www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

=
.

INTERNATIONAL JOURNAL OF CREATIVE

*9 RESEARCH THOUGHTS (1JCRT)
a & An International Open Access, Peer-reviewed, Refereed Journal

A Comparative Study Of Ai Techniques In Gaming:
Top-Down Vs Bottom-Up Approach

Mr. V. Thomas Immanuel?, Mr. R. Veeraragavan?, Mr. D. Sudharsan?
Department of Computer Applications, Sacred Heart College (Autonomous), Tirupattur, 635601, India

Abstract

Modern game design relies heavily on the
development of intelligent and engaging enemy
Al, especially in 2D games, where enemy behavior
largely influences player experience. The
traditional techniques used in Al scripted behavior
and Finite State Machines are part of a top-down
approach and result in a completely predictable,
thus easily manageable, enemy action. However,
there is usually no adaption to dynamic player
behavior in these kinds of approaches, hence
degrading gameplay depth and replay values
greatly. On the other hand, adaptive Al techniques,
such as genetic algorithms following the bottom-
up approach, promise more responsive and
challenging behaviors from enemies but can also
be complicated and resource-intensive in their
implementation.

This research investigates the practical
implications, performance differences, and impacts
on player experience between top-down and
bottom-up Al approaches. In this study, a 2D game
prototype with enemies controlled by both Al
techniques is developed in order to systematically
evaluate and compare the effectiveness of these
methods. The aim is to provide insights into the
strengths and limitations of each Al approach,
hence guiding game developers in the selection of
the most appropriate method for different gaming
contexts.

Keywords: Game Al, top-down Al, bottom-up Al,
finite state machines (FSM), genetic algorithms.

1. INTRODUCTION

Artificial Intelligence (Al) has been one of the
most integral parts of modern video game

development[1]. It plays a pivotal role in enhancing
interactivity and immersion within game
environments, allowing for richer, more engaging
experiences for players. In 2D games, enemy
behavior significantly impacts player experience,
often more than graphical quality. Well-designed
enemy Al is such a core feature: it adds both
challenge and depth to gameplay but also provides
dynamic interactions that keep players invested[2].

In most games, this is decided by the Al, which
determines how enemies pursue, attack, and
otherwise interact with the player—sometimes
making their actions seem predictable, sometimes
adaptive—depending on-the design. Traditionally,
enemy Al has been controlled by relatively simple
techniques such as predefined scripts or Finite State
Machines (FSMs)[3]. Such traditional methods fall
under the "top-down™ approach to Al design. This
approach gives developers a sense of control over
the enemy's actions by setting very distinct rules
and behaviors for the Al, creating structured
responses to player actions. However, this kind of
predictability can detract from the challenge and
replay value of a game if the Al is always going to
behave in a certain way.

More adaptive Al techniques, sometimes called
"bottom-up™ approaches, have gained a lot of
ground with the evolution of game development[4].
Inspired by principles such as natural selection and
evolution, techniques like genetic algorithms (GAs)
enable dynamic learning and adaptation in NPCs.
Adaptive approaches, in that respect, could be said
to offer less predictable and more emergent
behavior, keeping players on their toes by changing
and evolving enemy tactics as the player acts.
While adaptive Al promises a more engaging
experience, it also introduces huge complexity in
terms of implementation, computational resources,
and balancing the Al so as not to frustrate the
player.

[JCRT2502737 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g304

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

This research is a probe into, and comparison
between, a top-down versus a bottom-up approach
to enemy Al—FSMs and GAs, respectively. The
output of this project will be a 2D game prototype
whereby these two types of Al control enemies—
one for the investigation into the impact each has
on gameplay, performance, and player experience.
The outcome of this would show the strengths and
weaknesses of each technique, hence helping the
game developers make decisions about future game
Al designs.

1.1 MOTIVATION

The motivation behind this research lies in the
evolving expectations of the modern gamer.
Today's players demand more than impressive
graphics and intricate storylines; they demand
experience in which the in-game world reacts to
their actions intelligently and in unexpected ways.
This is especially true for enemy Al, which must
present enough of a challenge while remaining fair
and engaging throughout the game. In 2D games,
where gameplay mechanics can be simpler than in
3D titles, Al plays an even more central role in
providing the challenge and variability that keeps
players invested over time.

Finite State Machines are a very popular Al
technique that provides a pragmatic, rule-based
approach and has been used to great success in
numerous games for controlling NPC behaviours.
An FSM separates the enemy's behaviour into
different states—things like patrolling, chasing, or
attacking—and the transitions between these states
are triggered by certain conditions, such as the
detection of the player. In this regard, this
approach gives structure, and it is very easy to
know how an enemy will behave in a given
situation. While relatively easy to implement and
manage, the rigidity of FSMs can also make them
quite predictable; thus, players learn quickly how
to manipulate the Al, diminishing the challenge of
the game.

On the other hand, genetic algorithms (GAS)
provide a more flexible and adaptive approach to
Al design. Simulating processes of evolution and
natural selection allows Al-controlled characters to
"learn” and adapt over time, thus generating
dynamic responses that evolve with the player's
behaviour. The potential of GAs to yield emergent,
unpredictable gameplay experiences is huge, but
their design and computational requirement
complexity cannot go unnoticed. Adaptive Al,
such as GAs, always needs to be tuned carefully to
make sure the enemy remains a fair challenge

without becoming too difficult or inefficient in the
use of computational resources.

This will be the major motivation for
researching how these two approaches,
fundamentally different in nature—FSMs and
GAs—can impact the quality of enemy Al in 2D
games. While FSMs bring predictability and
control, GAs bring adaptability and emergent
gameplay. Comparing both methods will uncover
the strengths and weaknesses of each, hence
helping developers in selecting the best Al
approach to use according to the design goals and
technical constraints of a game.

1.2 RESEARCH OBJECTIVES

1.2.1 To implement FSM-based enemy Al and
observe its behavior in a 2D game
environment:

The aim is to build a 2D game where
enemies are controlled using a Finite State Machine
(FSM). By implementing this, the objective is to
analyze how easy it is to set up and control enemy
movements using FSMs. The research will focus on
understanding the strengths of FSMs, like their
simplicity, predictability, and clear behavior
patterns, and observe how these factors contribute
to the overall gameplay.

1.2.2 To implement GA-based enemy Al and
observe its behavior in.a 2D game
environment:

The goal is to create another 2D game
prototype -with enemies controlled by Genetic
Algorithms (GAs). This objective focuses on how
GAs allow enemies to adapt based on player
behavior and evolve over time. The study will
examine the advantages of this adaptive nature, as
well as any challenges, such as increased
complexity in development or higher
computational demands.

1.2.3 To compare the behaviors of enemies
controlled by FSMs and GAs in a 2D game
environment:

This objective is about directly comparing
the two Al approaches—FSM and GA—based on
how enemies behave in the game. The focus will be
on identifying key differences in how structured
FSM enemies are versus the more dynamic,
evolving enemies controlled by GAs. By
comparing both, the study will aim to highlight
which approach provides more challenging or
engaging enemy behavior.

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 0305

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

1.2.4 To evaluate the technical challenges and
resource demands of implementing FSMs
and GAs:

This objective will focus on the technical
side of Al implementation, such as the difficulty of
coding, the memory usage, and the processing
power required for each method. The goal is to
assess how easy or hard it is to work with FSMs
and GAs, especially in the context of small,
resource-limited projects.

1.3 BACKGROUND STUDY
1.3.1 Game Design:

Game design is the process of defining the
structure, objectives, and overall experience of a
video game, forming the foundation for its
mechanics, visuals, narratives, and player
interactions. The goal is to create an immersive
and engaging experience that motivates players to
continue playing. In 2D games, design focuses on
character movement, enemy behavior, level layout,
and game flow, ensuring a cohesive and rewarding
experience for players.

A critical aspect of game design is
establishing clear player objectives, such as
solving puzzles, defeating enemies, or exploring
environments. These objectives must be engaging
and balanced to match the player’s skill level,
providing challenges that are neither too easy nor
overly difficult. Gameplay mechanics, which
define the rules and systems of the game, dictate
how players interact with the world. For example,
platformer games rely on mechanics like jumping
and avoiding obstacles, while strategy games
emphasize resource management and decision-
making.

Storytelling adds depth and context to the
player’s actions, making objectives more
meaningful. Even in 2D games, where mechanics
often take center stage, a simple narrative can
enhance the experience by giving purpose to the
player’s journey. Visual and auditory design also
play a significant role in shaping the game’s tone
and atmosphere. Art styles, such as pixel art or
hand-drawn graphics, influence the game’s
aesthetic, while sound effects and music enhance
immersion and provide important gameplay cues.

Enemy behavior is another crucial
component, particularly in action or adventure
games. Non-player characters (NPCs) challenge
the player and create conflict within the game.
Effective enemy design balances predictability and

unpredictability, ensuring encounters remain
engaging without becoming frustrating. Artificial
intelligence (Al) models, such as Finite State
Machines (FSM) or Genetic Algorithms (GA),
drive enemy behavior. FSMs provide structured,
scripted actions, while GAs enable adaptive,
dynamic responses that evolve based on player
actions, increasing replayability and challenge.

Ultimately, game design integrates these
elements—objectives, mechanics, storytelling,
visuals, sound, and Al-driven behavior—to create
a compelling and immersive experience. The
choice of Al models, in particular, significantly
impacts the player’s engagement and the game’s
overall challenge, ensuring the experience remains
enjoyable and rewarding throughout.

1.3.2 Game Types (2D vs. 3D):

Games can broadly be categorized based on
their graphical representation and the dimensions
in which gameplay occurs: 2D (two-dimensional)
and 3D (three-dimensional). These two types
define the structure, visual style, and complexity of
both the game world and its mechanics,
influencing how players interact with the game
environment and how developers design elements
such as Al, level layout, and physics.

a) 2D Games:

In 2D games, all actions and interactions
take place on a flat plane, limited to two axes:
horizontal (X) and vertical (). Visual elements in
these games are typically represented as sprites—
two-dimensional images or animations used to
depict characters, objects, and backgrounds. The
simplicity of this design space often results in a
more streamlined development process, making
2D games a popular choice for beginner
developers and smaller studios.

One of the strengths of 2D games lies in
their clear visual presentation and straightforward
gameplay mechanics. With movement restricted to
two axes, players can focus on core activities like
platforming, combat, or puzzle-solving without the
added complexity of navigating a third dimension.
Iconic game genres such as platformers (e.g.,
Super Mario Bros.), side-scrollers (e.g., Sonic the
Hedgehog), and top-down games (e.g., The
Legend of Zelda) have flourished in 2D
environments due to their intuitive mechanics and
visual simplicity.

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 0306

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

From a game Al perspective, designing
enemy behavior in 2D games is less complex
compared to 3D environments[5]. Since there is no
need to account for depth (Z-axis) movement,
challenges like pathfinding, targeting, and
interaction systems are simplified. Techniques
such as Finite State Machines (FSM) and Genetic
Algorithms (GA) can be effectively implemented
in 2D games to create dynamic and engaging
enemy behavior without the added complexity of
managing three-dimensional space. This simplicity
makes 2D games an excellent platform for
experimenting with various Al models, as the
environment is easier to control and modify.

Additionally, 2D games generally have
lower computational and resource requirements.
With fewer demands on graphics, animations, and
physics simulations compared to 3D games, they
can run smoothly on less powerful hardware,
broadening their accessibility to a wider audience.
For developers, this means less time spent on
performance optimization and more focus on
refining gameplay mechanics and Al behavior,
ultimately enhancing the player experience.

b) 3D Games:

Unlike 2D games, 3D games take place in a
three-dimensional space, with three axes:
horizontal (X), vertical (Y), and depth (Z). This
added dimension allows for more intricate
movement and interactions, as players and enemies
can move freely in all directions. This freedom
enhances the realism and immersion of the
gameplay experience. 3D video games are
visualized using advanced techniques such as
texture mapping, lighting, and shading on their 3D
models.

However, the involvement of the third
dimension makes things complicated for a game
developer as he has to work with much more
complex advanced physics systems along with
accurate collision detection and in-depth
environmental interaction. This leads to an
increased time and expense in the production
stage. The designing of Al for 3D games will be
much harder, as there will be considerations for
movement and decision-making in three
dimensions. Techniques such as Finite State
Machines (FSM) and Genetic Algorithms (GA)
can be applied, but in this case, more sophisticated
implementations are required due to the increased
complexity of the navigation in a three-
dimensional space.

One of the most important benefits of 3D
games is that they can provide a very immersive
and realistic experience. Players can explore
environments in a more natural and dynamic way,
with interactions feeling more varied and lifelike.
Many popular modern genres, such as first-person
shooters (FPS), open-world adventures, and
simulation games, depend on 3D environments to
create expansive and detailed worlds that meet the
expectations of today's gamers.

However, the technical and graphical
demands of 3D games are significantly higher than
those of 2D games. Developers must optimize their
games to perform well across a variety of hardware
configurations, often targeting multiple platforms
with different performance capabilities. Advanced
tools and engines, such as Unreal Engine and
Unity, are commonly wused in 3D game
development, adding another layer of complexity
to the process. Despite these problems, 3D games
offer immersive and engaging experiences that
form the core of modern gaming.

1.3.3 Al in Game Development:

The development of artificial intelligence
(Al) in gaming has a rich history, evolving
alongside advancements in computer science and
video game technology[6]. From the earliest days
of simple programmed behaviors to today’s
adaptive, learning systems, Al in gaming has
played a crucial role in creating more immersive
and challenging experiences for players

The roots of ‘Al in gaming date back to the
1950s and 1960s, when early experiments focused
on board games like chess and checkers[7]. Arthur
Samuel’s checkers-playing Al in the late 1950s
was groundbreaking, as it could learn from
experience. Similarly, Christopher Strachey
developed a checkers program for the Ferranti
Mark 1 computer in 1952, while Claude Shannon
and Alan Turing explored Al in chess. These early
efforts laid the foundation for Al in gaming,
though they were limited to turn-based, strategic
games.

The 1970s and 1980s saw the rise of arcade
and console games, introducing real-time Al
challenges. "Pong" (1972) featured a basic Al
opponent, while "Pac-Man" (1980) showcased
more advanced Al with its ghost enemies, each
following distinct behavioral patterns. These early
examples demonstrated how simple Al rules could
create engaging and emergent gameplay.

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ g307

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

By the 1990s, advances in computing
power enabled more sophisticated Al in games.
Strategy titles like "Civilization” (1991) and
"Warcraft" (1994) featured Al opponents capable
of resource management and strategic decision-
making. First-person shooters like "Doom" (1993)
and "Quake" (1996) introduced Al enemies that
could navigate 3D spaces and attack players.
"Half-Life" (1998) set a new standard with
enemies that worked as teams, flanking players
and using cover, requiring tactical thinking from
players.

The 2000s brought even greater realism
and complexity to game Al. "The Sims" (2000)
simulated virtual characters with needs, desires,
and personalities, creating intricate behavioral
systems. "F.E.A.R." (2005) stood out for its
advanced enemy Al, where soldiers coordinated,
communicated, and adapted to player actions,
delivering a highly dynamic and immersive
experience. These advancements marked
significant milestones in the evolution of Al in
gaming.

1.3.4 Al Approaches:

In 1948, Alan Turing distinguished two different
approaches to artificial intelligence (Al), which we
now call top-down and bottom-up. The top-down
approach treats thinking or intelligence as a high-
level process that doesn’t depend on the details of
how it’s carried out, whether it’s in the human
brain or a computer. In contrast, the bottom-up
approach tries to simulate networks of artificial
neurons, which are designed to work like the
neurons in the human brain, to see if this can
recreate certain thinking processes.

a) Top-down Approach:

The top-down approach to artificial
intelligence views intelligence as a high-level
phenomenon, focusing on abstract rules, logic, and
symbolic reasoning rather than the physical details
of cognitive processes. It assumes intelligence can
be replicated by defining behavior through human-
created rules and descriptions. For example, an Al
designed to recognize the letter "W™ might use
rules about line intersections, angles, and lengths,
all based on predefined symbolic representations.

In top-down Al, tasks are stored in memory
as symbols, such as lists or trees, which represent
states and decisions. This method, known as
symbolic Al, was championed by researchers like
Newell and Simon in the 1970s, who proposed the
Physical Symbol System Hypothesis. This

hypothesis argues that intelligence emerges from
manipulating symbols based on logical rules,
whether in computers or the human brain.

While symbolic Al was foundational in early
Al research, it has limitations. It often struggles in
complex, real-world environments where rigid
rules and symbols may lack the flexibility to
handle unpredictable situations, leading to less
adaptive systems. Despite these challenges, the
top-down approach remains a key concept in
understanding Al development.

b) Bottom-up Approach:

The top-down approach to artificial
intelligence views intelligence as a high-level
phenomenon, focusing on abstract rules, logic, and
symbolic reasoning rather than the physical details
of cognitive processes. It assumes intelligence can
be replicated by defining behavior through human-
created rules and descriptions. For example, an Al
designed to recognize the letter "W™ might use
rules about line intersections, angles, and lengths,
all based on predefined symbolic representations.

In top-down Al, tasks are stored in memory
as symbols, such as lists or trees, which represent
states and decisions. This method, known as
symbolic Al, was championed by researchers like
Newell and Simon in the 1970s, who proposed the
Physical Symbol System Hypothesis. This
hypothesis argues that intelligence emerges from
manipulating symbols based on logical rules,
whether in computers or the human brain.

While symbolic Al was foundational in early
Al research, it has limitations. It often struggles in
complex, real-world environments where rigid
rules and symbols may lack the flexibility to
handle unpredictable situations, leading to less
adaptive systems. Despite these challenges, the
top-down approach remains a key concept in
understanding Al development.

2.METHODOLOGY

This research employs a qualitative
methodology, focusing on the development of a
prototype game that incorporates both FSM and
GA for enemy Al. The study utilizes gameplay
observations, player feedback, and analysis of
NPC behavior to draw conclusions about the
effectiveness of each Al technique.

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ 0308

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

2.1 GAME DEVELOPMENT PROCESS

The game development process followed a
structured approach to create a simple 2D
prototype for testing and comparing Al techniques.
The key steps were:

2.1.1 Concept Design:

A top-down 2D game was designed where
the player navigates a level while avoiding or
confronting enemies. The goal was to create a
controlled environment to compare FSM (Finite
State Machine) and GA (Genetic Algorithm) in
enemy behavior.

2.1.2 Prototyping:

A basic prototype was built using the
Godot engine. It included a single level with two
enemies—one using FSM and the other using GA.
The environment was kept simple to focus on the
Al comparison.

2.1.3 Testing:

The prototype was tested to ensure FSM
enemies followed predefined rules and GA
enemies adapted over time, validating the
functionality of both Al systems.

2.2 Al TECHNIQUES (FSM AND GENETIC
ALGORITHM)

The primary focus of the project was to
implement two distinct Al techniques—Finite

_Madels (DEBUG)

State Machines (FSM) and Genetic Algorithms
(GA)—and evaluate their impact on enemy
behavior in the game.

Finite State Machines (FSM): FSM is a rule-
based Al approach where enemies transition
between predefined states[8]. For this prototype,
the FSM enemy was programmed with states such
as "ldle,” "Chase," and "Attack."

The transitions between these states were
triggered based on specific conditions, such as the
player entering a certain range or proximity. The
FSM enemy provided a predictable and structured
challenge, with clear behavior patterns.

Genetic Algorithm (GA): In contrast to FSM,
the GA enemy used an adaptive approach[9]. The
GA enemy's behavior evolved over time through a
process of selection, mutation, and crossover. The
initial behaviors were random, but as the game
progressed, the enemy adapted to the player's
strategies. The "fittest" enemies—those that
performed better in chasing or attacking the
player—were selected to pass their behavior traits
to the next generation of enemies. This resulted in
a dynamic, evolving challenge for the player.

2.3 EXPERIMENTAL SETUP

Figure 1. Layout of the experimental setup in the game environment.

[JCRT2502737 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 9309

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

The experimental setup is illustrated in Figure

1, where the player (P) must navigate through the
maze, avoiding the enemies controlled by FSM
and GA algorithms.

Prototype Design: A 2D game prototype was
built with two enemies, each controlled by one
of the Al techniques. The FSM enemy
followed a structured set of predefined rules,
while the GA enemy adapted its behavior over
time based on player interactions.

Enemy Behavior: The FSM enemy was
programmed with fixed states, reacting
predictably to the player's movements. The GA
enemy, on the other hand, started with random
behavior traits and evolved by "learning™ from
its performance in chasing the player.

Player Interaction: The player's objective in the
prototype was to avoid or defeat both enemies.
Observations were made regarding how the
player interacted with each enemy type, how
predictable or adaptive the enemies were, and
which enemy presented a greater challenge as
the game progressed.

Data Collection: The experiment was primarily
observational. The behavior of the FSM and
GA enemies was compared to determine which
approach provided a more dynamic and
engaging gameplay experience. Simple metrics
such as enemy predictability, adaptability, and
challenge level were considered.

3.RESULT DISCUSSION

3.1 DATA AND ANALYSIS

The data collected from the experiments

focused on several key aspects: the behavior of
each enemy, the average time it took for them to
catch the player, and the overall challenge posed to

the player.

By comparing these factors, the

differences between FSM-based and GA-based
enemy Al were analyzed.

Table 1. Time Taken by FSM and GA Enemies to

Catch the Player (Note: both enemies are in

different positions)

Rounds FSM GA
(Seconds) | (Seconds)
1 2.90 66.33
2 2.90 59.36
3 2.88 93.99
4 2.90 244.15
5 2.89 87.50
6 2.89 67.59
7 2.89 48.61
8 2.89 127.58
9 2.90 65.09
10 2.88 55.63
11 2.89 107.42

3.1.1 FSM Enemy Behavior

Predictability: The FSM-controlled enemy
followed predefined states like “ldle,"
"Chase," and "Attack." It transitioned between
these states based on player proximity,
making its behavior highly predictable.
Players quickly learned its patterns, reducing
the challenge over time. This is reflected in
the table 1, where the FSM enemy
consistently catches the player in2.8-2.9
seconds across all rounds, showing minimal
variability.

Average Time to Catch the Player: The FSM
enemy caught the player in a consistent
timeframe (2.8-2.9 seconds), with little
variability. This predictability allowed players
to anticipate and manipulate its behavior,
balancing gameplay but reducing long-term
difficulty. The table 1 clearly demonstrates
this consistency, with all rounds showing
nearly identical times.

Challenge Level: Initially, the FSM enemy
posed a moderate challenge, creating urgency
with its quick transitions. However, as players
memorized its patterns, the challenge
diminished, making it easier to avoid.

Adaptability: The FSM enemy lacked
adaptability, following fixed rules regardless
of player actions. This static behavior led to
repetitive gameplay, as players could exploit
its predictable patterns. The table 1 reinforces
this, as the FSM's times remain constant,
showing no evolution.

IJCRT2502737

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ g310

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

3.1.2 GA Enemy Behavior

Adaptability: The GA-controlled enemy
evolved over time using genetic algorithms. It
learned from successes (e.g., effective chase
angles) and discarded failures, becoming more
efficient at catching the player. This
adaptability made its behavior dynamic and
harder to predict.

Average Time to Catch the Player: Initially,
the GA enemy took longer to catch the player
(90-93 seconds), but as it evolved, the time
decreased, reflecting its improved strategies.

Unpredictability: The GA enemy’s behavior
became increasingly unpredictable. It
approached from new angles or changed
speed unexpectedly, forcing players to stay
alert and adapt their strategies. The table 1
supports this, as the GA's times vary widely,
indicating unpredictable behavior.

Challenge Level: The GA enemy’s challenge
increased over time as it refined its tactics.
Players couldn’t rely on past strategies,
ensuring the gameplay remained engaging and
dynamic.

4. COMPARISON OF Al APPROACHES

The choice of Al techniques in game

development significantly impacts how NPCs
interact with players and their environments. This
section compares Finite State Machines (FSM) and
Genetic Algorithms (GA) in 2D games, focusing
on design complexity, adaptability, predictability,
performance, and suitability.

4.1 DESIGN COMPLEXITY

e FSM: FSMs use predefined states (e.g.,
"Idle,” "Chase,” "Attack™) and transitions,
making them simple to design and debug.
However, managing multiple enemies with
distinct behaviors can lead to code
duplication and increased complexity.

e GA: GAs rely on evolutionary principles,
requiring developers to define fitness
criteria, crossover, and mutation
parameters. This approach is more complex
but enables adaptive and diverse Al
behaviors.

4.2 ADAPTABILITY AND LEARNING

e FSM: FSMs lack adaptability, operating on
static rules. Players can exploit predictable
patterns, reducing long-term challenge and
engagement.

e GA: GAs adapt dynamically, evolving
behaviors based on player actions. This
creates unique, unpredictable encounters,
enhancing replayability and immersion.

4.3 PREDICTABILITY AND CHALLENGE

e FSM: FSMs provide predictable,
structured behavior, ideal for games
where mastering mechanics is key.
However, this predictability can lead to
monotony over time.

e GA: GAs introduce unpredictability,
forcing players to adapt to evolving
enemy strategies. This maintains
challenge and excitement, especially in
dynamic gameplay scenarios[10].

4.4 PERFORMANCE AND RESOURCE

USAGE

e FSM: FSMs are computationally efficient,
making them suitable for games with many
NPCs or limited hardware resources. Their
deterministic -nature simplifies debugging
and optimization.

e GA: GAs are resource-intensive due to
evolutionary processes. Optimization
strategies, such as reducing population size
or parallel processing, are often needed to
manage performance.

4.5 APPLICATION SUITABILITY

e FSM: FSMs excel in games requiring
predictable, rule-based behaviors, such as
platformers or puzzle games. They provide
controlled, manageable challenges for
players.

e GA: GAs are ideal for games needing
adaptive, complex Al, such as action-
adventure or competitive multiplayer
games. They ensure dynamic, evolving
challenges that keep players engaged.

IJCRT2502737

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ g311

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

5.CHALLENGES AND LIMITATIONS

5.1 CHALLENGES WITH FINITE STATE
MACHINES (FSM)

i) Complexity in Large Systems:

FSMs become unwieldy in large systems
with many NPCs and states, leading to intricate
designs that are hard to manage and debug.

i) Limited Adaptability:

FSMs are static and cannot adapt to
changing game dynamics or player strategies,
resulting in predictable and repetitive enemy
behavior[8].

iii) Difficulty in Implementing Complex
Behaviors:
Representing nuanced behaviors (e.g.,
context-aware reactions) often requires extensive
modifications, increasing system complexity.

iv) Memory Consumption:

Large-scale FSM implementations can
consume significant memory, potentially
degrading performance on resource-constrained
hardware.

v) Balancing and Tuning:

Tuning FSM parameters for balanced
gameplay is time-consuming, requiring extensive
playtesting and iteration.

5.2 CHALLENGES WITH GENETIC
ALGORITHMS (GA)

i) Computational Resource Intensity:

GAs are resource-intensive due to
evolutionary processes like fitness evaluations and
mutations, posing challenges for real-time
applications or low-power devices[11].

i) Initial Setup and Configuration:

Configuring GA parameters (e.g.,
population size, mutation rates) requires significant
trial and error, increasing development complexity.

iii) Stability and Convergence Issues:

GAs may converge prematurely on
suboptimal solutions, requiring mechanisms to
maintain behavioral diversity.

iv) Debugging Complexity:

Debugging evolving GA behaviors is
challenging due to their dynamic nature,
complicating issue tracing and resolution.

v) Balancing Exploration and Exploitation:

Maintaining a balance between exploring
new behaviors and refining successful ones is
critical but difficult to achieve.

vi) Player Experience and Learning Curve:

Unpredictable GA behaviors can frustrate
players if the learning curve is too steep, risking
player disengagement.

6. CONCLUSION

This research explored the application of Finite
State Machines (FSM) and Genetic Algorithms
(GA) in game development, highlighting their
distinct strengths and challenges. FSMs provide
predictable, structured enemy behavior, making
them ideal for games requiring simplicity and
control. However, their lack of adaptability can
lead to repetitive gameplay over time.

In contrast, GAs introduce dynamic, adaptive
Al, evolving enemy behaviors based on player
interactions. This unpredictability enhances
replayability and immersion but comes with higher
computational demands, setup complexity, and
potential convergence issues.

The choice between FSM and GA depends on
the game’s goals, desired player experience, and
available resources. FSMs suit structured,
controlled environments, while GAs excel in
adaptive, challenging gameplay. As Al continues
to advance, understanding these techniques will
enable developers to create innovative and
engaging gaming experiences, pushing the
boundaries of game design.

7.FUTURE WORK

This study provides a foundational
understanding of Finite State Machines (FSM) and
Genetic Algorithms (GA) in Al-driven gameplay.
However, several avenues for future research can
expand on these findings and enhance game design
practices:

A. Hybrid Al Models:

Explore combining FSM and GA to
leverage the predictability of FSMs and the
adaptability of GAs, creating a balanced and
dynamic gameplay experience.[5]

B. Advanced Al Techniques:

Investigate other Al methods, such as
Behavior Trees or Reinforcement Learning, to
compare their effectiveness with FSM and GA in
various game contexts.[9]

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ g312

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 2 February 2025 | ISSN: 2320-2882

C. Player Feedback Mechanisms:

Incorporate real-time player feedback to
refine Al behaviors, ensuring balanced difficulty
and enhancing player engagement.

D. Broader Game Environments:
Extend research to 3D environments and
diverse genres to study the impact of spatial

awareness, pathfinding, and multi-agent
interactions on Al performance.
E. Performance Optimization:

Develop strategies to reduce the

computational overhead of complex Al techniques
like GA, ensuring optimal performance in
resource-limited environments.

F. User Studies:

Conduct studies to evaluate player
engagement, satisfaction, and perceived challenge
when interacting with different Al models,
informing better Al design and game balancing.

G. Scalability Of Ai Techniques:

Research methods to scale Al for larger
game environments with numerous NPCs,
ensuring efficiency and responsiveness as game
complexity increases.

H. Ai In Other Game Aspects:

Explore Al applications beyond enemy
behavior, such as procedural content generation,
dynamic storytelling, or player behavior
prediction, to create more immersive and
personalized gameplay experiences.

REFERENCES

[1] L. M. Savaglia, "Artificial intelligence in
gaming: Creating a living world and its NPCs,"
Fundamentals of Computational Intelligence,
Flinders University, 2021.

[2] N. Raju, S. Sikka, S. Kumar, and R. Gupta,
"Artificial intelligence in games,” International
Journal of Computer Science and Information
Technologies, 2012.

[3] P. Sweetser and J. Wiles, "Current Al in
games: A review," Australian Journal of Intelligent
Information Processing Systems, 2002.

[4] B. Abbas, "Elevating realism: Cutting-edge Al
NPCs and environments transform gaming in
VirtualEra,"” Department of Computer Science,
University of Camerino, 2024.

[5] W. Hu, Q. Zhang, and Y. Mao, "Component-
based hierarchical state machine: A reusable and
flexible game Al technology,” Institute of
Computer Science, Communication University of
China, Beijing, China, 2023.

[6] "What is Al?" Alan Turing Archive. [Online].
Available:
https://www.alanturing.net/turing_archive/pages/re
ference%20articles/what_is_ai/What%20is%20Al
09.html. [Accessed].

[7] C. E. Shannon, "Programming a computer for
playing chess,” Philosophical Magazine, vol. 41,
no. 314, pp. 256-275, 1950.

[8] H. Kopetz, C. El-Salloum, B. Huber, and R.
Obermaisser, "Periodic finite-state machines,"
Institut flr Technische Informatik, TU Wien,
Vienna, Austria, 2007.

[9] C.-T. Sun and M.-D. Wu, "Self-adaptive
genetic algorithm learning in game playing,”
Department of Computer and Information Science,
National Chiao Tung University, Taiwan, 2002,

[10] F. F. Ali, Z. Nakao, and Y.-W. Chen, "Playing
the rock-paper-scissors game with a genetic
algorithm,"” Department of Management &
Information Systems, Meio University, Nago-shi,
Okinawa, Japan, 2002.

[11] M. Mitchell, "Genetic algorithms in Al and
game development,” Al and Games, 2020.
[Online]. Available:
https://www.aiandgames.com/genetic-algorithms.
[Accessed].

[JCRT2502737] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ g313

http://www.ijcrt.org/
https://www.alanturing.net/turing_archive/pages/reference%20articles/what_is_ai/What%20is%20AI09.html
https://www.alanturing.net/turing_archive/pages/reference%20articles/what_is_ai/What%20is%20AI09.html
https://www.alanturing.net/turing_archive/pages/reference%20articles/what_is_ai/What%20is%20AI09.html
https://www.aiandgames.com/genetic-algorithms

