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Abstract:

Acrtificial intelligence, in the recent world is a powerful tool which has been extensively been used scientists
working in pharmaceutical industries for drug discovery. Many aspects of drug discovery such as drug
screening, identification of dosage, drug effectiveness, virtual screening, QSAR modelling, toxicity
prediction, bioactivity prediction, prediction of physiochemical properties, de novo drug design and
identification of molecular pathway which were traditionally been time and resource consuming with question
of effectiveness has now become less time and resource consuming with remarkable increase in efficiency of
the process. The use of different Al tools such as machine learning and deep learning algorithms,
DeepAffinity, PREDICT, FAME, XenoSite, eToxPred, pkCMS, wideDTA, DeepChem were found very
efficient in analysing huge pool of data and to provide us with most appropriate data use in any process of
drug discovery. Several breakthroughs have been achieved in different aspects of drug designing by different
scientists resulting in rapid advancement is the field of drug designing.
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Introduction:

Drug discovery is a very comprehensive process which involves the identification and development of new
drug in order to either curing a newly discovered disease or to find out for a better and physiologically more
friendly drug to substitute with the existing drug that may cause any adverse or side effect to human body.
The process involves several steps such as Target Identification and Validation where a team of researchers
identifies the biomolecules that plays an important role in causing the disease to be cure, these biomolecules
are then confirmed through methods like CRISPR and RNA interferences, Hit discovery phase where the
potential chemical compound are identified through various sources and are identified by using high
throughput screening or computational techniques in order to test the vast pool of potential compounds and
Hit-to-lead optimization where the selected potential drug is tested for its physiological effect on human body
such as efficacy, safety and any side effect and later the potential drug passe through several phase of clinical
development in order to be available in the market as a drug.
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Drug discovery is a complex, multi-step process involving various stages of research and development aimed
at identifying new therapeutic agents. Below is an analytical overview of the key steps involved in drug
discovery:

1.Target Identification and Validation: -This initial step involves identifying biological targets (usually
proteins or genes) associated with a particular disease. After the identification of potential targets, validation
of relevance in disease mechanisms and therapeutic potential is required often by conducting molecular and
cellular studies [1].

2. Lead Compound Discovery: - Following validation of the target identified, lead compounds interacting with
that target are screened. With the approach of HTS, virtual screening, and fragment-based drug design,
molecules that will show desired biological activity are commonly identified [2].

3. Lead Optimization: - The chemical structure of lead compounds is optimized to enhance their efficacy,
selectivity, and pharmacokinetic properties (absorption, distribution, metabolism, and excretion). SAR studies
guide the optimization process by correlating chemical modifications with biological activity [3].

4. Preclinical Testing: - Lead candidates are subjected to rigorous preclinical testing before advancing to
human trials to evaluate their safety and efficacy through in vitro (test tube) and in vivo (animal) studies. Also,
during this stage, there is a pharmacodynamics assessment of how the drug affects the body and
pharmacokinetics of how the body affects the drug.

5. Clinical Trials: - The drug then undergoes clinical trials when preclinical tests are quite successful; these
clinical trials occur in three phases:

- Phase I: The study is carried out on a few healthy volunteers to assess the safety and dosage [4].

- Phase Il: Testing on more patients to determine whether the drug is useful and what side effects it presents
[5].

-Phase I11: Large numbers of participants to ascertain the drug's efficacy, side effects, and its superiority over
standard treatments. Completion of these phases will determine whether or not the regulatory body approves
the drug.

6. Regulatory Review and Approval: -After successful clinical trials, an NDA is submitted to regulatory
bodies. The drugs have all previous study data, manufacturing information, labelling, and suggested use within
the application submitted for approval. Agencies scrutinize all applications and permit commercial usage after
approval.

7. Post Marketing Surveillance: - After commercial use, ongoing monitoring is the need of time in order to
observe any late appearing or late appearing side effect not seen at the time of the clinical trials. This stage
allows for ongoing data collection and can result in revisions to usage recommendations or additional research.

8. Market Launch and Commercialization: - The last step includes strategic marketing and sales activities to
promote the drug, which would ensure it is delivered to the target population. Companies must also address
patent law and intellectual property rights to safeguard their discoveries.Drug discovery represents a
multidisciplinary blend of knowledge from biology, chemistry, pharmacology, and regulatory sciences [6].
Each step is crucial to ensure that new therapies are safe, effective, and good for patients [7]. It takes many
years and significant financial investment, which underlines the complexity and importance of the
pharmaceutical development pipeline [8].

Traditionally the process was performed only through limited past knowledge and availability of resources
and database which limits the reach of the researchers when they are dealing with a new disease [9]. Also, the
entire process become too expensive with the estimation of average 2.6 billion US dollars being used in
discovery of a single drug along with the average time consumption in the process and launching of drug being
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10 years. Still, the success rate of discovery and launching of drug remains less than 10% leading to the risk

of wasting of a large number of resources and time [10].
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Figurel. The drug discovery process utilizing Al tools.

With the advancement of time and technology various new tool are now being implemented in the complex
process of drug discovery in order to reduce the consumption of time and resources [11]. Artificial Intelligence
have now gained an immense popularity in different fields of research and development, hence now a days is
extensively used in the field of drug discovery and development [12]. The vast pool of chemical molecules
comprising of approximately 10%° molecules and still the count is going on earlier use to be a challenge to
identify the appropriate set of moieties to work on and to identify the suitable moiety to continue the research,
but now with the advancement in artificial intelligence, a vast pool of moiety can be identified and classified
according to the requirement. Artificial intelligence had made the complex and time-consuming processes
such as hit and trial very time effective and more accurate, also helps in providing the quick validation to the
drug target and optimizes the structure designing of drug [13].

Brief history of drug discovery in Al era:

Since early 2000s, many machine learning processes such as random forest has been'widely been applied for
QSAR and VS. in 2012, AlexNet have achieved a remarkable advancement in the deep learning [14]. In same
year, Merck Kaggle competition, deep neural networks (DNNs) had shown.great performance outperforming
the standard RF madel in the field of predicting the molecular activity [15]. The recent success of Al in the
field of natural language processing and computer vision has provided a great leap in drug discovery process
and lead to the great advancement in our deep knowledge of chemistry. In 2019, a great lead was achieved
when potent inhibitors of discoidin domain receptorl (DDR1) were discovered by researchers of Insilico
Medicine in only 21 days [16]. In 2020, by the researchers of MIT, halicin, a novel antibiotic candidate against
antibiotic-resistant bacteria was identified [17]. It has been noticed that the Al can be greatly used in any stage
of drug discovery starting from target identification to determination of drug response in population [18].

Role of Al in drug screening:

The process of drug discovery and development takes on an average consumes over a decade with an estimate
cost of US$2.8 billion, still only one of the ten therapeutic molecules can pass through the phase Il clinical
trials and regulatory approvement. A variety of algorithms are now available such as RF, SVMs, Nearest-
Neighbour Classifiers and extreme learning machines are used for VS which is based on the synthesis
feasibility and also helps in predicting the toxicity and in-vivo activity [19]. Now a days many
biopharmaceutical companies such as Pfizer, Roche and Bayer have linked up with many IT companies and
working in development of certain platforms which boost up the process of discovery of therapies in the fields
such as immuno-oncology and cardiovascular diseases [20].
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Prediction of toxicity:

It is a vital process in the field of drug development which helps us to identifying the possible toxic effect
of the drug in human body by the drug under development [21]. Several web-based tools such as Toxtree,
admedSAR, pkCMS are now available to assist the process and reduce both time and money consumption in
the process. Advance Al-based approaches are bean now applied for looking similarities among the
compounds or to project out the toxicity of compound under development based on the input features [22].
The Tox21 Data Challenge was organized by the National Institute of Health, Environment Protection Agency
(EPA) and US Food and Drug Administration (FDA) was an initiation for the evaluation of several
computational techniques for forecasting the toxicity of 12,707 environmental compounds and drugs.

SEA was applied for the evaluation of the safety target prediction of 656 drugs in market against 73 unintended
markets that might possess the threat of adverse effect on the population [23]. For the estimation of synthetic
feasibility and toxicity of small organic molecules, an ML-based approach, eToxPred was applied showing
wonderful accuracy of as high as 72% [24]. Other Al open-source tools such as TargeTox and PrOCTOR are
being widely used in prediction of toxicity [25]. TargeTox has the ability to produce protein network data and
unite the pharmacological and functional properties in a ML classifier for the prediction of the drug toxicity
[26]. PrOCTOR is also able to recognize the drugs recognised by FDA which were later reported for showing
adverse drug effects [27].

Prediction of bioactivity:

The efficiency of drug action in a human body is defined by its ability and efficiency of forming a complex
with the appropriate receptors known as drug -receptor complex [28]. Those drug molecules which fails to
shows affinity towards the receptors and fail to form drug-receptor complex also fails to show any therapeutic
action [29]. This may also lead to interaction of the drug molecule to interact with unwanted protein or
receptors leading to unwanted action or even toxicity [30]. Therefore, the drug-target binding affinity (DBTA)
plays an important role in predicting the drug-target interaction actions [31]. Al based methods are now widely
being used for measuring the binding affinity of the drug molecule to the targeted receptors by comparing
either structure similarity or features of both [32]. In interaction based on similarities, the similarities between
the drug molecule and target receptor are considered, it has been assumed that similar drugs may bind with
the same target receptors [33].

Web applications such as the similarity ensemble approach (SEA) and ChemMapper are been widely been
used in recent times for prediction of drug-receptor affinity [34]. Many strategies which involve ML and DL
has been widely been used for determination of DBTA such as SimBoost, PADME, KronRLS and DeepDTA.

ML based approach such as Kronecker-regularized least squares (KronRLS) works on the evaluation of the
similarities in between drug and protein molecule for determination of DBTA. SimBoost utilizes regression
trees for predicting DBTA and mtakes consideration of both the similarity-based and feature-based
interactions.

DL approaches, in recent days have shown improvements in performing in comparison of ML because of the
application of network-based methods which are independent of availability of 3D protein structure [35].
DeepAffinity, DeepDTA, PADME,WideDTA are some of the widely used DL method has been used for
measuring DBTA [36]. WideDTA is CVNN DL method which incorporates ligand SMILES (LS), amino acid
sequences, LMCS and protein domains for assessment of the binding affinity [37].

DeepAfffinity is an interpretable DL model which utilizes both RNN and CNN and both the labelled and
unlabelled data [38]. PADME is a DL based platform which utilizes feed-forward neural network for the
prediction of drug target interactions (DTIs) [39]. Unsupervised ML techniques such as PREDICT and
MANTRA are being used for forecasting the therapeutic efficiency of drugs and target proteins for known
and unknown pharmaceuticals that can also be extrapolated for the application of drug repurposing and for
interpretation of the molecule mechanism of the therapeutics under observation.
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Prediction of physicochemical properties:

Many physicochemical propertied of the drugs such as partition coefficient, solubility, degree of ionization,
and intrinsic permeability of drug causes indirect effect on the pharmacokinetically properties, and the target
receptor family, hence must be taken under consideration while developing a new drug. Different Al based
tools are now being used for the prediction of physicochemical properties [40]. ML utilizes a large data set
produced during the optimization of the compound, previously done for training the program [41]. Algorithms
which are been use for drug design includes molecular descriptor, such as SMILES strings, potential energy
measurements, coordinates of atoms in 3D and electron density around the molecule for generation of feasible
molecules via DNN and hence predict the properties [42].

Zang et a. has created a quantitative structure-property relationship (QSPR) workflow for determination of
the six physicochemical properties of environmental chemicals obtained from the Environmental Protection
Agency (EPC) known as Estimation Program Interface (EPI) Suite. DI methods such as undirected graph
recursive neural networks and graph-based conventional neural networks (CVNN) has been widely been used
for the prediction of solubility of the molecular drug [43].

ANN-based models, kernel ridge-based models and graph kernels has been developed for predicting the acid
dissociation constant of the given molecule [44]. Cell lines such as Madin-Darby canine kidney cells and
human colon adenocarcinoma (Caco-2) cells has generally utilized for generating cellular permeability data
of a diverse class of molecules which are been use for Al assisted predictors [45].

Role of Al in primary and secondary drug screening:

Al has gradually become a major successful and demanding tool for drug screening due to its ability of
processing large number of given information efficiently and in a very small period of time [46]. Certain
process like cell classification, cell storing, synthesizing organic compound, developing assay, calculating
properties of molecules under study, predicting the possible 3D structure of target molecule are being some
of the time-consuming process which have been assisted by Al technology [47]. The process of primary drug
screening including the proper classification and shorting of the cell through image analysis has been
performed through the use of Al technology [48]. Many ML methods are been used which works on using
different algorithms for recognizing images with great accuracy, though showing incompetence while
analysing big data [49]. For classifying the target cells, the ML method is needed to be trained for identifying
the cell and its features which can be achieve through contrasting the image of the target cells which got
separated from the background [50]. Images with different texture features like wavelet-based texture features
and Tamura texture feature are extracted, which can be further reduced in dimensions through principal
component analyses (PCA) [51]. Many studies shows that least-square SVM (LS-SVM) have shown the
highest classification accuracy of up to 95.34% [52].

The process of secondary drug screening incudes the analysis of physical properties, bioactivity and toxicity
of the molecule [53]. Partition coefficient and melting point are some of the physical properties of molecule
which controls the bio-availability of the molecule and are also been essential for designing a new compound
[54]. While designing the drug, molecular representation is done using different methods such molecular
fingerprinting, simplified molecular-input line-entry system (SMILES) and Coulomb matrices [55]. The
resultant data are been used in DNN, which again comprises of two different stages; generative stage and
predictive stage [56]. Although both the stages have been trained separately using supervised learning, when
they are trained together, bias can be applied to the output, where it can be either rewarded or penalized for
the specific property. Matched molecular pair (MMP) have been widely been used for QSAR studies. MMP
has been associated with a single change in drug candidate which have been use for further influencing the
bioactivity of the molecule [57]. Now, it has been observed that DNN has the ability to predict better than
GBM and RF [58]. With the recent increment in databases, which are easily available to pubic such as
ChEMBL, PubChem, ZINC, we have access of a great number of compounds annotating information like
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their structure, known targets and purchase ability; MMP plus ML can be used to predict the bioactivity like
oral exposure, intrinsic clearance, ADMET and method of action.
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Figure2. Al based screening model for drug discovery
Role of Al in identification of drug dosage and drug delivery effectiveness:

It is very crucial to properly determine the appropriate dose of any drug to be administered to the patient as
improper dosing may lead to improper or unwanted pharmacological action in human body. With the emerge
of powerful Al tools, ML and DL algorithms are now been widely used for determining the appropriate dose
[59]. Shen et al. had developed an Al based platform referred to as AI-PRS which has been use for
determination of optimum dosage and combination of drugs to be use in treatment of HIV through
antiretroviral therapy [60]. AI-PRS is a neural network-driven approach which is been use to relate drug
combinations and dosage to efficacy with the help of parabolic response curve (PRS) [61].

Pantuck et al. has developed CURATE.AI for determination of accurate drug dosage, which analyse the
patient’s personal data and transform it to CURATE.AI profile for assortation of optimal dosage [62]. A study
was performed where a combination of cancer drug enzalutamide and investigation drug ZEN-3694 was
administered to a patient who was diagnosed with metastatic castration-resistant prostate cancer [63]. By using
CURATE.AI it was found that a 50% lower than initial dose of ZEN-3694 was optimum for achieving desired
therapeutic result and arrest the growth of cancer [64].

Julkunen et al. has devices a comboFM, a novel ML-driven tool which is use to ascertain the appropriate drug
combinations and dosage in pre-clinical studies like cancer cell lines [65]. comboFM is use for determination
of appropriate drug combinations and dosing with the use of factorization machines, an ML framework for
high-dimensional data analysis [66]. In their studies, while using comboFM , Julkunen et al. founds a novel
combination of anti-cancer drugs crizotinib and bortezomib, which shows promising efficiency in lymphoma
cell line [67].

Role of Al in structure-based and ligand-based virtual screening:

VS is considered as one of the most important methods of CADD in drug designing a drug screening [68].
The identification of small chemical compound which binds to a drug target is referred to as VS [69]. VS has
been considered as one of the most efficient methods for screening out the promising therapeutic compound
from a pool of compounds [70]. There exist two main types of VS, those are structure-based VS (SBVS) and
ligand-based VS (LBVS). Comparing both the types of VS, SBVS shows a higher accuracy and precision as
compared to LBVS [71]. However, recent studied shows that SBVS shows the problem of an increasing
number of disease-causing protein and their complicated conformations [72]. For the application of ML in
VS, it is to be considered that there must be a filtered training set which comprises of known active and
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inactive compounds [73]. Docking is considered to be the main principle for application in SBVS, where in
recent times, several Al and ML based scoring algorithms has been developed such as SVR-Score, CScore,
ID-score and NNScore. In same way, many ML and DL methods such as RFs, CNNs, SVMs and shallow
neural networks have been formed for prediction of protein-ligand affinity in SBVS. Whereas, LBVS, which
consist of several steps and each step can be associated with novel Al and ML based algorithms for speeding
up the process and for increasing reliability [74]. Several ML and DI based algorithms has been build up for
preparing useful decoy sets such as Gaussian mixture models (GMMs), isolation forests and artificial neural
networks (ANNSs) [75]. Further, ML models such as HEX, PARASHIFT, ShaPE and USR algorithms has
been developed for LBVS [76].

Liu et al. 2017 had discovered low toxicity O-GIcNAc transferase inhibitors, Dou et al. have identified novel
glycogen synthase kinase 3 beta inhibitors by using SBVS. Gahlawat et al. 2020 has identified that saquinavir,
lithospermic acid and 11m_32045235 were found to be promising therapeutic compound against SARS-Cov-
2 main proteas. Selvaraj et al. 2020 demonstrated that TCM 57025, TCM 3495, TCM 5376, TCM 20111, and
TCM 31007 were those therapeutic compounds which interacts with the substrate-binding site of N7-MTase
[77]. Cruz et al. 2018 concluded that ZINC91881108 was a potent compound against RIPK2 [78].

Role of Al in QSAR modelling:

Quantitative structure—activity relationship (QSAR) modelling seeks to establish a connection between the
various properties and activities of different chemical compounds and their corresponding molecular
structures [79]. As the dataset, which includes numerous compounds that possess quantitative values along
with detailed molecular structural data, continues to expand significantly, it becomes increasingly important
to develop a rapid and effective large-scale screening technology. This technology will be essential for
efficiently selecting and accurately identifying those chemicals that demonstrate high activity levels [80]. R
modelling has become an increasingly popular method [81]. Over four decades, QSAR models have been used
substantially in the drug, environmental, material, food, and other chemical domains [82]. Therefore, the
search for more efficient, practical, and accurate methods for establishing QSAR models and predicting
activities has become necessary [83]. The recent proliferation of cyber infrastructure, availability of extensive
public domain and proprietary databases, coupled with advancements in cheminformatics and molecular
descriptors, has created a terrific impetus to apply machi SAR-type predictive tasks especially in Q SAR-type.
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Figure3. Application of QSAR modelling in drug discovery.

The traditional methods of QSAR modelling mainly focus on multiple linear regression analysis, which is a
simple and useful method [84]. However, this method has certain limitations. For example, the correlations
derived with this method lack clear cause-and-effect relationships [85]. It is difficult to identify the most
important physical, chemical, or biological features based on the correlation results [86]. Moreover, the nature
and type of the responses that can be predicted are greatly restricted. In addition to the shortcomings of
multiple linear regression analysis, the high dimensionality of the molecular structural features will bring
serious problems to the data processing in the traditional QSAR models [87]. As a result, dimensionality
reduction becomes a priority problem. In summary, in a broad class of chemical, biological, and structural
domains, much high-dimensional data makes drug and chemical property prediction difficult using traditional
methods [88]. With the rapid development of neural network technology and the wide application of neural
networks in many other domains such as voice recognition, image recognition, and so on, people have also
started gradually to apply artificial neural networks to QSAR modelling.

The recent advancement and increase in application in application of ML algorithms such as neural networks,
SVM and DL has supplied with a greater avenue for QSAR modelling [89]. Many web-based tools and
algorithms have been recently been developed for QSAR modelling like VEGA platform, QSAR-Co, FL-
QSAR, Meta-QSAR, DPubChem, Transformer-CNN, Cloud 3D-QSAR, MoDeSuS and Chemception [90].
Karpov et al. 2020 developed a novel algorithm for QSAR modelling which is based on ANN known as
transformer-CNN. Wang et al. 2020 developed QSAR modelling web-based tool with intregation of
characteristic features of modelling structure generation, alignment and molecular interaction field [91]. Jin
et al. with the help of Cloud 3D-QSAR discovered a potent and selective monoamine oxidase B (MAO-B)
inhibitor. Bennett et al. 2020 with help of Chemception, has predicted the small molecules transfer free energy
with combination of MD stimulation and DL.
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Role of Al in de novo drug designing:

The drug design process, as the name itself indicates, is a process of finding a compound that can treat a
disease [92]. That drug compound has biochemical effects on the signalling pathways related to the disease
[93]. Drug design techniques combine knowledge of biochemical pathways and the response of living beings
to chemical compounds [94]. The drug designing pipeline is a very complex framework. Finding an active
compound through experimental procedures is tricky and has delays [95]. Hence, in silico methods have
emerged as fast but cheaper methods for reducing the time of drug discovery [96]. De novo drug designing is
a computational method where the fabrication of a new drug is automated and a suitable lead compound is
found [97]. This eliminates the need for a brute force evaluation of large libraries of compounds. The drug
discovery process involves the identification of a target, validation of the target, finding initial hits, lead
optimization, and clinical testing [98]. De novo drug designing can significantly reduce the time needed for
the lead generation stage of the above workflow [99]. The core idea of de novo designing is that we can build
efficient models of candidate compounds, given a library of available building blocks, and then select the
models that are expected to possess the most favourable drug-like properties [100]. Computer-aided drug
design tools assist in all steps, specifically in guiding the design of novel drugs that are backed by the principles
of medicinal chemistry [101]. The current work presents how Al is leveraged in de novo drug designing, also
discussing the use of graph neural networks for the design of new molecules [102].

RNN has been likely found effective for utilizing in de novo drug design [103]. As the SMILES strings has
encoded the substance structure in a grouping of letters, RNN has recently been utilized for generating
compound structure [104]. It was found that RNNs have shown a great potential for utilizing SMILES strings
for drug design [105]. Optimizing Al and multi-objective has been seen as a promising solution for bridging
the chemical and biological phase [106]. Novel pairs of multi-objectives based on RNN for the automatization
of de novo drug design based on SMILES has been developed for finding the best possible match between
physicochemical properties and their constrain biological targets. ML models like SVM, DNNs and RF and
many others have recently been widely used for drug discovery and for analysing the pharmaceutical
applications from docking to VS [107]. The first de novo multi-target drug configuration program called
LigBuilder V3 has been developed to design the ligands for different receptors, numerous coupling locales of
one receptor or various configurations of one receptor [108]. LigBuilder has been again used for multi-target
drug plans and enhancements, especially for compact ligand of proteins with different ligand binding sites
[109]. Fragment-based de novo design tools were successfully found applicable in discovering non-covalent
inhibitor [110]. A new protocol, known as Cov_FB3D has been developed that involves the in-silico assembly
of potential novel covalent inhibitors by identification of the active fragments in the covalently binding site
of target protein [111].

Role of Al in identification of molecular pathway:

Molecular pathways represent a sequence of interactions between different molecules inside cells and in-
between cells that are needed to accomplish one or more functions [112]. Therefore, the identification and
thorough understanding of these complex series of interactions is of fundamental importance in molecular
biology, and key for associating molecular observations with phenotypes [113]. Here, we discuss and
overview a variety of current research that utilizes Artificial Intelligence models to identify and evaluate these
complex cellular pathways. The Al models presented in this research range from more traditional approaches
such as sequence-based support vector machines or the random forest models to contemporary deep learning
models [114]. We start by introducing the need for molecular pathway identification before describing the
various types of methods that have been employed to create these hot-topic models [115]. The fundamental
biological unit in the functional aspect is the pathway, yet defining pathway activity is not as straightforward
as defining gene or protein activity [116]. The number of matched gene-expression data termed as pathway
activity is zero if no genes are differentially expressed or significant matching is not achieved by chance [117].
The level of expression of the genes, the actual presence of the gene products in the cells and the amount
present, as well as gene expression, similarity can be caused by mutations and gene transfer events [118].

[JCRT2502795 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g775


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882
Interpretation of the relationship between the abundance of the molecule measured by microarrays and the
biological events taking place in this process involves the identification of biological pathways associated
with this data [119]. Indeed, describing gene function rather than gene-level data can greatly enhance our
understanding of biological processes. Because with the known data, researches focus on clustering views
instead of gene-level views.

The recent advancement in Al tools in the field of drug discovery and development has led to development of
various web-based tools and stand-alone software packages for polypharmacology predictions like
polypharmacology browser (PPB), TarPred, Self Organizing Map Based Prediction of Drug Equivalence
Relationship (SPIDER), Targethunter, PharmMapper, ChemMapper and Swiss Target Prediction
(SwissTargetPrediction). Poirier et al. 2018 conducted an experiment with the help of PPB for identifying
lysophosphatidic acid acyltransferase beta as a therapeutic target of nanomolar angiogenesis [120]. Ozhathil
et al. 2018 identified potent and selective small molecule inhibitors of cation channel transient receptor
potential cation channel subfamily M member 4 with the help of PPB. Vleet VVan et al. 2018 applied TarPred
tool for screening strategies and methods for improved off-target liability prediction [121]. Ratnawati et al.
predicted the active compound from SMILES codes by using backpropagation algorithms [122]. OpenTargets,
a ML-based and freeware tool was used to priotize potential therapeutic drug targets with the accuracy of over
71% [123]. Nabirotchkin et al. identified unfolded protein response and autophagy-related pathways for the
drugs commonly been approved against COVID-19 [124]. Lopez-Cortes et al. identified allele frequencies in
colorectal cancer.

Conclusion:

The advancement of Al and the tools associated with it has proven to be boon to pharmaceutical industries
with their remarkable contribution in many steps of drug discovery like target identification, QSAR modelling,
comparison of physiochemical properties of molecule, primary and secondary drug screening. The tools have
made the process faster and more accurate with less consumption of both time and resources. In recent years,
many drugs were discovered in recorded time during crises like Ebola epidermic and COVID pandemic
resulting in saving lives of millions. The recent collaboration of many IT companies with pharmaceutical
industries in developing new and more powerful Al tools also shows the revolutionary acceptance of Al
technologies resulting in advancement in traditional drug discovery process.

Though, a major problem has evolved in pharmaceutical industries around Al is that there is a worldwide
shortage has been observed in skilled personalities able to handle the latest Al tools. This also led to an
upcoming crisis of loss of employment of traditional working force who have no knowledge of using recently
developed Al tools and are unable to co-operate with the rapid change in industry. For tackling such upcoming
problems, it is required to teach the upcoming work force with the proper knowledge of Al tools in institutions
along with appropriate practical knowledge and the current working force is also needed to be train with
collaboration of professionals of the field by conducting appropriate seminars and workshops so that they can
also remain a crucial part of this rapidly modifying industry.
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