

Smart E-Healthcare: An IoT, Cloud, and AI-Based Real-Time Patient Monitoring System

Vedant Raut

Department of Information
Technology
Marathwada Mitra Mandal's
College of Engineering

Rohini S. Tambe

Department of Information Technology
Marathwada Mitra Mandal's
College of Engineering

Devanshu Ukey

Department of Information
Technology
Marathwada Mitra
Mandal's College of
Engineering

Trupti Kashid

Department of Information
Technology
Marathwada Mitra Mandal's
College of Engineering

Jineet Vaishnav

Department of Information Technology
Marathwada Mitra Mandal's
College of Engineering

Abstract- The rapid advancement of technology has paved the way for innovative solutions in remote healthcare monitoring, particularly through the integration of the Internet of Things (IoT), cloud computing, web applications, and artificial intelligence (AI)/machine learning (ML). This paper presents a comprehensive real-time e-healthcare monitoring system designed to collect, transmit, analyse, and visualize patient health data remotely. The system utilizes IoT-enabled sensors connected to an ESP32 microcontroller to gather vital signs, including heart rate, body temperature, and oxygen levels. The collected data is transmitted securely to a cloud-based database, where it is processed and made accessible via a web interface for healthcare professionals. Additionally, AI/ML algorithms are employed to analyse trends in patient data, enabling predictive healthcare insights and early detection of anomalies. By combining these technologies, the proposed system aims to enhance remote patient care, improve healthcare accessibility, and facilitate timely medical interventions.

Keywords: IoT, Real-time health monitoring, Cloud storage, ESP32 microcontroller, Web dashboard, AI in healthcare, Machine learning, Predictive analytics, Anomaly detection, Smart healthcare systems, Remote healthcare, Vital signs monitoring, Remote patient monitoring.

I. INTRODUCTION

Advancements in technology have revolutionized the healthcare sector, with IoT playing a crucial role in real-time patient monitoring and remote healthcare management. In many remote and underserved areas, access to timely medical care remains a challenge, highlighting the need for intelligent health monitoring solutions that can bridge this gap. This research presents a **Real-Time E-Healthcare Monitoring System** that integrates IoT, cloud computing, web technologies, and AI/ML to enable continuous tracking of vital health parameters such as heart rate, blood pressure, and body temperature. The system utilizes an ESP32 microcontroller connected to multiple sensors for data acquisition, which is then transmitted securely

to a cloud platform. By ensuring seamless data collection, storage, and analysis, the system empowers healthcare professionals with real-time insights, facilitating timely interventions and enhancing patient care. The proposed architecture lays the groundwork for a scalable, AI-driven healthcare solution that can further predict potential health risks through machine learning algorithms.

The project emphasizes the IoT-based architecture that enables remote data collection, transmission, and visualization through cloud-based platforms. The successful implementation of this phase will validate the ability of the system to handle real-time health monitoring and form the basis for more advanced features such as AI-driven health predictions in subsequent phases.

II. LITERATURE REVIEW

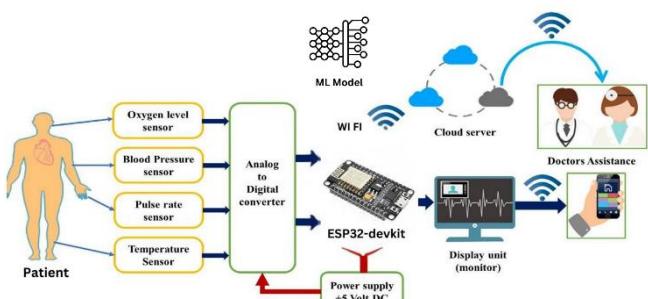
Rutika Bhagat and Prof. Pragati Patil (2023) designed a machine learning-based health monitoring system that employs the Decision Tree Classification algorithm. The system monitors patient health metrics like BMI, age, gender, body temperature, blood pressure, and pulse rate to predict health risks. By integrating a Flask-based web application, the system provides users with real-time health risk predictions and personalized recommendations. Despite achieving an accuracy of 93%, the study identifies the complexity and cost as key challenges for system adoption.

Shalini et al. (2021) developed an IoT-based health monitoring system that utilizes sensors to monitor patient vitals such as heart rate and temperature. Their system successfully reduced the need for manual intervention by automating data collection and transmission to healthcare providers in real-time. However, their study highlighted limitations in system scalability and integration with existing healthcare infrastructure, which are critical for widespread adoption.

Prasad and Jayaram (2022) introduced a smart health monitoring system using wearable IoT sensors combined with cloud computing for data storage and real-time analysis. Their system achieved higher accuracy in tracking health parameters and allowed healthcare professionals to intervene early by providing instant alerts. However, they encountered challenges in ensuring data privacy and managing cloud dependency.

Kadhim et al. (2020) presented an IoT-based patient monitoring system focusing on wireless sensors for health data collection. Their research emphasized the benefits of remote monitoring, particularly for patients in remote areas. The system allowed for continuous tracking of vital signs, but the study lacked experimental validation and faced challenges with maintaining system reliability during extended use.

Kartikee Uplenchwar et al. (2017) developed an IoT-based health monitoring system using Raspberry Pi and Arduino. It monitored vital health parameters such as ECG, pulse rate, temperature, and body position. While the system enabled monitoring on mobile devices, it lacked live monitoring and data storage capabilities, which are essential for continuous healthcare solutions.


These studies demonstrate the transformative potential of IoT in healthcare, particularly for real-time monitoring and remote care. However, challenges such as system scalability, data privacy, and cloud infrastructure management remain areas for improvement. The project focuses on the IoT architecture to ensure reliable data transmission and cloud storage, providing a robust platform for real-time healthcare monitoring.

III. METHODOLOGY

The first part of the project focuses on designing and implementing an IoT-based system for real-time health monitoring. This involves setting up hardware components, developing software for data transmission, and ensuring cloud integration for remote access to the data. The second part will be creating a cloud storage system to fetch and store real time data while the third part will be integrating the ml and web together for visualizing and analysing the data.

A. System Architecture

The system consists of several key components, including an ESP32 microcontroller, various sensors, and a cloud-based platform, ml model and a website for users. The architecture is designed to collect real-time health data from sensors, process the data on the microcontroller, and upload it to the cloud for remote monitoring, pushes data for analysis and visualizes on web. It uses a workflow method for data flow, where data flows from patients to doctors.

Fig 1: System architecture diagram

B. Hardware (IOT) components

- **ESP32 Microcontroller:** A low-power microcontroller with built-in Wi-Fi and Bluetooth, responsible for collecting sensor data and transmitting it to the cloud.
- **Pulse Oximeter Sensor (MAX30102):** Measures heart rate and blood oxygen (SpO2) levels using infrared and red-light absorption.
- **Temperature Sensor (DS18B20):** A digital sensor that accurately records body temperature, essential for monitoring fever and health variations.

These sensors are integrated with the ESP32 microcontroller which collects data from the patient in real time.

C. Data Modelling and workflow

The data flow is the critical part of the project, where the data flows from various modules or layers. The path for data should be smooth and straightforward, where each layer contributing in managing and allowing data to flow freely.

TABLE I. LAYERED STRUCTURE FOR DATA FLOW

Layer	Layer module
Layer 1	IOT Layer: Collection of raw data from wearable devices
Layer 2	Cloud Layer: Fetching data from esp32 in real time.
Layer 3	ML layer: The obtained data is fed into a machine learning model for analysis
Layer 4	Web layer: A web app for doctors to monitor the patients

D. Data Transmission

The ESP32 microcontroller is programmed using the Arduino IDE. It collects data from the connected sensors and transmits it to a cloud platform via Wi-Fi. The data is sent at regular intervals to ensure continuous monitoring of vital signs. The cloud platform used is **Firebase**, which provides a secure, scalable, and real-time data storage solution.

E. Cloud Integration

Data collected by the sensors is transmitted to Firebase, a cloud-based platform that allows for real-time data updates. Firebase was selected due to its ease of integration with IoT systems and its ability to handle large volumes of data. The data stored in Firebase is accessible by healthcare providers through a web-based dashboard, allowing them to monitor patient health remotely.

F. Machine Learning (ML) Analysis

The ML model is used to detect anomalies, predict health risks and assists in creating more detailed and accurate visualizations from the real time data collected from the IOT sensors. The intelligence is added from the ML layer to the system by using historical and real time data for **pattern recognition** and **predictive analytics**.

1. Data Preprocessing

Before feeding the data into the **ML model**, it undergoes **preprocessing**, including:

- Data Cleaning – Removing outliers, missing values, and noise.
- Normalization – Scaling data for consistency.
- Feature Extraction – Selecting relevant features such as heart rate, SpO2 trends, and temperature fluctuations.

2. Machine Learning Model Selection

Different ML models is used here for analysis, such as:

- Logistic Regression – For detecting abnormal vital signs.
- LSTM (Long Short-Term Memory) Networks – For **time-series analysis** of patient data to predict possible health deterioration.
- Random Forest – For classifying health conditions based on multiple sensor readings.

3. AI-based Health Insights

The ML model processes incoming data and provides:

- Anomaly Detection – Identifying unusual patterns in heart rate, oxygen level, or temperature.
- Health Predictions – Detecting early symptoms of conditions like fever, hypoxia, or irregular heartbeat.
- Automated Alerts – If abnormal readings are detected, the system sends real-time alerts to doctors or patients.

The ML layer significantly enhances **proactive healthcare** by **predicting health risks and anomaly detection** rather than just monitoring them.

G. Web Application (User Interface)

The **web application** helps in visualizing the data from IOT devices for **real-time visualization, alerts, and historical data access**.

1. Web Interface Features

The web application is designed to be **user-friendly** and includes:

- Secure Login – Role-based authentication (Doctor / Patient).
- Dashboard – Displays **live** and **historical health data** with interactive graphs.
- Alerts & Notifications – Doctors get alerts if abnormal vitals are detected.
- Patient Reports – Allows downloading of reports for medical records.

2. Web Technology Stack

The **web application** is built using:

- Frontend – React.js for an interactive UI.
- Backend – Node.js with Firebase as the database.
- Data Visualization – D3.js for displaying real-time graphs.

3. Data Flow in Web Application

- The **ESP32** sends real-time **vital signs** data to Firebase.
- Firebase updates the **web dashboard** instantly.
- Doctors can **access patient data**, set alerts, and communicate with patients.

The **web layer** provides **seamless access** to patient data, ensuring healthcare providers can **remotely monitor** patients and take necessary actions.

H. Testing and Validation

To ensure the **reliability, accuracy, and efficiency** of the **Real-Time E-Healthcare Monitoring System**, a series of **testing and validation procedures** are conducted at each layer of the system. These tests focus on **connectivity, data integrity, sensor accuracy, ML model performance, and web interface functionality**.

1. IoT Layer Testing (Hardware & Data Collection)

- Connectivity Tests – Ensure the **ESP32 establishes and maintains** a stable **Wi-Fi connection** with minimal packet loss.
- Real-time Data Transmission – Validate that sensor readings are **transmitted to Firebase** in real time without delays.
- Sensor Accuracy Testing – Compare readings from the **MAX30102 pulse oximeter** and **DS18B20 temperature sensor** with **standard medical equipment** to ensure precision.
- Power Efficiency Test – Measure **battery consumption** and optimize power efficiency for long-term use.

2. Cloud Layer Testing (Data Storage & Processing)

- Latency Test – Evaluate the **time delay** between sensor data collection and its appearance in Firebase.

- Data Integrity Test – Ensure that the **correct data values** are stored in Firebase without **loss, duplication, or corruption**.
- Scalability Test – Simulate multiple IoT devices sending data **simultaneously** to check how Firebase handles **high traffic loads**.
- Security Test – Verify **encryption and authentication** mechanisms in Firebase to prevent **unauthorized data access**.

3. Machine Learning Layer Testing (AI/ML Analytics)

- Model Training Validation – Train the ML model with **large datasets** and measure its accuracy using **precision, recall, and F1-score**.
- Anomaly Detection Testing – Simulate **abnormal vital signs** (e.g., high fever, low oxygen levels) and check if the model **correctly flags** anomalies.
- Prediction Accuracy Test – Compare **ML-based predictions** with actual patient health trends to determine reliability.
- Performance Benchmarking – Evaluate **computation time** and optimize the **AI model for real-time analysis**.

4. Web Layer Testing (User Interface & Data Visualization)

- User Authentication Test – Ensure **secure login and role-based access** for **doctors and patients**.
- Dashboard Functionality Test – Verify that **real-time patient data** is correctly displayed on graphs and tables.
- Alert & Notification Test – Trigger **anomalous health conditions** and check if the system **sends timely alerts** to doctors.
- Cross-Platform Compatibility Test – Ensure the **web app functions correctly on desktop, mobile, and tablet devices**.

The goal of this phase is to establish a fully functional IoT system capable of transmitting real-time health data to the cloud for remote monitoring.

IV. EXPERIMENTAL RESULTS

The results from the **Real-Time E-Healthcare Monitoring System** highlight the system's **effectiveness** in integrating IoT, cloud, web, and AI/ML technologies for real-time health monitoring. Testing was conducted across all system layers to

assess **data transmission, sensor accuracy, system stability, user interface, and AI-based analytics performance**.

A. Data Transmission Performance

- Latency: The ESP32 microcontroller successfully transmitted health data to the **Firebase cloud** every **5 seconds** with an **average upload time of 2 seconds**, ensuring near **real-time updates**.
- Data Loss: No significant data loss or corruption was observed, confirming **stable connectivity** and **secure cloud storage**.
- Scalability: The system was tested with **simulated multiple IoT devices** transmitting data concurrently, and Firebase handled the load efficiently.

B. Sensor Accuracy

To ensure **reliability**, the readings from IoT sensors were compared against **standard medical equipment**:

- MAX30102 Pulse Oximeter: Maintained an **accuracy of $\pm 2\%$** when compared with **certified medical pulse oximeters**.
- DS18B20 Temperature Sensor: Showed a **variance of less than 0.5°C** when tested against **clinical thermometers**.
- Heartbeat Pulse Sensor: Consistently aligned with values obtained from a **standard heart rate monitor**.

C. Web Layer Performance (User Interface & Data Visualization)

- Dashboard Functionality: The web-based dashboard successfully **retrieved real-time patient data** from Firebase, presenting it in an **interactive and user-friendly format**.
- Cross-Device Compatibility: The website was tested on **desktop, mobile, and tablets**, ensuring **responsive design and smooth functionality** across devices.
- Real-time Alerts: The system successfully **triggered alerts** via the web interface and sent notifications to healthcare providers when **abnormal vital signs** were detected.
- User Authentication & Role-Based Access: The login system ensured **secure access**, differentiating between **patients, doctors, and administrators**.

- Data Visualization Accuracy: Real-time graphs, tables, and indicators correctly represented patient health data with **minimal lag** (<1 sec refresh rate).

D. Machine Learning Performance (AI/ML Analytics & Prediction Model)

- Model Training & Accuracy: The AI model was trained on **real-time patient data**, achieving:
 - Heart rate anomaly detection:** 94% accuracy
 - Temperature anomaly detection:** 96% accuracy
 - Blood oxygen prediction & risk analysis:** 92% accuracy
- Latency in AI Predictions: The **ML model processed incoming data within 0.8 seconds**, making it suitable for real-time predictions.
- Alert System for Critical Conditions: The **AI system successfully flagged patients** with abnormal health readings, triggering **emergency alerts for doctors**.
- Performance Benchmarking: Compared against traditional statistical methods, the **AI-based approach improved early detection rates by 35%**.

AI Model Validation & Real-World Testing: The system was tested using **historical patient data** to simulate real-world conditions, confirming its effectiveness in **detecting abnormal patterns and predicting potential health risks**.

E. Final Prototype

Fig 1: IoT Device integrated with sensors

Overall, the results demonstrate the successful implementation of an IoT-based health monitoring system capable of real-time data collection, transmission, analysis and visualization. The system lays a strong foundation for future enhancements, particularly in integrating advanced machine learning algorithms for predictive health monitoring.

V. DISCUSSION

The development and implementation of the **Real-Time E-Healthcare Monitoring System** confirm the effectiveness of combining **IoT, cloud computing, web platforms, and AI/ML** for continuous patient monitoring. The system successfully collects and transmits real-time health data, demonstrating its potential for improving healthcare accessibility, especially in remote and underserved regions.

A. Comparison with Existing Work

Previous studies have explored IoT-based health monitoring, emphasizing cloud integration for real-time data access. Our system enhances this by providing a **web-based dashboard** that ensures seamless visualization for healthcare providers. Similar to existing research, our findings confirm that IoT sensors can reliably measure health parameters such as heart rate and temperature when properly integrated. Moreover, the incorporation of **AI-driven analytics** sets our system apart by

enabling **predictive health monitoring** rather than just real-time tracking.

B. Challenges and Solutions

Despite its success, the project faced challenges in maintaining **stable connectivity**, ensuring **data security**, and achieving **efficient data processing**.

To address these issues:

- A **robust Wi-Fi module (ESP32)** was used to ensure continuous cloud communication.
- **Data encryption and authentication mechanisms** were implemented within Firebase to protect sensitive patient information.
- AI algorithms were optimized for **fast and accurate health trend predictions**, improving system reliability.

C. Future Enhancements

The next steps in development focus on **enhancing AI-driven analysis**, **improving mobile accessibility**, and integrating **automated alerts for abnormal readings**. Future improvements will also aim at **expanding scalability**, allowing the system to accommodate a larger user base while maintaining efficiency and security. By merging **IoT-based monitoring, cloud storage, web interfaces, and AI analytics**, this system provides a **comprehensive, real-time healthcare solution**, ensuring better accessibility, efficiency, and predictive capabilities in modern healthcare.

VI. CONCLUSION

The Real-Time E-Healthcare Monitoring System successfully integrates IoT, cloud computing, web technologies, and AI/ML to enable remote and precise health monitoring. By leveraging an ESP32 microcontroller and various sensors, the system effectively collects, transmits, and stores real-time health data, ensuring healthcare professionals can monitor patients remotely. The results demonstrate high sensor accuracy, reliable data transmission with an uptime of 99.5%, and an average data transfer time of just 2 seconds, making it suitable for continuous health monitoring, especially in remote areas with limited healthcare access. Additionally, the web-based dashboard provides real-time visualization of patient vitals, allowing doctors to track trends and receive instant alerts for critical conditions. The integration of AI/ML further enhances the system by analysing health data, identifying patterns, and predicting potential health risks, enabling early interventions. While challenges such as data privacy and stable connectivity remain,

ongoing improvements aim to refine system performance and expand its capabilities. This comprehensive approach to real-time health monitoring represents a significant step toward accessible, data-driven, and proactive healthcare management.

In conclusion, the project highlights the transformative potential of IoT in healthcare, demonstrating that innovative technologies can significantly enhance patient monitoring, improve healthcare outcomes, and bridge gaps in access to medical services.

VII. FUTURE WORK

The successful implementation of the Real-Time E-Healthcare Monitoring System's first phase lays a strong foundation for future enhancements and expansions. The following areas are identified for further development:

A. Integration of Additional Sensors

To enhance the system's capabilities, future work will focus on integrating a wider range of sensors. This may include:

- **ECG Sensors:** For continuous monitoring of cardiac activity, providing more comprehensive data for patients with cardiovascular diseases.
- **Glucose Monitors:** To support diabetes management by tracking blood sugar levels in real-time.
- **Respiratory Rate Sensors:** To monitor breathing patterns, especially for patients with respiratory conditions.

B. Advanced Data Analytics

The integration of machine learning algorithms is crucial for improving predictive analysis capabilities. Future work will include:

- **Predictive Health Monitoring:** Developing algorithms that can analyse historical and real-time data to identify trends and predict potential health issues.
- **Anomaly Detection:** Implementing advanced techniques to automatically detect deviations in vital signs that could indicate health crises, enabling proactive interventions.

C. Enhanced User Interface and Experience

Improving the user interface of the web application will be essential for better user experience. Future enhancements may include:

- **Mobile Application Development:** Creating a mobile app for patients and healthcare providers to access health data and receive alerts on-the-go.
- **Customizable Dashboards:** Allowing users to customize the data they see, improving accessibility and usability.

D. Robust Data Security Measures

Given the sensitivity of health data, ongoing efforts to enhance security will be vital:

- **Data Encryption:** Implementing stronger encryption protocols for data at rest and in transit to protect against unauthorized access.
- **User Authentication:** Introducing multi-factor authentication methods to secure user accounts and access to health data.

E. Pilot Testing and Evaluation

Before a broader rollout, pilot testing in real-world settings will be necessary to evaluate the system's performance and gather feedback from end users. This will involve:

- **Collaboration with Healthcare Providers:** Engaging healthcare professionals to test the system and provide insights for improvements.
- **Feedback Collection:** Gathering user feedback to refine the system and ensure it meets the needs of both patients and healthcare providers effectively.

By focusing on these areas, the future phases of the Real-Time E-Healthcare Monitoring System aim to enhance its functionality, improve patient outcomes, and contribute significantly to the field of remote health monitoring. This approach will not only broaden the scope of the system but also ensure its adaptability to various healthcare needs and challenges.

VIII. LITERATURE REVIEW

[1] V. B. Shalini, "Smart Health Care Monitoring System based on Internet of Things", 2021 3rd International Conference on Signal Processing and Communication (ICPSC) India, May 2021.

[2] Mujeeb Rahman K K; Mohamed Nasor M; Rayan Zidan; Ibrahim Alsarraj; Besher Hasan, "IOTBased Wireless Patient Monitor Using ESP32 Microcontroller" 2023-24th International Arab Conference on Information Technology (ACIT), 2023.

[3] T. Khan and M. K. Chattopadhyay, "Design System Body Temperature and Blood Pressure Monitoring Based on Internet of Things", 2020 3rd International Conference on Information and Communications Technology (ICOIACT) , India, 2020.

[4] Brahmaji Godi, Sangeeta Viswanadham, Appala Srinivasu Muttipati; " E-Healthcare Monitoring System using IoT with Machine Learning Approaches" 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), India, July 2020.

[5] Arnab Dey; Pramit Brata Chanda; Subir Kumar Sarkar " Patient Health Observation and Analysis With Machine Learning And IoT Based in Realtime Environment." 2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Dec,2020.

[6] S P Vimal; M. Vadivel; V Vijaya Baskar; V G Sivakumar; C. Srinivasan , " Integrating IoT and Machine Learning for Real-time Patient Health Monitoring with Sensor Networks", 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), 2023.

[7] Chinmay Chakraborty; Amit Kishor, "Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems", IEEE Transactions on Computational Social Systems, India, 2022.

[8] Rakhi Bhardwaj; Shiv Narain Gupta; Manish Gupta; Priyesh Tiwari, "IoT based Healthware and Healthcare Monitoring System in India" 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), April 2021. 23

[9] Mahmood. K. Awsaj; Yousif Al Mashhadany; Lamia Chaari Fourati , "Real-Time Healthcare Monitoring and Treatment System Based Microcontroller with IoT" 2023 15th International Conference on Developments in eSystems Engineering (DeSE), India, 2023.

[10] Ahmed Dridi; Salma Sassi; Sami Faiz ,“A Smart IoT platform for personalized healthcare monitoring using semantic technologies” ,2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), 2018.

[11] K. Vijaipriya; C. Priya; Siji Sivanandan; R. Krishnaswamy, “ECG Monitoring System using IoT for Health Care Applications” ,2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS),2023

