



# Analyzing The Evolution Of Cancer Research: A Scientometric Review Of Four Premier Oncology Journals

**DEEPIKA NAVEENDRAN**

Research Scholar  
Department of Library & Information Science  
Bharathiar University  
Coimbatore-641046, Tamil Nadu

**Dr. R. SARANGAPANI**

University Librarian and Head  
Department of Library & Information Science  
Bharathiar University  
Coimbatore-641046, Tamil Nadu

## ABSTRACT

The study aims to evaluate and visualize key scientometric indicators from the four most prolific journals in cancer research. Data retrieved from Scopus on December 6, 2024, were filtered to include publications from these journals. The analysis focused on growth metrics such as annual productivity trends, relative growth rate (RGR), annual growth rate, doubling rate, and growth ratios. Findings indicate an increase in doubling time from 0.82 to 9.90, alongside a decline in RGR from 0.84 to 0.07, reflecting the field's maturation. A comparative analysis revealed that the USA leads global contributions, followed by the UK, Germany, France, and Canada. This study provides quantitative insights into the performance of top cancer research journals and highlights the application of bibliometric tools to explore the intellectual structures within the discipline.

**Keywords:** Cancer research, Scientometrics, Bibliometric Analysis, The Lancet Oncology, Journal of Clinical Oncology.

## 1. INTRODUCTION

Cancer is characterized by the unchecked growth and spread of abnormal cells. These cells may form tumors, which can be benign (non-cancerous) or malignant (cancerous). Malignant tumors can invade surrounding tissues and metastasize, spreading to distant organs. Cancer can affect almost any part of the body, with types including carcinoma, sarcoma, leukemia, lymphoma, melanoma, and others involving the brain, spinal cord, or neuroendocrine cells. As the second leading cause of death worldwide, cancer was responsible for approximately 9.6 million deaths in 2018, demonstrating its significant global health burden. The study focuses on four active journals. The first Journal Cancer Cell launched in 2002, focuses on molecular mechanisms, tumor biology, and innovative treatments, with selected open-access content indexed in databases like PubMed and Scopus. The second journal The Lancet Oncology, established in 2000, covers diverse topics such as clinical trials and cancer policy, fostering international collaboration through partial open access. Similarly, the third one, the Journal of Clinical Oncology (JCO), founded in 1983, emphasizes clinical treatments and trials, advancing standards in oncology care. Lastly, Cancer Research, a biweekly

publication since 1941, provides insights into cancer biology and therapies, ensuring wide dissemination via significant indexing platforms.

## 2. REVIEW OF LITERATURE

**Oskouie et.al (2024)** The study examines the progression of Colorectal cancer (CRC) research over a decade. The study identified important contributors, partnerships, and research trends by analyzing 200, 385 CRC-related papers using data from Scopus. It emphasizes China's dominance in publications (46,674 articles), with notable input from organizations like the People's Republic of China's Ministry of Education. In terms of collaborative strength and citation effect, the US likewise performed quite well. To overcome global discrepancies in CRC research efforts, the study's conclusion highlights the necessity of increased financing and research focus, especially in developing nations.

**Rezaee-Zavareh et al (2024)** Research on the relationship between artificial intelligence (AI) and liver Cancer grew quickly between 2013 and 2022, and publications on the topic increased 12.7 times. 3950 publications in all comprising 2,695 articles and 366 reviews, were found, demonstrating the wide range of uses of AI in liver cancer. These include prognostic modeling, drug discovery, genomic analysis, and medical imaging for diagnosis and therapy planning. Notably, by 2022, papers about AI accounted for 4.03% of all liver cancer research, up from 0.55% in 2013, indicating that AI's use in oncology is growing.

**Xu et.al (2024)** The paper "Global Publication Productivity and Research Trends on Recurrent Ovarian Cancer: A Bibliometric Study" by Xu, Wang, and Xu (2024) examines global research trends and publication productivity in recurrent ovarian cancer. It employs bibliometric methods to analyze the number of publications, research impact, and emerging trends in this area. The study highlights significant research gaps, shifts in focus, and geographical variations in scientific output, offering valuable insights into the progression of ovarian cancer research.

**Yang et.al (2024)** have studied that one of the main causes of Gastric Cancer (GC), the fifth most frequent cancer worldwide, is Helicobacter pylori (HP). China and Japan dominate publishing production, while the University States lead in meaningful research, according to this analysis, which examines 1970 papers published between 2003 and 2022. Prominent contributions include the U.S. Department of Veterans Affairs and Vanderbilt University. Important subjects include autophagy, immunological regulation, and HP's function in carcinogenesis. As treatment approaches change, future research trends will concentrate on exosomes, immunotherapy, and gut microbiome.

## 3. OBJECTIVES OF THE STUDY

The study's primary goal is to examine the global output of cancer research from 2011 to 2024. The following are the study's major goals:

- To identify the annual publication trends in cancer research literature
- To assess the relative growth rate and doubling time of publications in leading cancer journals.
- To calculate metrics such as the Annual Growth Rate, Annual Ratio of Growth, and Compound Growth Rate.
- To examine the field's most prolific organizations, contributing countries, and key funding agencies

## 4. METHODOLOGY

This study utilized scientometric techniques to examine the progression of research in the field of cancer. Data spanning from 2011 to 2024 were systematically gathered from Scopus, focusing on four active journals: Cancer Cell, The Lancet Oncology, Journal of Clinical Oncology, and Cancer Research. The journals were identified based on their impact factor. The Unique ISSNs (International Standard Serial Numbers) of the selected journals were used as search parameters in Scopus. The records were extracted in

text file format for comprehensive evaluation. The analysis was conducted using Microsoft Excel, allowing for the organization and interpretation of the extensive dataset.

## 5. ANALYSIS AND RESULTS

The study thoroughly examines various components of cancer research by systematically organizing the findings into a series of comprehensive tables and illustrative figures. These visual aids are crafted to facilitate in-depth analysis and provide clarity to complex data.

### 5.1 Year-Wise Growth Analysis in Cancer Research

The dataset for this study was sourced from the Scopus database, renowned for its comprehensive coverage of subjects across science and technology. This analysis aimed to evaluate global contributions to prominent journals in the field of cancer research over a decade, spanning from 2014 to 2024. A total of 21675 articles were extracted for this purpose. These publications were analyzed to identify trends in journal productivity, with a focus on the top four scholarly journals in cancer research.

**Table 1 Year-wise publications of the top four journals**

| Year         | Total        | %          | Cancer Cell | %          | The Lancet Oncology | %          | Journal of Clinical Oncology | %          | Cancer Research | %          |
|--------------|--------------|------------|-------------|------------|---------------------|------------|------------------------------|------------|-----------------|------------|
| 2014         | 1743         | 8.04       | 193         | 9.25       | 534                 | 8.62       | 841                          | 10.70      | 175             | 3.16       |
| 2015         | 2268         | 10.46      | 188         | 9.01       | 639                 | 10.31      | 893                          | 11.36      | 548             | 9.91       |
| 2016         | 2510         | 11.58      | 217         | 10.40      | 646                 | 10.43      | 910                          | 11.58      | 737             | 13.32      |
| 2017         | 2283         | 10.53      | 172         | 8.24       | 655                 | 10.57      | 765                          | 9.73       | 691             | 12.49      |
| 2018         | 2173         | 10.03      | 192         | 9.20       | 659                 | 10.64      | 665                          | 8.46       | 657             | 11.88      |
| 2019         | 1940         | 8.95       | 157         | 7.52       | 618                 | 9.97       | 573                          | 7.29       | 592             | 10.70      |
| 2020         | 1796         | 8.29       | 198         | 9.49       | 535                 | 8.63       | 594                          | 7.56       | 469             | 8.48       |
| 2021         | 1887         | 8.71       | 208         | 9.97       | 524                 | 8.46       | 557                          | 7.09       | 598             | 10.81      |
| 2022         | 1699         | 7.84       | 196         | 9.39       | 514                 | 8.30       | 587                          | 7.47       | 402             | 7.27       |
| 2023         | 1757         | 8.11       | 180         | 8.62       | 423                 | 6.83       | 809                          | 10.29      | 345             | 6.24       |
| 2024         | 1619         | 7.47       | 186         | 8.91       | 449                 | 7.25       | 666                          | 8.47       | 318             | 5.75       |
| <b>Total</b> | <b>21675</b> | <b>100</b> | <b>2087</b> | <b>100</b> | <b>6196</b>         | <b>100</b> | <b>7860</b>                  | <b>100</b> | <b>5532</b>     | <b>100</b> |

Table 1 presents the distribution of cancer research publications across journals from 2014 to 2024, with percentages calculated using a specific formula. The yearly percentage contribution to total publications was computed as,

$$\text{Percentage} = \frac{\text{total publications for the year}}{\text{cumulative total publications}} * 100$$

These calculations provide insights into the relative contributions of each journal and yearly trends in cancer research publications. The findings indicate that 2016 marked the peak of research activity, with 2510 publications recorded, while 2024 experienced the lowest output at 1619 articles. Such trends highlight fluctuations in research productivity, reflecting potential influences such as funding, scientific focus, or external factors affecting the research landscape.

## 5.2 Relative Growth Rate and Doubling Time of Cancer Journals

The expansion of cancer research literature is quantitatively assessed through the computation of the Relative Growth Rate (RGR) and Doubling Time (DT) of publications. These metrics provide insights into the annual growth trends in the field. The analysis reveals a consistent year-over-year increase in the volume of literature, highlighting a sustained expansion in academic contributions to cancer research.

**Table 2 Showing Relative Growth Rate (RGR) & Doubling Time (DT)**

| S. No        | Year | Total        | Cumulative    | W1           | W2            | RGR         | Doubling     |
|--------------|------|--------------|---------------|--------------|---------------|-------------|--------------|
| 1.           | 2014 | 1743         | 1743          | 0            | 7.46          | 0           | 0            |
| 2.           | 2015 | 2268         | 4011          | 7.46         | 8.30          | 0.84        | 0.82         |
| 3.           | 2016 | 2510         | 6521          | 8.30         | 8.78          | 0.48        | 1.44         |
| 4.           | 2017 | 2283         | 8804          | 8.78         | 9.08          | 0.3         | 2.31         |
| 5.           | 2018 | 2173         | 10977         | 9.08         | 9.30          | 0.22        | 3.15         |
| 6.           | 2019 | 1940         | 12917         | 9.30         | 9.47          | 0.17        | 4.08         |
| 7.           | 2020 | 1796         | 14713         | 9.47         | 9.60          | 0.13        | 5.33         |
| 8.           | 2021 | 1887         | 16600         | 9.60         | 9.72          | 0.12        | 5.77         |
| 9.           | 2022 | 1699         | 18299         | 9.72         | 9.81          | 0.09        | 7.70         |
| 10.          | 2023 | 1757         | 20056         | 9.81         | 9.91          | 0.1         | 6.93         |
| 11.          | 2024 | 1619         | 21675         | 9.91         | 9.98          | 0.07        | 9.90         |
| <b>Total</b> |      | <b>21675</b> | <b>136316</b> | <b>91.43</b> | <b>101.41</b> | <b>2.52</b> | <b>47.44</b> |

Table 2 presents the relative growth rate (RGR) and doubling time (Dt) of cancer research publications in selected journals from 2014 to 2014. The RGR, calculated as  $RGR = \frac{W2-W1}{t2-t1}$ , where W1 and W2 are the natural logarithms of the cumulative total at the beginning and end of the year, respectively, measure the proportional annual increase in publications. Here, t represents the time interval between the two observations. The Doubling time, derived as  $Dt = \frac{\ln(2)}{RGR}$ , represents the time required for the cumulative publications to double. The data reveals a declining RGR over time, indicating a slowdown in the proportional growth of publications, while the increasing Dt suggests that it takes progressively longer for the total output to double.

## 5.3 Annual Growth Rate, Annual Ratio of Growth, and Compound Annual Growth Rate

The annual growth rate quantifies the percentage change in a variable over one year, providing a measure of its increase or decrease. The Annual Growth Ratio (AGR) is determined by dividing the current value of the variable by its value in the previous year, offering a straightforward way to evaluate year-over-year performance

**Table 3 Status of Annual Growth Rate and Annual Ratio of Growth of Cancer**

| Year         | Total        | ARoG        | AGR          | CAGR         |
|--------------|--------------|-------------|--------------|--------------|
| 2014         | 1743         |             |              | -0.84        |
| 2015         | 2268         | 1.30        | 0.30         | -0.64        |
| 2016         | 2510         | 1.11        | 0.11         | -0.58        |
| 2017         | 2283         | 0.91        | -0.09        | -0.64        |
| 2018         | 2173         | 0.95        | -0.05        | -0.67        |
| 2019         | 1940         | 0.89        | -0.11        | -0.75        |
| 2020         | 1796         | 0.93        | -0.07        | -0.81        |
| 2021         | 1887         | 1.05        | 0.05         | -0.77        |
| 2022         | 1699         | 0.90        | -0.10        | -0.86        |
| 2023         | 1757         | 1.03        | 0.03         | -0.83        |
| 2024         | 1619         | 0.92        | -0.08        | -0.93        |
| <b>Total</b> | <b>21675</b> | <b>9.99</b> | <b>-0.01</b> | <b>-8.32</b> |

Abbreviations: ARoG = Annual Ratio of Growth, AGR = Annual Growth Rate, CAGR = Compound Annual Growth Rate

Table 3 analyzes the annual growth trends in cancer research publications from 2014 to 2024 using key metrics. The ARoG is calculated as the ratio of publications in a given year to the previous year, indicating proportional changes annually. The AGR, defined as  $AGR = \frac{\text{publications in current year} - \text{publications in previous year}}{\text{publications in previous year}}$ , measures the percentage increase or decrease in publications year over year. The data highlights a decline in the Annual Growth Rate, which dropped from 0.30 in 2015 to -0.08 in 2024. Similarly, the Annual Ratio of Growth decreased, starting at 1.30 in 2015 and falling to 0.92 by 2024. While the compound Annual Growth Rate remained negative, it slightly increased from -0.84 in 2014 to -0.93 in 2024.

#### 5.4 Compound Annual Growth Rate (CAGR) of Cancer Journals

The Compound Annual Growth Rate is calculated as the number of publications in the present year divided by the number of publications in the previous year to the power of one divided by the period length and subtracted 1 from the subsequent result (Murphy, 2019). The average compound annual growth rate was found to be -0.89778 in cancer research.

**Table 4 Description of Compound Annual Growth Rate of Cancer**

| CAGR         | Cancer Cell | The Lancet Oncology | Journal of Clinical Oncology | Cancer Research |
|--------------|-------------|---------------------|------------------------------|-----------------|
| -0.922341697 | -1.0571641  | -1.122455789        | -0.48916841                  |                 |

Table 4 presents the CAGRs for four leading cancer research journals: Cancer Cell at -0.9223, The Lancet Oncology at -1.0571, the Journal of Clinical Oncology at -1.1225, and Cancer Research at -0.4891.

#### 5.5 Top Most Productive Universities in Cancer

The most productive universities are listed in the table showing the most publishing 10 universities across the world.

**Table 5 Details of Institutes that Enhanced Research Related to Cancer**

| S. No | Organisations                                     | Records | %     |
|-------|---------------------------------------------------|---------|-------|
| 1.    | The University of Texas MD Anderson Cancer Centre | 2211    | 18.56 |
| 2.    | Dana-Farber Cancer Institute                      | 2147    | 18.02 |
| 3.    | Memorial Sloan-Kettering Cancer Centre            | 1914    | 16.06 |
| 4.    | Harvard Medical School                            | 1793    | 15.05 |
| 5.    | National Cancer Institute NCI                     | 1094    | 9.18  |
| 6.    | Brigham and Women's Hospital                      | 795     | 6.67  |
| 7.    | University of California, San Francisco           | 547     | 4.59  |
| 8.    | Mayo Clinic                                       | 544     | 4.57  |
| 9.    | Massachusetts General Hospital                    | 436     | 3.66  |
| 10.   | Fred Hutchinson Cancer Centre                     | 434     | 3.64  |

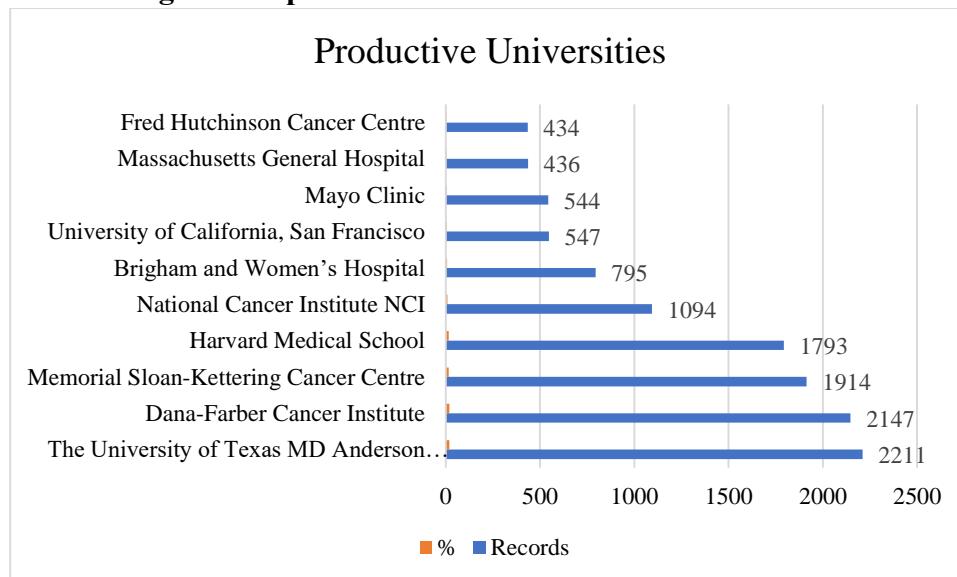
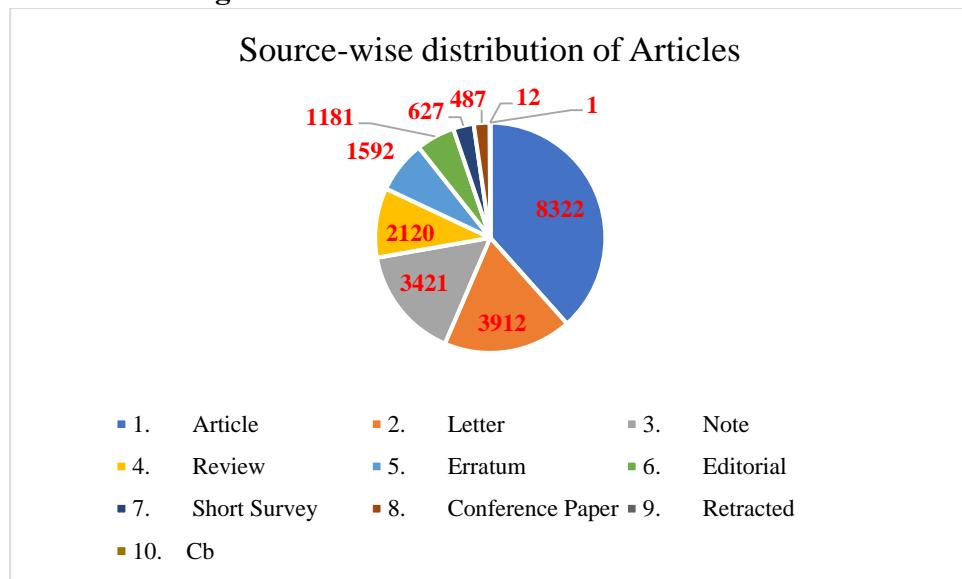

**Figure 1 Top Most Productive Universities in Cancer**

Table 5 lists the top 10 universities contributing to cancer research. The University of Texas MD Anderson Cancer Center leads with 2,211 publications, followed by Dana-Farber Cancer Institute with 2,147 and Memorial Sloan-Kettering Cancer Center with 1,914 publications.

### 5.6 Country-wise Distribution of Articles

The country-wise distribution of articles in cancer research is listed in the table showing the top 10 countries.

| S. No | Country        | Total |
|-------|----------------|-------|
| 1.    | United States  | 16434 |
| 2.    | United Kingdom | 3755  |
| 3.    | Germany        | 2718  |
| 4.    | France         | 2679  |
| 5.    | Canada         | 2672  |
| 6.    | Italy          | 2455  |
| 7.    | Australia      | 1666  |
| 8.    | Spain          | 1578  |
| 9.    | China          | 1475  |
| 10.   | Netherlands    | 1475  |


The collaboration of country-wise research output is displayed in Table 6. The United States (16343) has the most publications, followed by the United Kingdom (3755) and Germany has 2718 publications.

### 5.7 Source-wise Distribution of Articles

The purpose of the source-wise distribution of publications is to know the type of documents related to databases on cancer research from 2014 to 2024. Table 7 gives the details of major document types.

**Table 7 Details of Major Document types related to cancer research**

| S. No | Documents        | Total | Cumulative no. of articles |
|-------|------------------|-------|----------------------------|
| 1.    | Article          | 8322  | 8322                       |
| 2.    | Letter           | 3912  | 12234                      |
| 3.    | Note             | 3421  | 15655                      |
| 4.    | Review           | 2120  | 17775                      |
| 5.    | Erratum          | 1592  | 19367                      |
| 6.    | Editorial        | 1181  | 20548                      |
| 7.    | Short Survey     | 627   | 21175                      |
| 8.    | Conference Paper | 487   | 21662                      |
| 9.    | Retracted        | 12    | 21674                      |
| 10.   | Cb               | 1     | 27733                      |

**Figure 2 Source-wise Distribution of Articles**

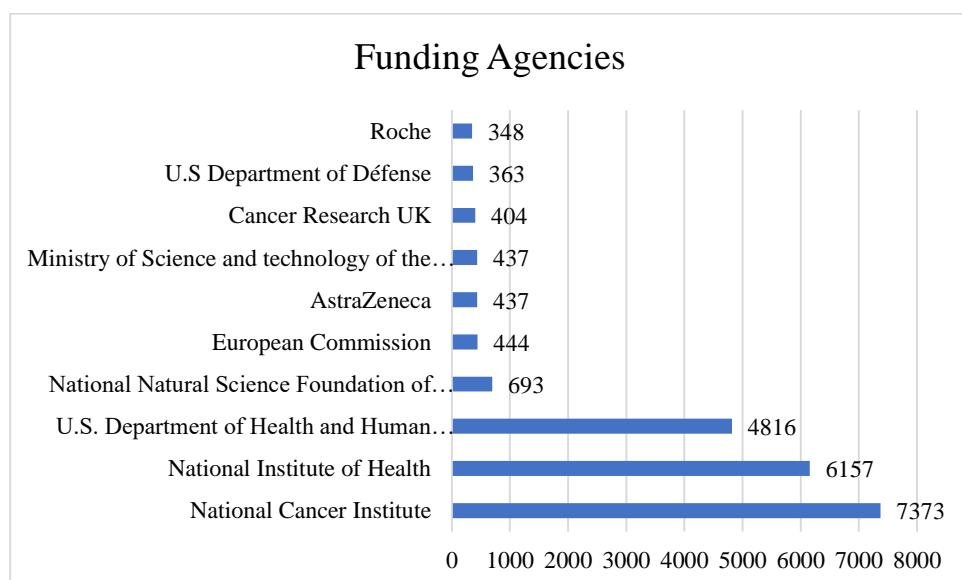
From the study, it has been observed that a total of 21675 publications have come out on cancer research during the period of 2014 to 2024. It could be deduced from the analysis that out of the various sources of research on cancer literature, the journal articles occupy the first place, followed by letters.

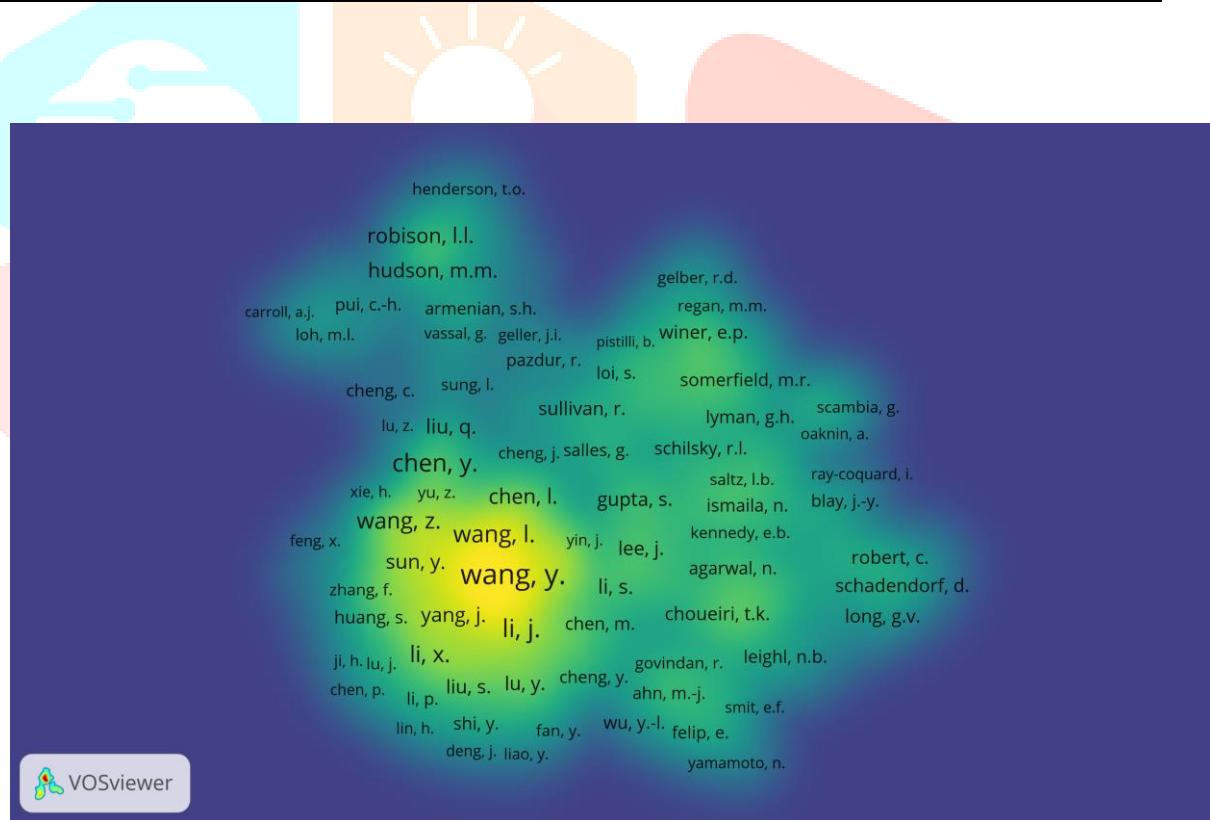
### 5.8 Productivity of Funding Agencies

Table 8 shows the leading research institutes and the number of research papers they published.

**Table 8 Details about Funding Agency for Research related to Cancer**

| S. No | Details of Funding Agency                                            | Record       | %          |
|-------|----------------------------------------------------------------------|--------------|------------|
| 1.    | National Cancer Institute                                            | 7373         | 34.34      |
| 2.    | National Institute of Health                                         | 6157         | 28.67      |
| 3.    | U.S. Department of Health and Human Services                         | 4816         | 22.43      |
| 4.    | National Natural Science Foundation of China                         | 693          | 3.23       |
| 5.    | European Commission                                                  | 444          | 2.07       |
| 6.    | AstraZeneca                                                          | 437          | 2.04       |
| 7.    | Ministry of Science and technology of the people's republic of China | 437          | 2.04       |
| 8.    | Cancer Research UK                                                   | 404          | 1.88       |
| 9.    | U.S Department of Défense                                            | 363          | 1.69       |
| 10.   | Roche                                                                | 348          | 1.62       |
|       | <b>Total</b>                                                         | <b>21472</b> | <b>100</b> |


**Figure 3 Productivity of Funding Agencies**


Table 8 gives the funding agencies in the maximum articles National Cancer Institute contributed 7373 papers, the National Institute of Health has 6157 papers, and The U.S. Department of Health and Human Services has 4816 papers.

## 5.9 Co-authorship of Authors

In the Co-authorship network of authors, 5630 authors with a minimum of 5 or more documents are considered among the total of 77044 authors.

**Table 9 Co-authorship of Authors**

| Author   | No. of Documents | Total Link Strength |
|----------|------------------|---------------------|
| Wang, Y  | 261              | 1379                |
| Zhang, Y | 206              | 1128                |
| Wang, X  | 176              | 1036                |
| Zhang, J | 168              | 1043                |
| Li, Y    | 177              | 946                 |
| Li, J    | 171              | 920                 |
| Chen, Y  | 153              | 888                 |
| Wang, J  | 179              | 837                 |
| Liu, Y   | 150              | 825                 |
| Zhang, L | 144              | 808                 |



**Figure 4 Density Visualization of Co-authorship Network of 5630 authors**

## 6. CONCLUSION

The analysis of cancer research publications from 2014 to 2024 reveals significant insights into global research trends, highlighting fluctuations in productivity and growth. A declining relative growth rate and increased doubling time suggest a gradual slowdown in publication output, reflecting broader shifts in research focus or resource allocation. Key contributors, including leading journals, institutions, and funding agencies, demonstrate the collaborative and multi-disciplinary nature of cancer research. The findings emphasize the vital role of journals and institutional efforts in advancing knowledge and underscore the need for sustained investment to address challenges in the research landscape.

The insights derived from this study are critical for evaluating and enhancing the global landscape of cancer research. Shedding light on emerging trends and disparities empowers researchers and academicians to understand better and address the challenges in the field. The study emphasizes the need for strategic efforts to bridge gaps in research output and quality, particularly in underrepresented regions. Furthermore, it seeks to inspire meaningful dialogue among scientific and academic communities, fostering collaboration and innovation in cancer prevention, treatment, and control strategies.

## REFERENCES

1. Cancer Cell. About. Retrieved from <https://www.cell.com/cancer-cell/about>
2. Cancer Research. About. Retrieved from <https://aacrjournals.org/cancerres/pages/about>
3. Journal of Clinical Oncology. About. Retrieved from <https://ascopubs.org/journal/jco>
4. Mayo Clinic. Cancer: Symptoms and Causes. Retrieved from <https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588#:~:text=Overview,to%20spread%20throughout%20your%20body>.
5. National Cancer Institute. What is Cancer? Retrieved from <https://www.cancer.gov/about-cancer/understanding/what-is-cancer>
6. Oskouie, I. M., Alemi, H., Khavandgar, N., Mardani-Fard, H. A., AleTaha, A., Mousavian, A. H., ... & Sorouri, M. (2024). Global Research Trends on Colorectal Cancer (2014-2023): A Scientometric and Visualized Study. *Archives of Iranian Medicine*, 27(10), 563.
7. Rezaee-Zavareh, M. S., Kim, N., Yeo, Y. H., Kim, H., Lee, J. M., Sirlin, C. B., ... & Yang, J. D. (2024). Artificial intelligence in liver cancer research: a scientometrics analysis of trends and topics. *Frontiers in Oncology*, 14, 1355454.
8. The Lancet Oncology. About. Retrieved from <https://www.thelancet.com/lanonc/about>
9. World Health Organization. Cancer: Overview. Retrieved from [https://www.who.int/health-topics/cancer#tab=tab\\_1](https://www.who.int/health-topics/cancer#tab=tab_1)
10. Xu, H., Wang, L., & Xu, D. (2024). Global publication productivity and research trends on recurrent ovarian cancer: A bibliometric study. *Frontiers in Oncology*, 14, 1422213. <https://doi.org/10.3389/fonc.2024.1422213>
11. Yang, S., Hao, S., Ye, H., & Zhang, X. (2024). Cross-talk between Helicobacter pylori and gastric cancer: a scientometric analysis. *Frontiers in Cellular and Infection Microbiology*, 14, 1353094.