IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Iot-Based Security Solutions For Farming

¹Mrs. Kilari Jyothi, ²N. Nagu, ³V. Posamma, ⁴R. Tarakeswara Rao, ⁵P. Durga Prasad ¹Associate Professor of ECE Dept, ²Student of ECE, ³Student of ECE, ⁴Student of ECE, ⁵Student of ECE ¹Electronics and Communication Engineering,

¹Godavari Institute of Engineering and Technology (Autonomous), Rajahmundry, India

Abstract: The Smart Crop Protection System harnesses IoT technology to revolutionize modern farming by integrating multiple sensors and automation tools for crop safety and operational efficiency. This system employs Arduino as the core controller, connecting components such as DHT11 for environmental monitoring and a fire sensor for hazard detection. The PIR sensor ensures field security by detecting intrusions, while the APR9600 voice module deters animals with pre-recorded sounds. The Wi-fi module notifies farmers of potential threats in real-time. With a water pump controlled via relay and powered by Power supply, the system supports sustainable agriculture, offering a comprehensive and automated solution to protect and nurture crops.

Index Terms - IoT, Crop Protection, Arduino, LCD, Ultrasonic sensor, PIR sensor, Fire sensor, Wi-fi module, DHT11, Relay, Buzzer.

I. Introduction

Agriculture is the mainstay of most economies, ensuring food security and raw materials for other industries. Yet, contemporary farming is beset with various challenges, such as erratic weather patterns, soil erosion, water shortages, and pests, animals, and intruder attacks. These pose threats to high yield and productivity losses. To counter such risks, technology-based solutions have become the norm in ensuring effective and sustainable farming. The use of the Internet of Things (IoT) in agriculture has become a game-changer, allowing real-time monitoring, automated decision-making, and improved security features.

This paper introduces an innovative IoT-based Smart Crop Protection System that integrates advanced sensors, automation, and communication technologies to maximize farm management. By using sensors to track environmental factors like temperature, humidity, soil moisture, and fire risks, this system provides prompt notifications and automatic action, minimizing manual intervention and enhancing crop security. In addition, the integration of motion detection and intrusion alert systems strengthens farm security by avoiding unauthorized entry and animal intrusions.

A Wi-fi based notification system immediately notifies farmers of imminent threats, enabling them to act instantly. In addition, the integration of renewable energy sources, including solar power, makes this solution environmentally friendly and cost-efficient, minimizing reliance on traditional power sources and encouraging sustainable farming. Utilizing IoT and automation, this project seeks to revolutionize conventional agriculture into a more efficient, modernized, and responsive system. The integration of smart monitoring, automated irrigation, and enhanced field security illustrates the vast potential of technology to transform agriculture, improve yield, conserve resources, and enhance farmers' livelihoods.

II. Literature Review

Protecting crops from various threats such as environmental hazards, fire, animal intrusion, and poor water management is essential for maintaining agricultural productivity and sustainability. Traditional methods often fall short, leading to the need for innovative solutions that utilize the Internet of Things (IoT). This literature survey reviews current research on IoT-based smart crop protection systems, emphasizing significant advancements in sensor technologies, automated control, real-time monitoring, and sustainable energy integration. Environmental monitoring is fundamental to proactive crop protection. Research has highlighted the importance of sensor-based environmental monitoring in delivering real-time data on vital parameters.

Singh et al. (2022) [1] examined the integration of specialized fire sensors within IoT systems, which are designed to detect smoke and flames, providing immediate alerts to farmers for quick action and fire containment. This ability to respond rapidly is essential in preventing significant losses due to fire. Similarly, Gupta et al. (2021) investigated.

Patel et al. (2020) [2] illustrated how DHT11 sensors can effectively measure temperature and humidity, allowing farmers to sustain optimal growing conditions and reduce the effects of extreme weather. This realtime information enables informed decision-making and timely actions to safeguard crops. In addition to environmental monitoring, soil moisture sensors play a crucial role in effective irrigation management.

Kumar & Sharma (2019) [3] demonstrated the use of IoT in irrigation systems, where soil moisture data collected by sensors directs an Arduino controller to activate water pumps only when needed. This smart approach reduces water waste, enhances soil health, and ensures crops receive sufficient hydration, contributing to both resource efficiency and improved yields. Fire detection and hazard monitoring are vital elements of a comprehensive crop protection strategy.

III. Problem Definition

Farmers face challenges such as crop damage from animals, theft, unpredictable weather, and inefficient water management, which significantly impact yields and income. Traditional methods for addressing these issues are often labor-intensive and reactive rather than proactive. There is a lack of affordable, automated systems that can monitor and respond to threats in real-time while optimizing resource use. This calls for an innovative solution that integrates technology to safeguard crops, enhance productivity, and reduce dependency on manual intervention, ensuring the sustainability of agricultural practices.

IV. Existing System

Traditional crop protection methods rely heavily on manual observation, physical barriers, and scare tactics like sound or light. Basic automated systems include standalone irrigation controllers or animal deterrents, but these lack integration and remote accessibility. While some farmers have adopted individual IoT tools, the absence of a unified platform limits their effectiveness. The reliance on grid power also poses a challenge for rural farms, making these systems less practical in off-grid areas.

Disadvantages of Existing method:

- High dependency on manual labour increases costs and delays.
- Lack of real-time monitoring leads to delayed responses to threats.
- Limited functionality in standalone systems results in inefficiency.
- Traditional methods are resource-intensive and often unsustainable.
- Inaccessibility in rural areas due to reliance on grid power.
- Existing systems fail to address multiple threats simultaneously, such as fire, intrusion.

V. Methodology

The Smart Crop Protection System methodology incorporates a methodical method of integrating IoT technology into agricultural automation. The system is structured using Arduino as the main microcontroller, which acts as the hub of coordinating different sensors and modules for real-time monitoring and feedback. The DHT11 sensor keeps measuring temperature and humidity to gauge environmental conditions, while the soil moisture sensor gauges the water content in the soil, turning on the water pump via a relay system when watering is necessary. A fire sensor also monitors for fire threats, providing prompt alerts and interventions to avoid damaging crops. The PIR sensor adds security through movement detection in the field, aiding in sensing intrusions from animals or trespassers. Furthermore, the APR9600 voice module plays pre-recorded

IJCR

noises to scare away animals, discouraging crop damage. Communication and remote monitoring are supported by the Wi-Fi module, which sends real-time information and notifications to farmers through a mobile app or web portal. The whole system is powered by a stable power supply, with provisions for solar power to increase sustainability. Through automated core agricultural operations, the system reduces human involvement to the minimum, maximizes use of resources, and improves crop protection through effective and smart monitoring.

5.1 Proposed System

The proposed system integrates multiple IoT components into a single platform for comprehensive crop protection. It automates monitoring and responses using sensors to detect environmental conditions, fire, and intrusions. Buzzer emits sounds to scare animals, while the relay-controlled pump manages irrigation. Wi-fi module provide real-time alerts. Solar energy powers the system, ensuring operation in remote areas. This solution combines efficiency, affordability, and sustainability, offering farmers a reliable tool for safeguarding their crops.

Advantages of Proposed System:

- Provides real-time monitoring and alerts for immediate action.
- Integrates multiple functionalities like irrigation, fire detection, and field security.
- Operates sustainably using solar power.
- Reduces manual labour and resource wastage.
- Improves crop yield and reduces losses.
- Affordable and accessible for small-scale farmers.
- Promotes the adoption of smart farming practices.
- Ensures scalability for different farm sizes.
- Enhances farmer livelihood through improved productivity.

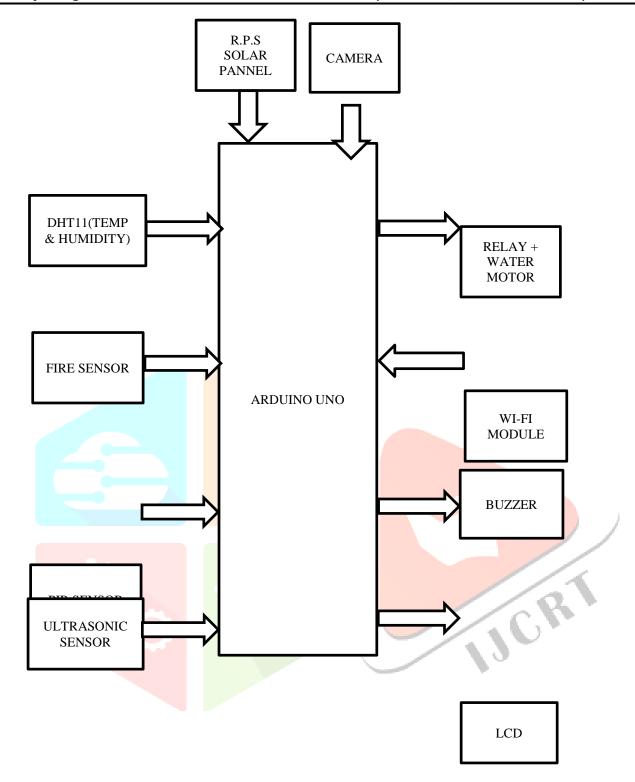


Fig.1 Block Diagram of security solutions for farming

VI. Results and Discussion

6.1 Testing and Evaluation

The proposed system underwent testing in a controlled farm environment to assess its performance in real-time monitoring, automation, and response accuracy. We evaluated sensors for temperature, humidity, fire detection, and intrusion based on their precision and response time. The effectiveness of the buzzer in deterring animals was tested, and the relay-controlled pump was monitored for efficient irrigation management. We also assessed the Wi-Fi module for timely alert notifications, ensuring smooth communication with farmers. Furthermore, the solar power system was tested for continuous operation in remote areas. The results showed high reliability, low power consumption, and effective automation, making the system a practical and sustainable solution for modern agriculture.

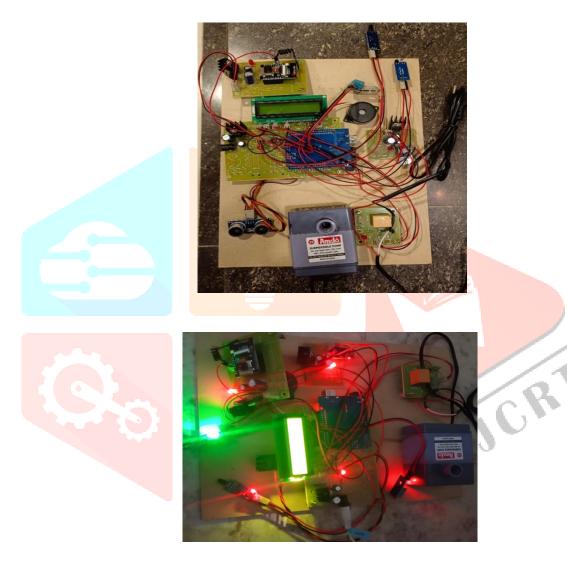


Fig.2 Final Output

VII. Conclusion and Future Scope

The proposed IoT-based Smart Crop Protection System provides a thorough, automated, and sustainable way to protect agricultural fields. It combines environmental monitoring, fire detection, intrusion alerts, and automated irrigation into one platform. By using sensors, a Wi-Fi module, and a relay-controlled pump, the system allows for real-time monitoring and quick responses. Its solar-powered design makes it reliable even in remote areas. This method greatly enhances efficiency, cost-effectiveness, and user-friendliness for farmers. Looking ahead, the system could be improved by adding AI-driven predictive analytics, cloud data storage, and machine learning algorithms to better analyse environmental trends and optimize farm management. Furthermore, incorporating edge computing and 5G connectivity could boost the system's speed, scalability, and real-time decision-making, making smart farming more accessible and effective for a broader range of agricultural uses.

VIII. Acknowledgment

We would like to extend our sincere appreciation to all those who helped facilitate the successful completion of the Smart Crop Protection System. We also want to express our deepest gratitude to our instructors and mentors for their great guidance, knowledge, and constant support during the project. We also appreciate the inputs of our peers, whose insightful discussions and feedback assisted in narrowing down our approach. Special gratitude to our friends and families for their support and encouragement. We also thank the online and academic communities for the resources and information provided, which helped us significantly in formulating our concept of IoT-based agricultural solutions. Lastly, we thank the great contributions of farmers globally, whose problems motivated us to create this innovative system to improve crop protection and sustainable agriculture.

IX. References

[1] Patel, S., & Patel, M. (2020). "Smart Agriculture System using IoT." International Journal of Advanced Research in Computer

Science and Software Engineering, 10(4), 45-52.

[2] Kumar, R., & Sharma, P. (2019). "IoT-Based Automated Irrigation System for Crop Monitoring and Protection." International

Journal of Engineering and Technology, 8(3), 1124-1132.

[3] Singh, R., Gupta, S., & Choudhury, S. (2022). "Real-Time Farm Security and Monitoring System Using IoT." International

Journal of Engineering Science and Technology, 14(1), 21-29.

[4] Gupta, P., Sharma, D., & Saini, S. (2021). "Development of IoT Based Smart Crop Protection System for Monitoring and

Security." International Journal of Computer Applications, 176(18), 26-33.

[5] Rao, R. V., & Verma, A. (2020). "Solar-Powered IoT-Based Smart Agriculture System for Crop Monitoring." Journal of

Renewable and Sustainable Energy, 12(2), 175-184.

[6] Deshmukh, A., & Patil, R. (2023). "IoT-Based Smart Agriculture and Crop Protection Using Sensors and Wireless

Communication." International Journal of Agriculture Innovations and Technology, 10(1), 78-85.

[7] Chaudhary, V., Kumar, S., & Yadav, P. (2018). "Traditional and Modern Methods of Crop Protection: A Comparative Study."

International Journal of Agriculture and Biology, 20(1), 40-45.

[8] Sandeep, C., Bhargav, D. S., Jaisai, Y. L., & Kumaravel, V. (2022, October). A design and implementation of IoT based on

earlier recognition and intimation of wild animal's attack on farming lands. In AIP Conference Proceedings (Vol. 2519, No. 1, p.

030082). AIP Publishing LLC.

[9] Tanmay Baranwal" Development of IOT based Smart Security and Monitoring Devices for Agriculture", Department of

Computer Science Lovely Professional University Phagwara, Punjab, IEEE-2016.