

CYTOTOXIC EFFECTS OF *PHYLLANTHUS NIRURI* ON LUNG CANCER CELLS: AN *IN-VITRO* ANALYSIS

¹Sathyia Annadurai, ²Rajadevi Ravi, ³Ishwaryalakshmi Suresh, ⁴Dr. Mariyammal R, ⁵Dr. Nepolean R

¹Assistant Professor, ²Assistant Professor, ³Student, ⁴ Professor, ⁵ Professor

¹ Department of Pharmacology,

¹Thanthai Roever College Of Pharmacy, Perambalur, India

ABSTRACT

Lung cancer is a leading cause of cancer – related deaths worldwide. A malignant lung tumor, lung cancer or lung carcinoma is defined by unchecked cell proliferation in the lung tissues [2]. The leading cause of death for both men and women in the United States of America (USA) is lung cancer, a highly aggressive, quickly spreading, and common malignancy. The search for effective and non-toxic treatments has led to increased interest in medicinal plants. *Phyllanthus niruri*, a traditional herbal remedy, has shown promising anticancer properties. *Phyllanthus niruri* were extracted using Soxhlet apparatus with ethanol as a solvent. Lung cancer cells were treated with varying concentration of *Phyllanthus niruri* extracts, and cell viability was assessed using MTT assay. The study demonstrates the potential of *Phyllanthus niruri* as a therapeutic agent against lung cancer. Further studies are needed to explore the underlying mechanisms and to evaluate the *in vivo* efficacy of *Phyllanthus niruri* extract.

KEYWORDS

Lung cancer, *Phyllanthus niruri*, ethanol and MTT assay.

I. INTRODUCTION

Lung cancer has been the most prevalent cancer worldwide for a number of decades [1]. A malignant lung tumor, lung cancer or lung carcinoma is defined by unchecked cell proliferation in the lung tissues [2]. The leading cause of death for both men and women in the United States of America (USA) is lung cancer, a highly aggressive, quickly spreading, and common malignancy [3]. Because of the sharp increase in incidence rates and lung cancer fatalities over the past century, which has been linked to rising cigarette usage, the disease has spread like wildfire [4]. Additionally, it discovered that people who kept smoking had a higher death rate [5]. Each year, approximately 2.20 million new cases of lung cancer are identified [6], and 75% of these individuals pass away within five years of receiving their diagnosis [7]. TYPES: Small cell lung cancer (SCLC) accounts for 13% of all lung cancers, while non-small-cell lung cancer (NSCLC) accounts for 84% of all lung cancers [8]. The non-small cell lung cancer (NSCLC) comes in three varieties: a. About 40% of lung malignancies are adenocarcinomas, which typically develop outside the lung. b. Squamous cell carcinoma, which makes up 25% of lung malignancies, typically develops in the middle of the lung, close to the trachea. c. large cell carcinoma, which makes about 10% of lung malignancies, can develop anywhere in the lung [9]. According to the World Health Organization's (WHO) 2021 categorization system, lung cancers are separated into the following categories: Lung neuroendocrine neoplasms, salivary gland-type tumors, neuroendocrine tumors, squamous precursor lesions, squamous cell carcinomas, large cell carcinomas, sarcomatoid carcinomas, precursor glandular lesions, adenocarcinomas, adenosquamous carcinomas, and other epithelial tumors [10]. EPIDEMIOLOGY: Male mortality is higher than female mortality in the United States [11]. With an estimated 2 million new cases and 1.76 million deaths annually, lung cancer is the most common cancer diagnosed and the leading cause of cancer-related deaths globally [6]. The primary risk factor for lung cancer is smoking (relative risk [RR] = 10 to 30 when compared to nonsmokers) [12,13]. In 79 percent of males and 90 percent of women, smoking is directly associated with lung cancer [14]. Another risk factor is exposure to secondhand smoke [15,16]. Lung cancer is also frequently caused by environmental and occupational factors, such as exposure to ionizing radiation, vinyl chloride, nickel, chromium, and arsenic [17]. A slight but considerable risk of lung cancer was linked to radon exposure in uranium miners [18]. Lung cancer risk has also been associated with specific dietary components [19,20]. SIGN AND SYMPTOMS Lung cancer is extremely heterogeneous, arising in many different sites in the bronchial tree, so depending on its anatomic location, it can present with a wide range of symptoms and signs [21,22]. Numerous epidemiologic studies have suggested that people who consume diets low in beta-carotene are at a higher risk of developing lung cancer [23]. No particular signs and symptoms exist for lung cancer [24]. Cough is prevalent in 50 to 75% of people with lung cancer. Roughly 20 to 40 percent of patients with lung cancer experience chest pain, and up to 25 to 40

percent of individuals may have dyspnea at present [25]. Coughing, hemoptysis, weight loss, exhaustion, fever or clubbing, hypercalcemia, myasthenic syndrome (muscle tiredness), and alterations are typical symptoms [9]. **PATOPHYSIOLOGY:** The pathophysiology of lung cancer is intricate and poorly understood. It is thought that repeated exposure to carcinogens, like cigarette smoke, causes lung epithelium to dysplasia, which can then result in genetic mutations and protein synthesis [26], which disrupts the cell cycle and encourages carcinogenesis. MYC, BCL2, and p53 for small cell lung cancer (SCLC) and EGFR, KRAS, and p16 for non-small cell lung cancer (NSCLC) are the most prevalent genetic alterations that cause lung cancer development [27,28]. According to research, those who pass away within 90 days of receiving a lung cancer diagnosis had more contacts with their general practitioner before receiving the diagnosis than those who lived longer. This suggests that there may be a lack of awareness causing them to lose earlier opportunities to receive the diagnosis [29]. **DIAGNOSIS** Being one of the most common cancers to be diagnosed, lung cancer can be difficult to identify. The development of tailored treatment and accurate histological and molecular characterizations of lung cancer are closely linked to diagnostic issues [30]. According to evaluations, the campaign resulted in 700 more lung cancer diagnoses than the year before, with about 400 more individuals receiving a diagnosis at an earlier stage [31]. A chest X-ray often begins the work-up, and if it is abnormal, a computer tomographic scan should follow [32]. The UK National Screening Committee is actively considering low dose CT scanning as a lung cancer screening method. In comparison to chest X-rays, it has been demonstrated to be an efficient method of detecting early-stage lung malignancies and improving mortality [33]. Sputum cytology's sensitivity and specificity for lung cancer diagnosis may approach 0.66 and 0.99, respectively, in skilled hands [34]. Depending on the tumor's location, additional diagnostic testing may be necessary. For central tumors, a bronchoscopy is the most effective method since it provides for direct visualization of the tumor and airways while also obtaining biopsy material for histologic diagnosis [32]. Unwelcome Staging Confirming the staging and histological differentiation of cancer, as well as obtaining tissue or pathologic confirmation of malignancy, comes next after CT and PET scans [35]. The gold standard for diagnosing and staging lung cancer used to be mediastinoscopy. It is primarily used to sample lymph nodes following the negative needle approach and in cases when the patient's lymph node size or FDG uptake on a PET scan indicate that they are still at high risk for malignancy [36]. The use of endoscopic ultrasonography (EUS) in the diagnosis and staging of lung cancer is growing [37]. **TREATMENT:** Therefore, the existence or absence of adenocarcinoma, a person's ethnicity, gender, smoking history, and gene mutation must all be taken into consideration when choosing a treatment [38]. For individuals with non-small cell carcinoma in stages I through IIIA, surgery is the preferred course of treatment [39]. Surgical resection rates have risen from 9% to over 17% in the last decade [40]. Preoperative chemotherapy may increase survival in individuals with non-small cell carcinoma, according to recent evidence. Adjuvant chemotherapy is the norm for patients having total resection without any prior treatment [41]. In the treatment of lung cancer, specialist palliative care is equally essential, and significant effort has been made to maximize its application and enhance patient outcomes [42]. Pembrolizumab, nivolumab, and atezolizumab are immune checkpoint inhibitors, the newest family of systemic therapies [33]. Brachytherapy and other endoscopic treatments assist manage symptoms brought on by airway narrowing [43,44]. **PREVENTION:** Promoting smoking cessation is arguably the primary care physician's most significant role in preventing lung cancer. The most successful cessation therapies (with quit rates ranging from 16 to 21 percent) include structured telephone counseling, bupropion (Wellbutrin), nicotine replacement, and nortriptyline [45-53]. When combined with social or behavioral support, the quit rate can rise to 35 percent [54]. It has also been demonstrated that doctors' informal counseling can somewhat raise quit rates [55,56]. Nonspecific, but not COX-2-specific, COX inhibition, farnesyltransferase inhibition, glucocorticoids, 5-lipoxygenase inhibition, prostacyclin synthase overexpression, a prostacyclin analog (iloprost), and other tactics have all been used to successfully prevent chemoprevention in mice [57].

Phyllanthus niruri

The Amazon rainforest and other tropical regions, such as South East Asia, Southern India, and China, are home to the small, upright annual herb *P. niruri*, one of the *Phyllanthus* species, which can reach a height of 30 to 40 cm. Its alternating, sessile, oblong leaves range in length from 7 to 12 cm [58]. The oblate, veiny, reticulate, stramineous capsules have a diameter of around 3 mm. The stipules are quite sharp. Monoecious *P. niruri* [59]; In South and Southeast Asian traditional medicine, *Phyllanthus niruri*, a perennial tropical shrub, has been used to treat a variety of ailments, such as kidney stones, genitourinary infections, jaundice, diarrhea, and dyspepsia [60]. The leaves and fruit have been used to cure gallstones and jaundice in traditional medical systems including Ayurvedic and Unani medicine [61]. The herb, known as Bhumyamalaki in South India, is thought to cure syphilis, gonorrhea, and constipation [62]. This herb, known locally as "pitirishi," has become well-known in northern India as a home cure for bronchitis, asthma, and even tuberculosis [63]. This herb's young shoots might occasionally be used as an infusion to treat persistent diarrhea [64]. Classification in botany: *Phyllanthus niruri* Class: Magnoliopsida; Order: Euphoriales; Family: Euphorbiaceae; Genus: *Phyllanthus*; Species: *Niruri*; Kingdom: Plantae; Division: Magnoliophyta [65].

Phytochemistry

Class	Compounds
Alkaloid	4-Methoxy-nor-securinine, nirurin, ent-norsecurin ^[66]
Lipids	Ricinoleic acid ^[66]
Sterol	Estradiol, Beta sitosterol ^[66]
Benzenoid	Gallic acid ^[67]
Coumarin	Ellagic acid, ethyl brevifolin carboxylate ^[67]
Flavonoid	Lignin Phyllanthin ^[69] , phyltetralin, nirtetralin, niranthin ^[70] , hypophyllanthin ^[69]
Tannin	Geranin ^[71]

Pharmacological activity

1. Antioxidant and hepatoprotective activity^[72]
2. Antidiabetic – hypoglycaemic action^[73]
3. Anti-inflammatory, antinociceptive and analgesic activity^[74]
4. Hypolipidaemic activity^[75]
5. Cardioprotective activity^[76]
6. Antiplatelet and vasorelaxant activity^[77]
7. Wound healing and anti ulcer activity^[78]
8. Antiviral activity^[79]
9. Antibacterial activity^[80]
10. Antineoplastic activity^[81]
11. Immunomodulatory activity^[82]

II. MATERIALS AND METHODS:

SOXLET EXTRACTION:

Soxhlet extraction is a very useful tool for preparative purposes in which the analyte is concentrated from the matrix as a whole or separated from particular interfering substances. Sample preparation of environmental samples has been developed for decades using a wide variety of techniques. Solvent extraction of solid samples, which is commonly known as solid–liquid extraction (also referred to as leaching or Lixivation in a more correct use of the physicochemical terminology), is one of the oldest methods for solid sample pretreatment. Conventional Soxhlet extraction remains as one of the most relevant techniques in the environmental extraction field.

Materials Required Ethanol was purchased from Merck, USA. Whatman No.1 filter paper was purchased from Millipore, USA.

Procedure Test sample (PN07) can be fresh or dried. It needs to be crushed, using a pestle and mortar, to provide a greater surface area. The test sample should be sufficient to fill the porous cellulose thimble (in our experiments we use an average of 14 g of thyme in a 25- x 80-mm thimble). All equipment should be too assembled. Build a rig using stands and clamps to support the extraction apparatus. Following this, the Ethanol is added to a round bottom flask, which is attached to a Soxhlet extractor and condenser on an isomantle. The crushed plant material is loaded into the thimble, which is placed inside the Soxhlet extractor. The side arm is lagged with glass wool. The solvent is heated using the isomantle and will begin to evaporate, moving through the apparatus to the condenser. The condensate then drips into the reservoir containing the thimble. Once the level of solvent reaches the siphon it pours back into the flask and the cycle begins again. The process should run for a total of 4 hours. Once the extraction set up, it can be left to run without direct supervision. It is not advised to leave the equipment completely alone due to the mix of running water and an electrical appliance, so a technician or other lab user should be made aware. The equipment can be turned off.

Fig 1: Soxhlet extraction

BIOLOGICAL STUDIES:

Material required Fetal Bovine Serum (FBS) and antibiotic solution were from Gibco (USA), DMSO (Dimethyl sulfoxide) and MTT (3-4,5 dimethylthiazol-2yl-2,5-diphenyl tetrazolium bromide) (5 mg/ml) were from Sigma, (USA), DMEM medium, 1X PBS, (India). 96 well tissue culture plate and wash beaker were from Tarson (India). **PRINCIPLE** MTT (3-4, 5 dimethylthiazol-2yl-2, 5-diphenyl tetrazolium bromide) assay, is based on the ability of a mitochondrial dehydrogenase enzyme of viable cells to cleave the tetrazolium rings of the pale yellow MTT and form a dark blue colored formazan crystal which is largely impermeable to cell membranes, thus resulting in its accumulation within healthy cells. Solubilization of cells by the addition of detergents (DMSO) results in the liberation of crystals which are solubilized. The number of surviving cells is directly proportional to the level of formazan product created. The color can be quantified using a multi-well plate reader. **PROCEDURE: Cell culture** A549 (Human Lung cancer cell line) were purchased from NCCS, Pune and were cultured in liquid medium (DMEM) supplemented 10% Fetal Bovine Serum(FBS), 100 µg/ml penicillin and 100 µg/ml streptomycin, and maintained under an atmosphere of 5% CO₂ at 37°C. **MTT assay** The Test sample was tested for *in vitro* cytotoxicity, using A549 cells by MTT assay. Briefly, the cultured A549 cells were harvested by trypsinization and pooled in a 15 ml tube. Then, the cells were plated at a density of 1×10⁵ cells/ml cells/well (200 µL) into the 96-well tissue culture plate in DMEM medium containing 10 % FBS and 1% antibiotic solution for 24-48 hour at 37°C. The wells were washed with sterile PBS and treated with various concentrations of the Test sample in a serum-free DMEM medium. Each sample was replicated three times and the cells were incubated at 37°C in a humidified 5% CO₂ incubator for 24 h. After incubation, MTT (10 µL of 5 mg/ml) was added to each well and the cells were incubated for another 2-4 h until purple precipitates were clearly visible under an inverted microscope. Finally, the medium together with MTT (220 µL) was aspirated off the wells and washed with 1X PBS (200 µL). Furthermore, to dissolve formazan crystals, DMSO (100 µL) was added and the plate was shaken for 5 min. The absorbance for each well was measured at 570 nm using a microplate reader (Thermo Fisher Scientific, USA) and the percentage cell viability and IC₅₀ value were calculated using Graph Pad Prism 6.0 software (USA).

$$\text{Formula Cell viability \%} = \text{Test OD}/\text{Control OD} \times 100$$

III.RESULT AND DISCUSSION:

BIOLOGICAL STUDIES

Table 1: OD Value at 570 nm

S. No.	Tested sample concentration (µg/ml)	OD value at 570 nm(in triplicates)		
1	Control	1.312	1.351	1.366
2	500 µg/ml	0.567	0.572	0.635
3	400 µg/ml	0.665	0.67	0.681
4	300 µg/ml	0.801	0.804	0.826
5	200 µg/ml	0.835	0.836	0.848
6	100 µg/ml	0.859	0.864	0.896
7	80 µg/ml	0.896	0.913	0.927
8	60 µg/ml	0.943	0.948	0.969
9	40 µg/ml	0.977	1.019	1.029
10	20 µg/ml	1.133	1.134	1.139
11	10 µg/ml	1.245	1.192	1.205

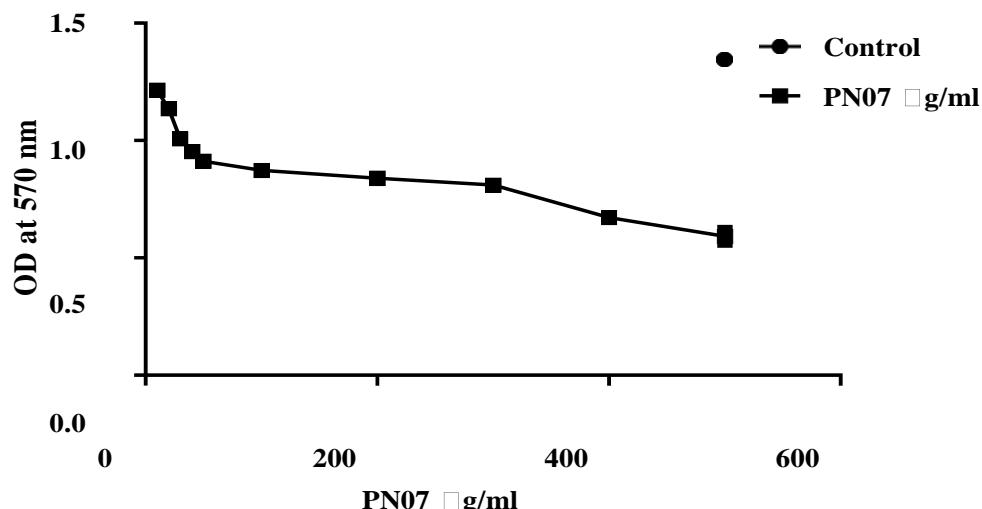


Table 2: Cell Viability (%)

S. No.	Tested sample concentration (μg/ml)	Cell viability (in triplicates)	Mean Value (%)		
1	Control	100 100 100	100	100	100
2	500 μg/ml	43.2165 42.339 46.4861	44.013854		
3	400 μg/ml	50.686 49.5929 49.8536	50.044152		
4	300 μg/ml	61.0518 59.5115 60.4685	60.343941		
5	200 μg/ml	63.6433 61.8801 62.0791	62.534148		
6	100 μg/ml	65.4726 63.9526 65.593	65.006054		
7	80 μg/ml	68.2927 67.5796 67.8624	67.911542		
8	60 μg/ml	71.875 70.1702 70.937	70.994096		
9	40 μg/ml	74.4665 75.4256 75.3294	75.073834		
10	20 μg/ml	86.3567 83.9378 83.3821	84.55889		
11	10 μg/ml	94.8933 88.2309 88.2138	90.445999		

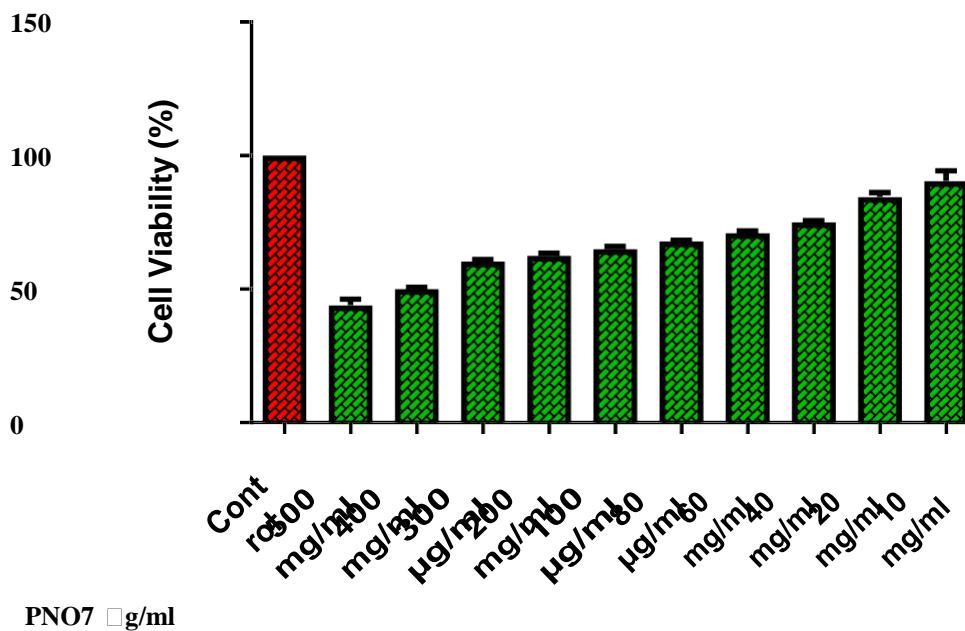
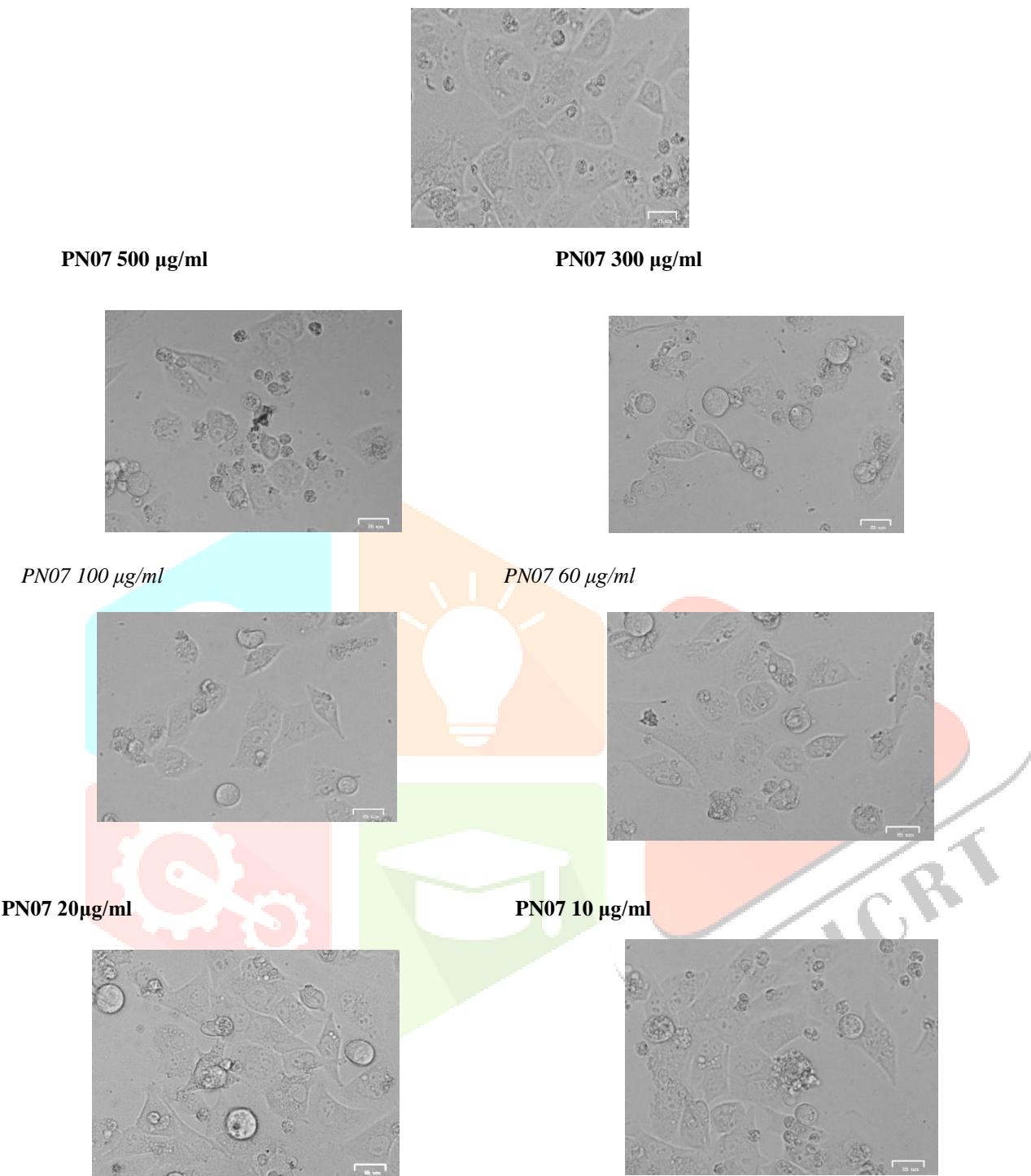



Table 3: IC50 Value of tested sample: 79.10 $\mu\text{g/ml}$

log(inhibitor) vs. normalized response --Variable slope	
Best-fit values	
LogIC50	1.898
HillSlope	-0.9754
IC50	79.10
Std. Error	
LogIC50	0.04454
HillSlope	0.09836
95% CI (asymptotic)	
LogIC50	1.807 to 1.989
HillSlope	-1.177 to -0.7739
IC50	64.11 to 97.59
Goodness of Fit	
Degrees of Freedom	28
R squared	0.8848
Sum of Squares	2952
S _{y,x}	10.27
Number of points	
# of X values	30
# Y values analyzed	30

Controlled cell

Fig 2: Images of control cells and treated cells.

The present study aimed to investigate the cytotoxic effects of PN07 on cell growth and viability. The results showed that PN07 exhibited a concentration-dependent inhibitory effect on cell growth, with an IC₅₀ value of 79.10 µg/ml. This suggests that PN07 has potential cytotoxic effects, which is consistent with previous studies on similar compounds. The cell viability assay results showed that PN07 significantly reduced cell viability at higher concentrations (500-100 µg/ml), indicating strong cytotoxicity. In contrast, lower concentrations (60-10 µg/ml) exhibited moderate cytotoxicity. These findings suggest that PN07's cytotoxic effects are dose-dependent, and higher concentrations may be more effective in inhibiting cell growth. The images from the cell morphology study (Fig. 2) showed visible changes in cell density and morphology upon treatment with PN07, further supporting the cytotoxic effects observed in the cell viability assay. The mechanisms underlying PN07's cytotoxic effects are not fully understood and require further investigation. However, it is possible that PN07 may interact with cellular components, such as DNA or proteins, to inhibit cell growth and induce cytotoxicity.

FUTURE DEVELOPMENT:

1. **Mechanistic Studies** – Future research should focus on elucidating the precise molecular mechanisms underlying PN07's cytotoxic effects. This includes exploring its role in apoptosis induction, cell cycle arrest, oxidative stress, and modulation of key signaling pathways involved in cancer progression.
2. **Bioactive Compound Identification** – Isolation and characterization of the active phytochemicals in PN07 responsible for its cytotoxic properties will be crucial. Advanced analytical techniques such as HPLC, LC-MS, and NMR should be employed to identify and quantify these bioactive compounds.
3. **Formulation Development** – To enhance the bioavailability and stability of PN07, novel drug delivery systems such as nanoparticles, liposomes, or polymer-based carriers should be explored. These formulations could improve targeted delivery, reduce toxicity, and enhance therapeutic efficacy.
4. **In Vivo Studies** – Preclinical animal studies are necessary to evaluate the efficacy, pharmacokinetics, and safety of PN07 in living systems. Such studies will help determine the optimal dosage, potential side effects, and long-term effects of treatment.
5. **Clinical Translation** – If preclinical results are promising, clinical trials should be conducted to assess the safety, tolerability, and efficacy of PN07 in human subjects. These studies will be critical in determining its potential as a viable therapeutic agent in cancer treatment.
6. **Combination Therapy Potential** – PN07 should be investigated for its potential synergistic effects with existing chemotherapeutic agents or natural compounds to enhance efficacy and reduce side effects. Combination therapy strategies could help overcome drug resistance and improve treatment outcomes.
7. **Application Beyond Cancer** – Given the traditional medicinal uses of *Phyllanthus niruri*, further research should explore the potential of PN07 in treating other diseases such as viral infections, liver disorders, and inflammatory conditions.
8. **Toxicological and Safety Assessments** – Long-term toxicity studies and safety evaluations should be conducted to ensure that PN07 does not cause adverse effects in non-cancerous cells and tissues.

By addressing these areas, PN07 could emerge as a promising natural therapeutic agent with broad applications in modern medicine.

IV. CONCLUSION

The present study provides compelling evidence that PN07 exerts concentration-dependent cytotoxic effects on cell growth and viability. The observed decrease in cell proliferation suggests that PN07 may possess bioactive compounds capable of inhibiting cancer cell growth, making it a promising candidate for further exploration in cancer therapy. These findings align with previous reports on the pharmacological properties of *Phyllanthus niruri*, highlighting its potential as a natural therapeutic agent.

Despite these promising results, several critical aspects remain to be investigated. Future studies should focus on elucidating the precise molecular mechanisms underlying PN07-induced cytotoxicity, including its effects on apoptotic pathways, cell cycle regulation, and potential involvement in oxidative stress responses. Additionally, in vivo studies are essential to confirm its efficacy, bioavailability, and safety profile in animal models before considering clinical applications.

In summary, PN07 demonstrates significant potential as a natural anticancer agent. However, comprehensive mechanistic studies and preclinical evaluations are necessary to determine its therapeutic applicability and establish its role in modern medicine.

V. ACKNOWLEDGMENT

The authors would like to express their sincere thanks to Thanthai Roever College of Pharmacy for providing the necessary facilities and support to conduct this research. We also acknowledge the institution encouragement and permission to publish this work.

REFERENCES

1. International Agency for Research on Cancer, globocan 2012: Estimated cancer incidence, mortality and prevalence worldwide 2012. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx, [Accessed 24 February 2016].
2. Lung Carcinoma: Tumors of the Lungs. Merck Manual Professional Edition. online edition. Retrieved 15th August 2007.
3. American-Cancer-Society. Cancer facts & figures 2014. Atlanta: American Cancer Society. 2014
4. Patricia de Groot, Reginald F. Munden, Lung Cancer Epidemiology, Risk Factors, and Prevention, Radiologic Clinics of North America, Volume 50, Issue 5, 2012, Pages 863-876, ISSN 0033-8389, ISBN 9781455739301, <https://doi.org/10.1016/j.rcl.2012.06.006>. (<https://www.sciencedirect.com/science/article/pii/S0033838912001236>)
5. Lippman S, Lee J, Karp D, et al. "Randomized phase III intergroup trial of isotretinoin to prevent second primary tumors in stage I non-small-cell lung cancer". J Natl Cancer Inst. 2001; 93:605-618.
6. Thai A.A., Solomon B.J., Sequist L.V., Gainor J.F., Heist R.S. Lung cancer. Lancet 2021;398: 535–554.
7. Svoboda E. Artificial intelligence is improving the detection of lung cancer. Nature 2020;587: S20–S22.
8. Haley Hoy, Thuy Lynch, Monica Beck, Surgical Treatment of Lung Cancer, Critical Care Nursing Clinics of North America, Volume 31, Issue 3, 2019, Pages 303-313, ISSN 0899-5885, ISBN 9780323708685, <https://doi.org/10.1016/j.cnc.2019.05.002>. (<https://www.sciencedirect.com/science/article/pii/S0899588519300292>)

9. A Review on Lung Cancer with Emphasis on Current Treatment Gayatri Deshmukh*1, Dr. H. A. Sawarkar2 and Dr. K. R. Biyani.2 1Department of Pharmacology, Anuradha College of Pharmacy, Chikhli, Buldhana, Maharashtra, India1 2Campus Director, Anuradha College of Pharmacy, Chikhli, Buldhana, Maharashtra, India2
10. Siddiqui F, Vaqar S, Siddiqui AH. Lung Cancer. [Updated 2023 May 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK482357/>
11. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. *Ann Glob Health*. 2019 Jan 22;85(1)
12. American Cancer Society. Statistics for 2003. Accessed October 6, 2006, at: http://www.cancer.org/docroot/stt/stt_0_2003.asp
13. Centers for Disease Control and Prevention. The health consequences of smoking. A report of the surgeon general. 2004. Accessed October 6, 2006, at: http://www.cdc.gov/tobacco/sgr/sgr_2004/index.htm
14. Bilello KS, Murin S, Matthay RA. Epidemiology, etiology, and prevention of lung cancer. *Clin Chest Med*. 2002;23:1-25.
15. Fontham ET, Correa P, Reynolds P, Wu-Williams A, Buffler PA, Greenberg RS, et al. Environmental tobacco smoke and lung cancer in non-smoking women. A multicenter study [Published correction appears in JAMA 1994;272:1578]. *JAMA*. 1994;271:1752-9
16. Respiratory Health Effects of Passive Smoking: Lung Cancer and Other Disorders. Washington, D.C.: Environmental Protection Agency, 1992. Accessed November 27, 2006, at: <http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=2835>.
17. Gilliland FD, Hunt WC, Pardilla M, Key CR. Uranium mining and lung cancer among Navajo men in New Mexico and Arizona, 1969 to 1993. *J Occup Environ Med*. 2000;42:278-83
18. Grosche B, Kreuzer M, Kreisheimer M, Schnelzer M, Tschense A. Lung cancer risk among German male uranium miners: a cohort study, 1946-1998. *Br J Cancer*. 2006 Nov 06;95(9):1280-7.
19. Nomura A, Stemmermann G, Heilbrun L, et al. "Serum vitamin levels and the risk of cancer of specific sites in men of Japanese ancestry in Hawaii" . *Cancer Res*. 1985; 45:2369-2372.
20. Willett W, Polk B, Underwood B, et al. "Relation of serum vitamins A and E and carotenoids to the risk of cancer" . *N Engl J Med*. 1984; 310:430-434.
21. Colditz G, Stampfer M, Willett W. "Diet and lung cancer. A review of the epidemiologic evidence in humans" . *Arch Intern Med*. 1987; 147:157-160.
22. Greenwald P. "NCI cancer prevention and control research" . *Prev Med*. 1993; 22:642-660.
23. Lung cancer: biology and treatment options Hassan Lemjabbar-Alaoui, Omer Hassana, Yi-Wei Yanga, and Petra Buchanana aDepartment of Surgery, Thoracic Oncology Division, University of California, San Francisco 94143, USA.
24. Chute CG, Greenberg ER, Baron J, Korson R, Baker J, Yates J. Presenting conditions of 1539 population-based lung cancer patients by cell type and stage in New Hampshire and Vermont. *Cancer*. 1985 Oct 15;56(8):2107-11.
25. Kocher F, Hilbe W, Seeber A, Pircher A, Schmid T, Greil R, Auberger J, Nevinny-Stickel M, Sterlacci W, Tzankov A, Jamnig H, Kohler K, Zabernigg A, Frötscher J, Oberaigner W, Fiegl M. Longitudinal analysis of 2293 NSCLC patients: a comprehensive study from the TYROL registry. *Lung Cancer*. 2015 Feb;87(2):193-200.
26. Cagle PT, Allen TC, Olsen RJ. Lung cancer biomarkers: present status and future developments. *Arch Pathol Lab Med*. 2013 Sep;137(9):1191-8.
27. Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS, Squire J, Thunnissen E, Ladanyi M, College of American Pathologists International Association for the Study of Lung Cancer and Association for Molecular Pathology Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. *J Mol Diagn*. 2013 Jul;15(4):415-53.
28. Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. *J Mol Diagn*. 2018 Mar;20(2):129-159.
29. EL O'Dowd, TM McKeever, DR Baldwin, et al. What characteristics of primary care and patients are associated with early death in patients with lung cancer in the UK? *Thorax*, 70 (2015), pp. 161-168
30. de Sousa VML, Carvalho L. Heterogeneity in Lung Cancer. *Pathobiology*. 2018;85(1-2):96-107. doi: 10.1159/000487440. Epub 2018 Apr 10. PMID: 29635240.
31. Cancer Research UK,. Be Clear on Cancer evaluation update. CRUK, 2014.
32. Maghfoor I, Perry MC. Lung cancer. *Ann Saudi Med*. 2005 Jan-Feb;25(1):1-12. doi: 10.5144/0256-4947.2005.1. PMID: 15822487; PMCID: PMC6150570.

33. Gavin S Jones, David R Baldwin, Recent advances in the management of lung cancer, Clinical Medicine, Volume 18, Issue 2, Supplement, 2018, Pages s41-s46, ISSN 1470-2118, <https://doi.org/10.7861/clinmedicine.18-2-s41>. (<https://www.sciencedirect.com/science/article/pii/S147021182400085X>)
34. Rivera M, Detterbeck F, Mehta A, et al. "Diagnosis of lung cancer: the guidelines". Chest. 2003; 123:129S-136S.
35. Fréchet B, Kazakov J, Thiffault V, Ferraro P, Liberman M. Diagnostic Accuracy of Mediastinal Lymph Node Staging Techniques in the Preoperative Assessment of Non-small Cell Lung Cancer Patients. J Bronchology Interv Pulmonol. 2018 Jan;25(1):17-24.
36. Heineman DJ, Beck N, Wouters MW, van Brakel TJ, Daniels JM, Schreurs WH, Dickhoff C. The dutch national clinical audit for lung cancer: A tool to improve clinical practice? An analysis of unforeseen ipsilateral mediastinal lymph node involvement in the Dutch Lung Surgery Audit (DLSA). Eur J Surg Oncol. 2018 Jun;44(6):830-834.
37. Labarca G, Caviedes I, Folch E, Majid A, Fernández-Bussy S. [Endobronchial ultrasound-guided transbronchial needle aspiration]. Rev Med Chil. 2017 Sep;145(9):1165-1171.
38. Mizutani H, Gemma A. [Lung cancer]. Gan To Kagaku Ryoho. 2009 Feb;36(2):171-5. Japanese. PMID: 19223731.
39. Beckles MA, Spiro SG, Colice GL, Rudd RM for the American College of Chest Physicians. The physiologic evaluation of patients with lung cancer being considered for resectional surgery. Chest. 2003;123(1 suppl):105S-14S
40. Royal College of Physicians. The National Lung Cancer Audit report 2016. London: RCP, 2016.
41. National Comprehensive Cancer Network. Non-small cell lung cancer. Version 2.2006. Accessed October 6, 2006, at: http://www.nccn.org/professionals/physician_gls/PDF/nscl.pdf#search=%22abstract%20no%3ALBA7012%22.
42. JS Temel, JA Greer, A Muzikansky, et al. Early Palliative Care for Patients with Metastatic Non-Small-Cell Lung Cancer
43. Yang GM, Teo I, Neo SH, Tan D, Cheung YB. Pilot Randomized Phase II Trial of the Enhancing Quality of Life in Patients (EQUIP) Intervention for Patients With Advanced Lung Cancer. Am J Hosp Palliat Care. 2018 Aug;35(8):1050-1056.
44. Visentin A, Mantovani MF, Kalinke LP, Boller S, Sarquis LMM. Palliative therapy in adults with cancer: a cross-sectional study. Rev Bras Enferm. 2018 Mar-Apr;71(2):252-258.
45. Kripke C. Antidepressants and smoking cessation. Am Fam Physician. 2005;71:67-8.
46. Talwar A, Jain M, Vijayan VK. Pharmacotherapy of tobacco dependence. Med Clin North Am. 2004;88:1517-34.
47. Simon JA, Carmody TP, Hudes ES, Snyder E, Murray J. Intensive smoking cessation counseling versus minimal counseling among hospitalized smokers treated with transdermal nicotine replacement: a randomized trial. Am J Med. 2003;114:555-62.
48. Jimenez-Ruiz C, De Granda Orive JI. Success rates for nortriptyline. Chest. 2003;124:768-9.
49. Osinubi OY, Moline J, Rovner E, Sinha S, Perez-Lugo M, Demissie K, et al. A pilot study of telephone-based smoking cessation intervention in asbestos workers. J Occup Environ Med. 2003;45:569-74.
50. Hughes J, Stead L, Lancaster T. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2004;4:CD000031.
51. Lancaster T, Stead LF. Individual behavioural counselling for smoking cessation. Cochrane Database Syst Rev. 2005;2:CD001292.
52. Stead LF, Lancaster T. Group behaviour therapy programmes for smoking cessation. Cochrane Database Syst Rev. 2005;2:CD001007.
53. Silagy C, Lancaster T, Stead L, Mant D, Fowler G. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2004;3:CD000146.
54. Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR, et al. A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med. 1999;340:685-91.
55. Jorenby DE, Fiore MC. The Agency for Health Care Policy and Research smoking cessation clinical practice guideline: basics and beyond. Prim Care. 1999;26:513-28.
56. Mallin R. Smoking cessation: integration of behavioral and drug therapies. Am Fam Physician. 2002;65:1107-14.
57. Keith RL, Miller YE. Lung cancer: genetics of risk and advances in chemoprevention. Curr Opin Pulm Med 2005;11:265-271.
58. Phytochemicals from *Phyllanthus niruri* Linn. and their pharmacological properties: a review G. Bagalkotkar, S. R. Sagineedu, M. S. Saad and J. Stanslas
59. Phytochemistry and Pharmacology of *Phyllanthus niruri* L.: A Review Navneet Kaur,¹ Baljinder Kaur^{1*} and Geetika Sirhind² 1Department of Biotechnology, Punjabi University, Patiala-147002, Punjab, India 2Department of Botany, Punjabi University, Patiala 147 002Punjab, India
60. Calixto JB et al. A review of the plants of the genus *Phyllanthus*: their chemistry, pharmacology, and therapeutic potential. Med Res Rev 1998; 18: 225-258
61. Burkhill IH et al. A dictionary of the economic products of the Malay peninsula. Kuala Lumpur, Malaysia: Published on behalf of the governments of Malaysia and Singapore by the ministry of agriculture and cooperative ;1966
62. Chopra RN et al. Glossary of Indian medicinal plants. Ranchi: Catholic Press, 1986.

63. Dhar ML et al. Screening of Indian plants for biological activity: I. Indian J Exp Biol 1968; 6: 232247.
64. Nadkarni NK. India Materia Medica. Bombay: Popular Prakashan Private Ltd., 1993.
65. IndiaPhyllanthus niruri: A Review on its Ethno Botanical, Phytochemical and Pharmacological ProfileK. Narendra, J. Swathi, K. M. Sowjanya,A. Krishna Satya *Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur-522510. A.P. IndiaReceived on:12-06-2012; Revised on: 17-07-2012; Accepted on:26-08-2012
66. O'Neil J. Maryadle, Annsmith, Heckelman E Patricia, ObenchainR. John Jr., Gallipeau R. Jo Ann, Dárecca Ann Mary: The MerckIndex. Merck Research Laboratories: New Jersey, 139, 312, 483,599, 624, 631, 737, 1428, 1456,5515,9142
67. Shimizu, M., Horie, S., Terashima, S., Ueno, H., Hayashi,T., Arisawa, M., Suzuki, S., Yoshizaki, M., Morita, N., 1989. Studies on Aldose reductase inhibitors from natural products.II. Active components of a Paraguayan crude drug, 'paraparaimi,' Phyllanthus niruri." Chem. Pharm. Bull. (Tokyo), 37(9),2531-32
68. Nara TK, Gleye J, Cerval EL, Stanistan E (1977). Flavonoids ofPhyllanthus niruri, Phyllanthus urinaria, Phyllanthus orbiculatus.
69. Row, L.R. and Srinivasulu, C. (1964) New lignans fromPhyllanthus niruri Linn. Tetrohedron Letters 1557-1567.
70. Anjaneyulu, A.S.R., Jaganmohan Rao, K., Row, L.R. andSubrahmanyam, C. (1973) Crystalline constituents ofEuphorbiaceae - XII Isolation and structural elucidation of threnew lignans from the leaves of Phyllanthus niruri Linn.
71. Ueno, H., Horie, S., Nishi, Y., Shogawa, H., Kawasaki, M., Suzuki,S., Hayashi, T., Arisawa, M., Shimizu, M., Yoshizaki, M., Morita,N., (1988) Chemical and Pharmaceutical Studies on MedicinalPlants in Paraguay. Geraniin, An Angiotensin-Converting EnzymeInhibitor from "Paraparai Mi", Phyllanthus niruri. J Nat Prod, 512, 357-359.
72. Syamasundar KV et al. Antihepatotoxic principles of Phyllanthus niruri herbs. J Ethnopharmacol 1985; 14: 41–44.
73. Mazunder UK et al. Antihyperglycemic effect and antioxidant potential of Phyllanthus niruri (Euphorbiaceae) in streptozotocin induced diabetic rats. Eur Bull Drug Res 2005; 13: 15–23.
74. Obidike IC et al. The anti-inflammatory and antinociceptive properties of the chloroform fraction from Phyllanthus niruri plant is mediated via the peripheral nervous system. J Dietary Suppl 2010; 7: 341–350.
75. Nwanjo H et al. Protective role of Phyllanthus niruri extract on serum lipid profiles and oxidative stress in hepatocytes of diabetic rats. Afr J Biotechnol 2007; 6: 1744–1749.
76. Thippeswamy AH et al. Protective role of Phyllanthus niruri extract in doxorubicin-induced myocardial toxicity in rats. Indian J Pharmacol 2011; 43: 31–35.
77. Iizuka T et al. Vasorelaxant effects of methyl brevifolincarboxylate from the leaves of Phyllanthus niruri. Biol Pharmaceut Bull 2006; 29: 177–179.
78. Abdulla MA et al. Gastroprotective effect of Phyllanthus niruri leaf extract against ethanol-induced gastric mucosal injury in rats. African J Pharm Pharmacol 2010; 4: 226230.
79. Thyagarajan SP et al. In vitro inactivation of HBsAg by Eclipta alba Hassk and Phyllanthus niruri Linn. Indian J Med Res 1982; 76(Suppl): 124–130.
80. Ranilla LG et al. Antimicrobial activity of an Amazon medicinal plant (Chancapiedra) (Phyllanthus niruri L.) against Helicobacter pylori and lactic acid bacteria. Phytother Res: PTR 2012; 26: 791–799.
81. Araujo RF Jr et al. Growth inhibitory effects of Phyllanthus niruri extracts in combination with cisplatin on cancer cell lines. World J Gastroenterol: WJG 2012; 18: 4162–6168.
82. Jia L et al. A potential anti-tumor herbal medicine, Corilagin, inhibits ovarian cancer cell growth through blocking the TGF-beta signaling pathways. BMC Complement Alter Med 2013; 13: 33.