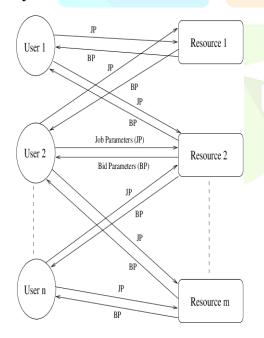
Meng et al. [8] developed a container resource utilization prediction algorithm, CRUPA, which enables auto-scaling based on time-series analysis. Their approach demonstrated improved cloud elasticity and cost savings.

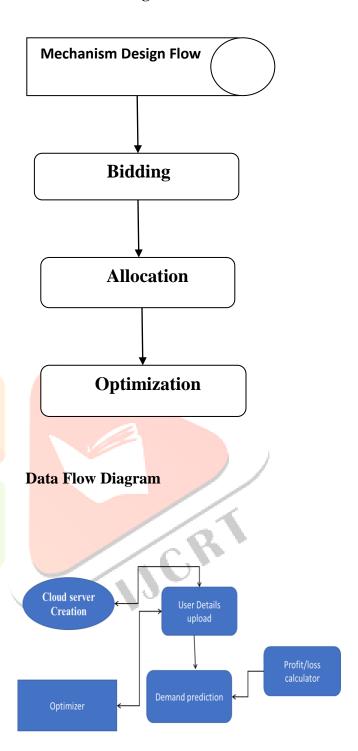
This project builds upon these foundational studies by integrating a trust-based, probabilistic demand allocation system with real-time financial monitoring, further enhancing cloud computing's efficiency and scalability.

PROBLEM

Problem: Inefficient Load Balancing in Cloud Resource Allocation

The current system predicts demand and allocates resources based on historical data but lacks dynamic adjustments for sudden spikes or drops in user demand, leading to inefficiencies. Overprovisioning results in excessive resource allocation, increasing costs, while under-provisioning causes insufficient resources during high demand, leading to service failures. To address this, we propose an Adaptive **Balancing** Mechanism Load dynamically reallocates cloud resources in real-time using current system metrics and predictive analytics. This enhancement ensures optimal resource utilization by preventing excessive wastage and cost inefficiencies, improves system reliability by reducing downtime and service failures during peak loads, and enhances performance maintaining SLA compliance for a seamless user experience. Additionally, leveraging AI-driven prediction models will enable the implementation of machine learning algorithms to anticipate demand fluctuations and automate resource adjustments efficiently.


SOLUTION


Mechanism Design Flow

AI-Based Auto-Scaling Mechanism

We will implement Real-Time Load Balancing & Auto-Scaling using Machine Learning (ML) to optimize cloud resources. The system will monitor CPU, memory, and storage usage and use an AI model to predict demand and allocate resources dynamically. Auto-scaling rules will adjust resources automatically—scaling up above 80% usage and down below prioritizing high-demand users. A hybrid pricing model will offer discounts for tasks scheduled during low-demand periods, improving cost efficiency. This ensures better resource management, lower costs, and enhanced user experience.

system architecture

SYSTEM MODULES

- 1. **Cloud Server Creation** Establishes cloud environments and container instances.
- 2. **User, Broker & Tenant Classifiers** Differentiates requests between users, brokers, and tenants for appropriate processing.
- Demand Prediction & Profit/Loss
 Calculator Monitors transaction costs and optimizes allocation based on cost-effectiveness.
- 4. Optimizer & Feedback System Continuously refines resource distribution
 based on real-time demand and trust
 mechanisms.

4. ADVANTAGES OF THE PROPOSED SYSTEM

- Energy Efficiency: Reduces data center energy consumption while improving CSP profitability.
- Enhanced Security: Implements a robust trust mechanism for data integrity.
- Cost-Effective Allocation: Integrates financial prediction tools for optimized storage selection.
- Real-Time Adjustments: Utilizes intelligent resource monitoring and allocation techniques.
- Scalability: Leverages container technology to ensure adaptable and elastic cloud services.

5.CONCLUSION

The proposed cloud optimization model introduces a container-based solution to enhance resource allocation efficiency. By integrating predictive analytics, financial assessment tools, and a trust-based system, the model significantly improves cost-effectiveness, security, and reliability. The continuous monitoring and feedback mechanism ensure the system remains adaptive to dynamic cloud environments, making it a robust solution for modern cloud computing challenges.

REFERENCES

[1] A. Prasad and S. Rao, "A mechanism design approach to resource procurement in cloud computing," IEEE Transactions on Computers, vol. 63, no. 1, pp. 17–30, 2014. [2] R. Pal and P. Hui, "Economic models for cloud

service markets: Pricing and capacity planning," Theoretical Computer Science, vol. 496, pp. 113–124, 2013.

[3] P. D. Kaur and I. Chana, "A resource elasticity framework for QoS-aware execution of cloud applications," Future Generation Computer Systems, vol. 37, pp. 14–25, 2014. [4] Z. Li et al., "Cost and energy aware scheduling algorithm for scientific workflows with deadline constraint in clouds," IEEE Transactions on Services Computing, 2015. [5] R. Zhu et al., "Energy-efficient Deep Reinforced

[5] R. Zhu et al., "Energy-efficient Deep Reinforced Traffic Grooming in Elastic Optical Networks for Cloud-Fog Computing," IEEE IoT Journal, 2021.

