

An Overview Of Pharmacovigilance And Clinical Research Studies For Health Care

Author - Tanya Srivastava*, Ujjwala modanwal*, Vijay prajapati*, Shani Kumar yadav*, Gyan bahadur pal*

NIRMALA DEVI PHARMACY COLLEGE
GAURABADSHAHPUR JAUNPUR
UTTAR PRADESH 222133, India

Abstract -

One of the pillars of the health care system is pharmacovigilance, which involves evaluating, tracking, and identifying drug interactions and human effects. In the practice of drug safety monitoring, a wide range of partners—including industry, hospitals, the government, patients, etc.—have crucial relationships. For pharmacovigilance to advance and thrive, ongoing dedication and cooperation are essential to overcoming upcoming obstacles. Pharmacovigilance is a well-organized activity inside the professional healthcare system that has significant social and commercial implications. Its goal is to identify and track the risk/benefit ratio of medications in order to improve patient safety and quality of life. The foundation of the pharmacovigilance system is the spontaneous reporting of adverse events and ADRs.

Physicians, the pharmaceutical industry, and patients are all accountable for preventing harmful medication reactions. Only when healthcare professionals encourage the voluntary reporting of adverse drug reactions will the Pharmacovigilance program yield its full benefits. In order to avoid and lower the incidence of ADR, this step is essential. Drug therapy had a negative impact on several ADRs. The primary causes of adverse drug reactions (ADRs), which are predicted to be much more prevalent in emerging nations, are self-medication and phony or contaminated medications. Improved patient care and medication safety, improved public health and medication safety, and the identification of drug-related problems are the goals of pharmacovigilance. Patients play a critical role in preventing adverse drug reactions by guaranteeing a high degree of adherence to medical advice that can reduce the deadly effects of medications. Modern medications that can successfully prevent, regulate, and treat illness states are now accessible due to the pharmaceutical and medical sciences' rapid and furious expansion.

Keywords -

Pharmacovigilance, drug interactions, adverse drug ratio, drug safety monitoring, industry, healthcare professionals, improve patient care, modern medications, self-medication.

Introduction -

The Latin verb Vigilare, which means "to keep watch," and the Greek word phannacon, which means drug or medical material, are part of the word "pharmacovigilance's" historical development. Pharmacovigilance is unquestionably an essential component of the whole drug development process. It entails ongoing observation, evaluation, and comprehension of any possible negative effects or problems pertaining to drugs. By weighing the advantages and disadvantages of particular medications, this helps guarantee patient safety. Pharmacovigilance has greatly improved with the help of information technology, enabling more effective monitoring and improving clinical safety procedures. It is essential to guaranteeing the cost-efficiency, safety, and effectiveness of drugs at every stage of their development, from post-marketing surveillance to discovery.

History -

Physicians and healers in ancient Egypt, Greece, and Rome documented the effects of numerous medical plants and substances, which is where the first known records of pharmacovigilance can be found. In order to identify the most effective treatments and those with detrimental side effects, these ancient healers used these records. The 19th century, however, saw the beginning of pharmacovigilance as a recognised field of study. The frequency of drug side effects (ADRs) reported rose with the onset of industrialization and the mass manufacturing of pharmaceuticals. As a result, we set up both domestic and foreign groups to keep an eye on and research drug safety.

The emergence of the Therapeutic Index in the US in the 1920s is among the first instances of contemporary pharmacovigilance. This index was the basis for creating the current drug safety system and was used to evaluate the security and effectiveness of medications. An international ADR monitoring program called the WHO Collaborating Centre for International Drug Monitoring was established by the World Health Organization (WHO) in the 1960s. In order to find any safety issues and enhance medication safety, this program sought to gather and examine ADR reports from all around the world.

- Without a doubt, let's examine the major moments in pharmacovigilance history in greater depth.

❖ The Thalidomide Tragedy of the 1950s and 1960s:

Thousands of babies were born with serious birth abnormalities as a result of the hypnotic and antiemetic effects of the drug thalidomide. This incident made it clear that systemic drug safety monitoring is essential. As a result of the fallout, people became more conscious of the possible risks that medications pose, particularly during pregnancy.

❖ International cooperation (current):

Worldwide cooperation is emphasized in contemporary pharmacovigilance. Individual Case Safety Reports (ICSRs) from the WHO Global platform is one initiative that makes it easier for nations to share information and conduct standardized reporting. To monitor and guarantee the safety of pharmaceutical goods, this cooperative method includes patients, healthcare professionals, pharmaceutical corporations, and regulatory bodies.

❖ Framework of Pharmacovigilance in the EU (2005):

By implementing a thorough pharmacovigilance system, the European Union improved the oversight and monitoring of pharmaceuticals. The European Medicines Agency (EMA) was instrumental in organizing risk management plans and safety evaluations.

❖ 21st-century signal detection and the digital era:

The integration of big data and digital platforms in pharmacovigilance was made easier by technological advancements in the twenty-first century. The effectiveness of detecting possible safety issues from massive datasets was improved by an automated signal detection system that used algorithms and data mining approaches.

❖ Establishing the WHO Program during 1968:

The multinational Drug Monitoring Program was started by the WHO Program in 1968 as a reaction to the thalidomide event. This initiative promoted cooperation in gathering and evaluating data on adverse drug reactions (ADRs) and established the framework for an international network of pharmacovigilance centers.

❖ The 1970s FDA and AERS:

In the 1970s, the FDA launched the Adverse Event Reporting System (AERS). The FDA is able to monitor and control drug safety in the US thanks to AERS, a crucial instrument for gathering, organizing, and evaluating data on adverse events linked to medications.

The purpose and goals-

- To raise the standard of medicine safety and public health.
- To enhance patient safety and care when using medications
- To recognize drug use-related issues and appropriately communicate them
- To assess the risks, benefits, and efficacy of medications while encouraging their safer, more sensible, and efficient usage.
- To promote clinical training, education, and awareness of pharmacovigilance as well as its efficient dissemination to both the general public and medical experts.

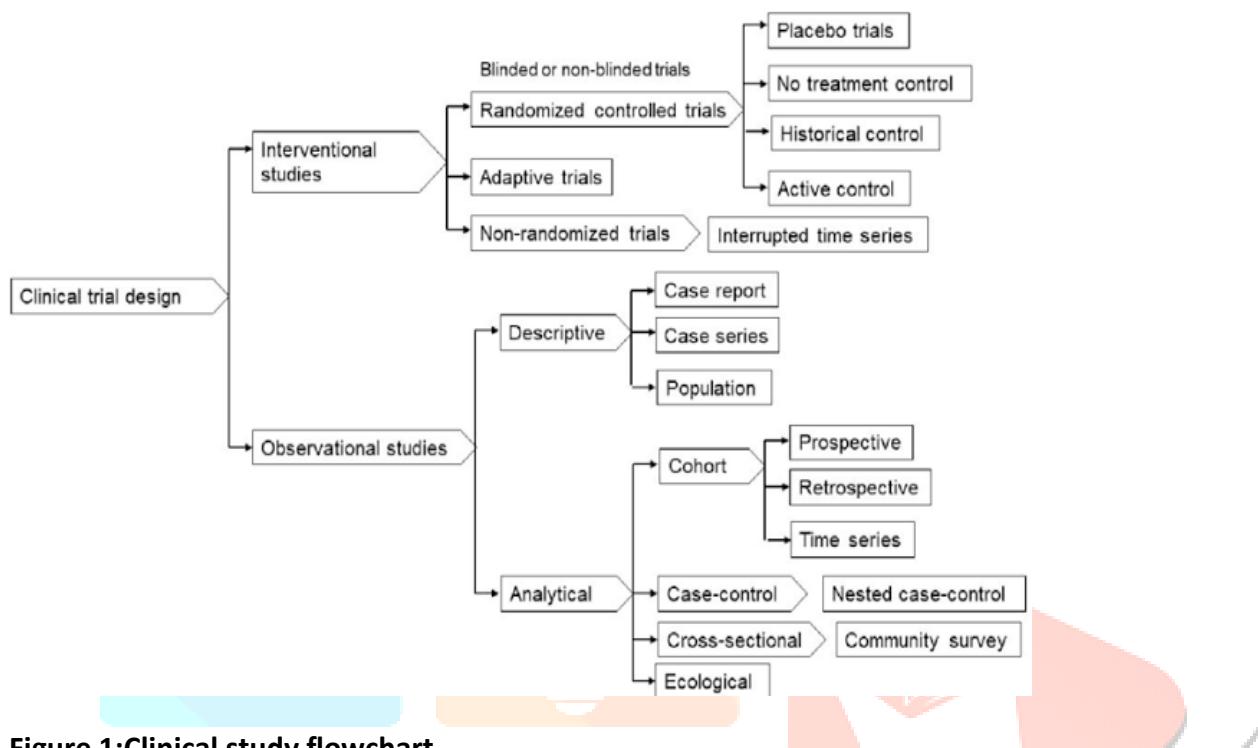
Adverse drug responses-

According to the World Health Organisation, adverse medication responses are defined as "any noxious and unintended response to a drug that occurs at doses normally used in man for prophylaxis, diagnosis or therapy of disease, or for the modification of physiological. Use of the product, whether inside or outside of the marketing authorization, or occupational exposure can result in adverse responses. It is believed that One of the primary reasons for illness and death is adverse medication responses. Pharmacovigilance is the field that studies adverse drug reactions. Adverse Drug Reactions Are Important

- Drug side effects are a serious clinical issue. Adverse medication reactions can have a variety of outcomes, including:
 - ◆ Adverse consequence according to the patient's quality of life
 - ◆ Hospitalization
 - ◆ The patient could become less trusting of their treating physician.

- The length of hospitalization increases

Categorization of harmful drug responses:


Table 1: categories of ADR

S.NO.	Category of ADR	Qualities	For instance
1	Type A: Augmented	Rather typical improves if the medication is stopped. Pharmaceutically determinable	Low blood sugar with taking sulfonylureas Deficiency in glucose caused by insulin
2	Type B: Odd	involves communicating with a microbe. Pharmaceutically determinable	Dental cavities caused by sugar-coated pills Resistance brought on by excessive usage of a single antibiotic
3	Type C: Chemical	Associated with the concentration of drugs A reaction that is irritating	Responses to extravasation phlebitis
4	Type D:(Delivery)	improves if the medication is stopped or the delivery technique is modified. either from the formulation's composition or the	bacterial or inflammatory response to implant particles contamination at the injection location

		administration technique	
5	Type E: Exit	starts when the medication is stopped or the dosage is lowered. enhances with the return of medication	Opioid and clonidine withdrawal symptoms
6	Type F (Family)	exclusively occurs in the genetically inclined	Primaquine-treated hemolytic anemia in people with G6PD deficiency
7	The genotoxicity type G	results in irreparable genetic harm	Genetic harm to the fetus caused by teratogenic substances such as thalidomide
8	The hypersensitive type H	demands that the immune system be activated If medication is stopped, things go better.	Skin responses caused by allergies to antimicrobial agents Anaphylaxis caused by penicillin use
9	Type Uncategorized U:	There is no recognized mechanism.	Taste problems are caused by simvastatin usage. Vomiting and nausea while taking gaseous anesthetic

A CLINICAL STUDY:

A study that assesses an alternative medical intervention or alternative technique of maltreatment for an existing therapy to see whether it will be higher due to stopping and screening for Pharmaceutical companies carry out extensive pre-clinical research on a medicine before starting clinical testing.

Figure 1: Clinical study flowchart

★ Studies conducted before clinical trials-

Pre-clinical research entails animal population experiments and in vitro (i.e., test tube or lab) investigations. To gather initial efficacy, toxicology, and pharmacokinetic information, and many dosages of the research medication are used to assist pharmaceutical companies in deciding if it is beneficial to move forward with further testing administered to the animal subjects or to an in-vitro substrate.

★ Clinical Studies -

➤ Stage 0-

An exploratory, first-in-human study that was recently designated in accordance with the U.S. Food and Drug Administration's (FDA) 2006 advice on exploratory research may be phase zero. Differential options for part-zero trials include giving a small group of subjects (10–15) single subtherapeutic doses of the study drug in order to collect first data on the pharmacodynamics (how the medication adds to the body) and pharmacological medicine (how the body processes the drug) of the ingredient.

➤ The first phase-

In human subjects testing, the Phase I Path Area Unit is the initial stage. a small group of fit volunteers (20–80) is typically considered elite. This section comprises studies intended to evaluate a drug's pharmacological medicine, pharmacodynamics, tolerability, and security (pharmacovigilance). Clinical trial trials come in a wide variety of formats. A single dosage of the drug is given to a limited group of subjects in

Single Ascending Dose (SAD) studies, who are then observed and tested for a predetermined amount of time. numerous Ascending Dose (MAD) investigations are carried out to improve understanding of the pharmacological medicine of numerous medication dosages.

➤ **Second Phase-**

Following the validation of the study medication's initial safety in Phase I studies, Phase II trials are carried out on larger groups (20–300). intended to evaluate the treatment's effectiveness and to carry out Phase I safety assessments involving a greater number of patients and volunteers.

Failures in the development of new medications typically occur during Phase II trials, when the medication is demonstrated to have harmful effects or not work as intended. Phase II investigations can be divided into two categories: Phase IIA and Phase IIB. In particular, Phase IIB is intended to examine efficacy, or how effectively the drug works at the prescribed level, whereas Phase IIA is intended to assess dose needs, or how much medication should be recommended dosage. Certain studies examine both efficacy and toxicity by combining Phase I and Phase II.

➤ **Third Phase-**

Depending on the ailment or medical condition being examined, (300–3,000 or more) are known as phase III studies. Their objective is to offer the last assessment of the medication's efficacy in comparison to the current "gold standard" of therapy. The most expensive, time-consuming, and difficult to organise are phase III trials. conduct due to their scale and very lengthy duration, particularly when it comes to treatments for chronic illnesses. circumstances. While the regulatory proposal is being processed by the relevant regulatory body, it is customary for some Phase III trials to proceed.

It is generally believed that a medicine must pass a minimum of two Phase III studies demonstrating its efficacy and safety in order to be approved by the appropriate regulatory agencies (FDA (USA), TGA (Australia), and EMEA (European Union), etc.), though this is not always the case.

➤ **The fourth phase-**

Another name for the In phase IV, the Post-Promoting Police Work Trial is conducted. Pharmacovigilance, also known as security police work, and continuing technical support for a medication following trial are examples of phase IV trials. is approved for sale.

Pharmacovigilance should begin before initiation of phase I studies and continue through the life cycle of the product

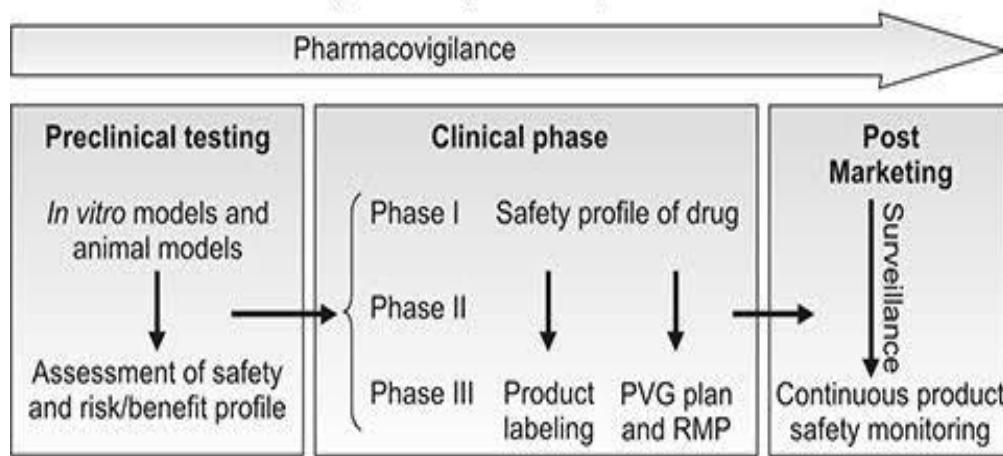


Figure 2 : phase and groups

CLINICIANS' PART IN DRUG SAFETY AND PHARMACOVIGILANCE -

By identifying, Clinicians are essential in preventing adverse drug reactions (ADRs) by managing them and reporting them to the national pharmacovigilance centres (NPCs). For medicine prescriptions to be safe and reasonable, therapeutic justification and the appropriate drug selection for each patient are required.⁷⁾ The incidence of adverse drug reactions (ADRs) may be increased by age, medication errors, polypharmacy, and patient-specific risk factors, such as comorbidities.^{8,9)} Distinguishing adverse drug responses (ADRs) from other conditions or comorbidities can be challenging. Clinicians must understand the clinical pharmacological principles of adverse drug reactions (ADRs), including their types, dose-relatedness, hypersensitivity reactions, temporal correlations, and risk factors, in order to accomplish this..

For instance, extended exposure may be necessary for the development of Extended problems such unusual fractures of the femur caused by the bisphosphonates.¹⁰⁾ Stopping medicine might also result in the recurrence of some medical disorders, such as the elevated risk of osteoporosis when stopping denosumab.¹¹⁾ The various ADR classifications are compiled in Table 1.¹²⁾ Clinicians must address underlying illnesses, communicate with patients, and provide counseling in addition to managing consequences. They must also maintain proper keeping track of the patient's medical information to avoid giving them more drugs and to guarantee continued compliance. Last but not least, physicians should be urged to report adverse drug reactions (ADRs) in order to guarantee that Medications' safety profile is monitored and recorded nationwide, helping to the development of regulatory measures to reduce consumer risk.



Figure 3: Pharmacovigilance's Significance for Laboratory Work

India's Clinical Studies:

Clinical trials are preferred to be conducted in India:

Clinical research opportunities and space in India have been particularly appealing to international pharmaceutical businesses.²⁷ Compared to the more recent entries in the market, India-born CROs were able to provide the benefits of broader knowledge²⁸ of Investigator locations around the country, more competitive pricing, and a better understanding of the Indian scenario. The current favourable regulatory framework and international-standard regulations in India, together with doctors' increasing awareness of and adherence to good clinical practice guidelines, are some of the main factors propelling the growth of clinical research in the nation.²⁹ The average annual report of clinical trials conducted in India is shown as

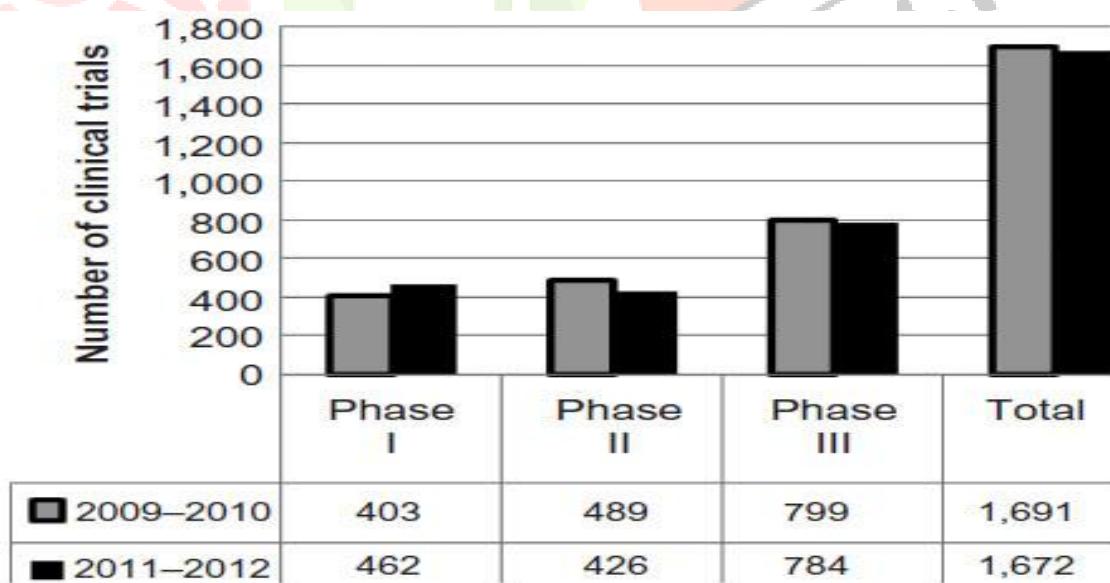


Figure 4: expansion of clinical trials in India

When it comes to clinical trials, India offers a number of advantages, such as the following:

- substantial adherence to international standards such as the ICH GCP and regulations from the US Food and Drug Administration.
- the accessibility of doctors and other highly competent, English-speaking research personnel.
- continuous assistance and collaboration from the state.
- diseases that are prevalent in both industrialized and underdeveloped nations are becoming more widespread.
- more affordable than in the West.
- Accessibility of high-quality infrastructure.
- Since January 2005, patent laws have changed

According to a recent FICCI analysis, some of the major drivers that have recently caused the transformation of Indian clinical research include cost competitiveness, clinical trial experience, medical infrastructure, scientific viability, regulations, and commercialization potential.

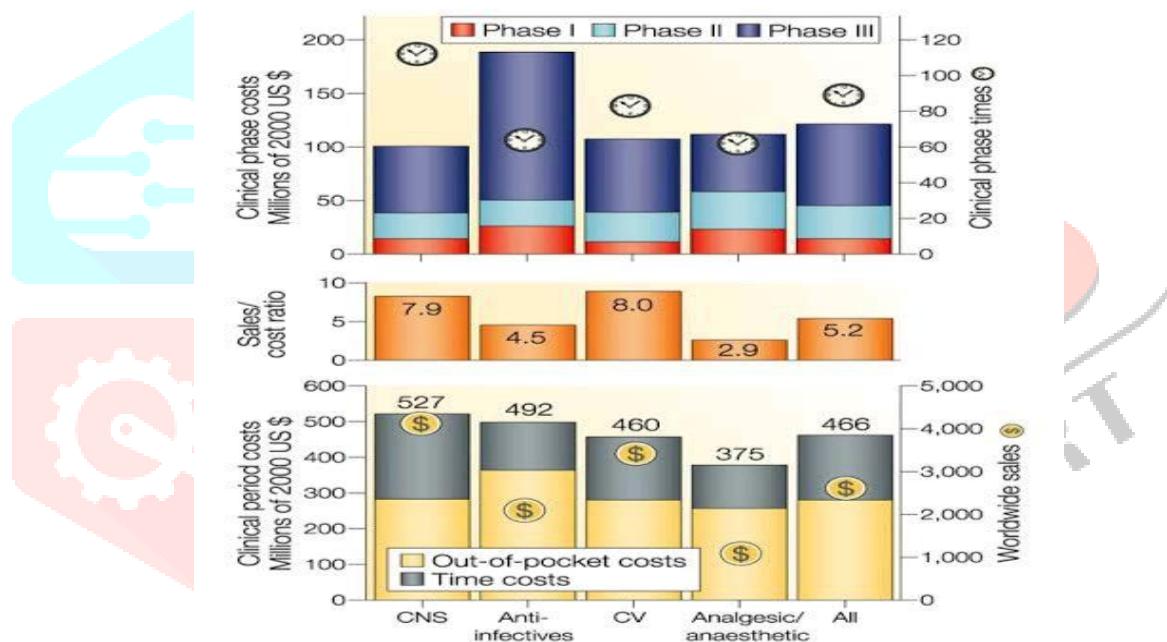


Figure 5: Clinical studies are outsourced to India according to therapeutic areas.

SWOT evaluation of the clinical trial industry in India:

Favorites:

- With a population of over 1.2 billion, it makes up over 16% of the global population.
- large biotech and pharmaceutical industrial base with a large pool of qualified workers. With 500 distinct APIs, they rank third in the world.
- Currently, It represents 8% of global GDP and is ranked fourth in the globe.pharmaceutical manufacturing.
- activities that encourage the government to use its inventive potential.
- Due to the size of the population, there is a chance for extensive data mining about drug safety profiles.

Limitations:

- i. There is less funding for implementing national priority projects and issues such as pharmacovigilance.
- ii. Estimates from 2009–10 showed that expenditures in the health sector were responsible for 0.35 percent of India's GDP and 2.1% of the overall budget.
- iii. Developed countries such as the United States, France, Switzerland, and Germany spend roughly 16%, 11%, 10.8%, and 10.4% of their GDP, respectively.

Potential Opportunities:

- i. This model, which includes 4635 culturally and anthropologically well-defined groups, is a great way to research pharmaceutical efficacy, illness susceptibility, aetiology, molecular pathology, and safety profile in relation to genetic diversity.
- ii. More than 650 accredited nursing schools, more than 300 dentistry, more than 230 dental, and more than 830 pharmacy schools in India offer great promise for the skilled human resources required for a successful pharmacovigilance program.
- iii. The greatest source of human biodiversity is found in the Indian people.

Hazards:

- i. beneath ADR reporting.
- ii. fewer centers that check ADRs.
- iii. little financial resources.

Using MedDRA for Pharmacovigilance Coding:

A globally utilized list of words pertaining to medical illnesses, medications, and medical devices is the Regulatory Activities Medical Dictionary (MedDRA). It was created to facilitate information sharing among regulators. Health professionals, academics, industry, and other organizations that disseminate medical knowledge also use it. Safety reports are sent to Pharmacovigilance via fax, mail, cell phone, or social media. Additionally, both healthcare and non-healthcare professionals may report safety incidents. The process of translating investigators' "verbatim" phrases into standardized "Preferred Terms" (PT) is known as MedDRA Coding. Sorting adverse occurrences (AEs) and putting similar events together are made possible by standardization. When preparing PSUR/DSUR documents and signaling, the preferred term is utilized to determine the occurrence of AEs.

❖ Coding for Medical Conditions:

diagnoses, services, and equipment into alphanumeric codes. These codes are used by physicians, insurance companies, insurance clearinghouses, hospitals, government agencies, and other health-related organisations as a way to communicate. International Classification of Diseases (ICD) codes are assigned to a patient's illness or damage.

Therefore, the use of standardized medical dictionaries for medical coding is necessary. The aforementioned data, including It is common practice to code AEs, SAEs, MH, CM, and any other category. However, CM, SAEs, and AEs must be coded in every clinical trial. There are five standardised medical coding dictionaries available on the market:

■ WHO-ART:

terminology is the aim of the WHO Adverse Reactions Terminology (WHOART) dictionary. The Uppsala Monitoring Centre (UMC), also referred to as the World Health Organisation Collaborating Centre for International Drug Monitoring, is responsible for maintaining the system. There is no longer any active maintenance on the system.

■ MedicineDRA:

The Medical Dictionary for Regulatory Activities (MedDRA®) is a medical coding dictionary developed by the Maintenance and Support Services Organisation (MSSO). MedDRA is supported by the Technical Requirements for Pharmaceutical Registration for Human Use International Conference on Harmonisation (ICH). Before MedDRA was created, there was no internationally accepted medical nomenclature for biopharmaceutical regulatory purposes.

■ The WHO-DDE:

The Uppsala Monitoring Centre's (UMC) WHO Drug Dictionary Enhanced (WHO DDE) is the most comprehensive and extensively used drug coding reference book worldwide. Its contents aid in ensuring that safety and clinical trial data are appropriately coded, analyzed, interpreted, and published.

Medical terminology created during clinical trials are coded using the popular MedDRA medical coding dictionaries. In any given clinical trial, it is nearly impossible to maintain consistency in reporting a term. However, making sure that the term reported or captured on the data collecting instrument (CRF/eCRF) is coded correctly is a difficult task for a coder.

■ ICD9CM and ICD10CM:

The International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) is based on the World Health Organization's Ninth Revision, International Classification of Diseases (ICD-9). ICD-9-CM is the official system used in the United States to assign codes to diagnoses and procedures associated with hospital utilisation. Before the adoption of ICD-10 in 1999, mortality coding, mortality data from death certificates was coded and classified using ICD-9.

■ The COSTART:

COSTART, the categorisation Symbols for a Thesaurus of Adverse Reaction Terms, was developed by the US Food and Drug Administration (FDA) to aid in the categorisation, preservation, and retrieval of adverse reaction reports that occur after a product is marketed. A way to address the disparity in terminology among persons who report adverse events to the FDA is offered by COSTART. By using this lexicon, adverse reaction reports to the FDA might be standardized and made consistent.

❖ MedDRA:

MedDRA, a comprehensive and highly specialised standard medical language, was developed by the ICH to facilitate the global exchange of regulatory data for medical products intended for human use. Both before and after a product has been approved for sale, it is utilized for medical product registration, documentation, and safety monitoring. Drug-device combinations, medicines, and vaccines are among the goods that fall under MedDRA's purview. Although MedDRA is available to anybody who wants to use it, the majority When it was initially put into use in 1999, its users were based in the USA, Japan, and Europe. Its increasing use by regulatory agencies, international pharmaceutical companies, clinical research organisations, and medical experts has made it possible to improve patient health protection on a global scale worldwide.

In addition to Throughout the whole regulatory process, from pre marketing to best marketing, the language is used for data entry, retrieval, evaluation, and presentation. Furthermore, the International Council for Harmonisation of Technical Requirements for Human Drug Registration has classified adverse events in this way.3- Biannually, it is updated once, with a sophisticated release in March and another basic release in September. The US, EU, and Japan are among the countries that use MedDRA extensively. For safety reporting purposes, its use is currently permitted in Europe and Japan. ICH. The operations of MedDRA MSSO are examined by the MedDRA management board.

Health Canada, WHO (as an observer), the UK's Medicines and Health Care Products Regulatory Agency (MHRA), and the management board is composed of six ICH parties. Except for animal toxicology, therapeutic indications (which include signs, symptoms, diseases, diagnosis, or disease prevention), function modification, coding names, and quantitative results of investigations, surgeries, and medical, social, and family histories, MedDRA is used to code medical terms created during all stages of clinical trials.

❖ **The goal of MedDRA:**

- facilitates clinical data retrieval, analysis, and coding (data entry) for human medical products, such as medicines, biologics, vaccinations, and drug-device combinations.
- Standardization can help to facilitate the sharing of clinical information.
- An essential instrument for communication, electronic record exchange, product evaluation, monitoring, and supervision.

❖ **MedDRA's structure:**

There are five tiers of medical phrase coding in the medDRA dictionary.

Number of terms	Level of Term	Example
26	System Organ Class	Respiratory, thoracic and mediastinal disorders
332	High Level Group Terms	Lower respiratory tract disorders excl obstruction and infection
1683	High Level Terms	Lower respiratory tract inflammatory and immunologic conditions
16751	Preferred Terms	Alveolitis allergic
62348	Lowest level Terms	Pneumonitis allergic

Figure 6:MedDRA's structure

1. Class of System Organs (SOC):

The highest level of MedDRA nomenclature that is distinguishedIt might be characterised by anatomical or physiological system, aetiology, or objective. The System organ classes number twenty-seven.

2. High Level Term for Groups:

A miracle caption for one or more HLTs related to anatomy, physiology, disease, aetiology, or function is called HLGT.

3. Term High Level (HLT):

The PT level is inferior to HLT. It is related to PT in terms of pathology, etiology, anatomy, and physiology. Like HLT Mediastinal Disorders and HLT Broncho Spasms and Obstruction. There is no particular uniformity in the phraseology here because the phrases used are not categorized.

4. The term of preference (PT):

It is clearly specified for signs and symptoms, illnesses, disease identification, medication indications, tests, surgeries, or any other medical procedure, as well as familial, medical, or social history. To meet international standards, PT needs to be unique and self-defined.

5. Term of Lowest Level (LLT):

The shortest term is found in LLT. It is only associated with one favored phrase. As a synonym, lexical variation, or quasi-synonym, it is the most basic level of terminology that is connected to a single PT.

❖ Typical Issues Medical Coding Experts Face When Coding:

- ★ The term is not readable verbatim.
- ★ Misspellings
- ★ Using acronyms
- ★ A number of symptoms that are documented as distinct events may result in a diagnosis; for instance, symptoms such as coughing, running nose, and fever may indicate pneumonia.
- ★ Recorded together are several medical concepts. We must divide the phrases in order to code.
- ★ An event is documented without specifying the location, for example, an ulcer is recorded without providing further details such as a leg ulcer, a moth ulcer, etc.
- ★ Several reported medical notions included a surgical technique and the cause of the injury. However, it is unclear what caused the damage or where it occurred.
- ★ There is a drug name mentioned, but neither the medication-related allergy nor the allergy's result is stated.

❖ The aforementioned MedDRA languages:

MedDRA is such a valuable tool for its users that it has been translated into several other languages in addition to English. Since most users can communicate in their native tongue thanks to many languages, term assignment becomes more accurate and precise. Multinational data sharing is made simple and powerful by this interoperability. With every MedDRA version, supporting documentation is kept up to date for numerous languages.

- i. Czech
- ii. Chinese
- iii. French
- iv. English
- v. Portuguese

- vi. Dutch German
- vii. Hungarian
- viii. Italian
- ix. Japanese
- x. Spanish
- xi. Russian
- xii. Korean
- xiii. Brazilian Portuguese
- xiv. Spanish

❖ **Preserving MedDRA:**

Overseeing MedDRA is Organisation for Maintenance and Support Services (MSSO). The International Federation Pharmaceutical Manufacturers and Association (IFPMA), a trustee of the International Conference on Harmonisation (ICH) Steering Committee, is in charge of safeguarding MedDRA's intellectual property rights. According to the subscriber's second request, MSSO updates MedDRA. The ICH steering committee appoints the MSSO management board.

- Preserve and improve MedDRA.
- Publication times a year (March and September) MedDRA versions are updated
- The ICH MedDRA Management Board oversees MSSO operations.

❖ **The Management Board of ICH MedDRA:**

The Six Parties: MHLW, FDA, EFPIA, EU, JPMA, and PhRMA.

A trio of observers: European, WHO, EFTA, and Canada.

1. European Union (EU) Commission
2. Pharmaceutical Industries and Associations of Europe (EFPIA)
3. The FDA, the US Food and Drug Administration
4. PhRMA stands for Pharmaceutical Research and Manufacturers of America.
5. Japan's Ministry of Labor, Welfare, and Health (MHLW)
6. The Association of Japan Pharmaceutical Manufacturers (JPMA)

❖ **Conclusion:**

Pharmacovigilance is still essential for addressing the problems caused by the growing variety and strength of medications, each of which has an unavoidable and occasionally unanticipated risk of side effects. When toxicity and negative consequences do manifest, particularly when they were previously unidentified, it is crucial that they be documented, examined, and their importance clearly conveyed to the audience so they are equipped to understand the data. Every medication has a trade-off between its possible advantages and disadvantages. By making sure that medications of high sensibly employ quality, safety, and efficacy, and that when therapy decisions are made, the patient's expectations and concerns are taken into account, the harm can be reduced. Even the seasoned medical staff members have despite their inability to translate their theoretical understanding into practical application and their ignorance of the consequences of filing ADR forms, they have reported ADR cases during their time working as health professionals. And by offering health care providers educational and awareness initiatives, these circumstances could be addressed. Pharmacovigilance requires the use of standardized medical dictionaries for medical coding. To

facilitate the exchange of regulatory data for human-use medical products, the ICH developed MedDRA, a thorough and highly specialised standard medical terminology globally. Both before and after a product has been approved for sale, it is utilized for medical product registration, documentation, and safety monitoring. We are only starting the process of standardizing in the field of pharmacovigilance, and this is a constantly changing sector. Sharing safety data will be made much easier and the efficacy of the pharmacovigilance process should be increased if dictionaries and their usage are ever truly standardized.

❖ **Reference:**

- World Health Organization, Geneva. Examining pharmacovigilance: making sure medications are used safely. WHO Policy Views on Pharmaceuticals. WHO, Geneva, 2004. At http://www.whqlibdoc.who.int/hq/2004/WHO_EDM_2004.8.pdf, it is accessible. [quoted on December 15, 2009].
- The significance of pharmaceutical safety monitoring, or pharmacovigilance. Geneva: Organization for World Health, 2002 22 May 2018 (<http://apps.who.int/medicinedocs/en/d/Js4893e>)
- Paolo Baldo, Sara Francescon, Roberto Leone, and Giulia Fornasier. An outline of pharmacovigilance's past. 40,744-747, International Journal of Clinical Pharmacy (2018).
- Safety of Medicines: A Guide for Identifying and Reporting Adverse Drug Reactions, World Health Organization. Geneva, 2002 WHO/EDM/2002.2
- WHO (1972) National centers' responsibility in international drug monitoring. Series of technical reports WHO 1972, no 498.
- Medical Pharmacology Essentials, Tripathi KD, Jaypee Brothers Medical Publishers (P) Ltd., New Delhi, 2003, pp. 202–203.
- Kanjanarat P, Winterstein AG, Johns TE, Hatton RC, Nature of preventable adverse drug events in hospital: A literature review, Am J Health Syst Pharm, 2003, 17:1750-1759.
- International Conference to Harmonize Technical Standards for Human Use Pharmaceutical Registration. E2F-Development Safety Update Report Final Concept Paper, 2006. The document is accessible at http://www.ich.org/LOB/media/MEDIA_3302.pdf. [Accessed December 10, 2010]
- Roujeau JC, Toxic epidermal necrolysis or Stevens-Johnson syndrome risk associated with medication use, N Engl J Med, 1995, 3:1600-1608.
- Br J Clin Pharmacol, 2004, 58:419–428; Vander H, Stichele R, European Surveillance of Antimicrobial Consumption (ESAC): Data collecting performance and methodological approach.
- Grady C, Compensation for Clinical Research Participants. J Clin Invest, 115:1681-1687, 2005.
- Cost-benefit analysis of adverse medication reaction monitoring, Muehlberger N, Schneeweiss S, Hasford J. Pharmacoepidemiol Drug Saf, 1997, 3:79-90; Part II: Cost and Preventability of Drug Reactions That Lead to Hospital Admission.
- King NM, Churchill LR, The Oxford Textbook of Clinical Research Ethics, Evaluating and contrasting possible advantages and risks of harm. In: Miller FG, Wendler D, Crouch RA, Lie RA, Grady C, Emanuel E, editors. Oxford University Press, New York, 2008, pp. 514–526.
- Inácio, P., Airaksinen, M., & Cavaco, A. (2018). Current developments in pharmacovigilance: the importance of patient reporting and its shortcomings. 40(4), 754-757, International Journal of Clinical Pharmacy

- "Pharmacovigilance in India: Need of the Hour," by Jadhav Sudhakar and Chakraborty Guno, Journal of Advances in Pharmacy and Healthcare Research (JAPHR), 1, 2011, 01-03.
- Heiat A, Gross CP, Mallory R, et al. (2002) describing the clinical trial recruitment procedure: who are the patients and how did they arrive? Intern Med Ann. 137:10-16.
- Farooqui MA, Kushwaha N, Singh RK, Jaiswal PK, Kesharwani V, Pharmacovigilance: A Comprehensive Guide to Drug Safety and Monitoring, Journal of Drug Delivery and Therapeutics, 2018; 8(5):130–135
- "Medical Coding in Clinical Trials" by Deven Babre et al. (2010) Perspect Clin Jan-Mar Res. 2010 1(1): 29–32
p.m.CID: PMC3149405

