IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Computational Design And Evaluation Of 2-Methyl Indole Derivatives As Aromatase Inhibitors For Breast Cancer Therapy

Fida Fathima¹, Rasmiya Shirin¹, T P. Sahadiya¹, K. Sahma¹, I P. Shamna¹, G. Jyothisree², A. Sherin³, M K. Sirajudheen⁴

¹Student, Department of Pharmaceutical Chemistry, Jamia Salafiya Pharmacy College, Pulikkal,

Malappuram, Kerala, India

²Professor, Department of Pharmaceutical Chemistry, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram, Kerala, India.

³Professor, Department of Pharmaceutical Chemistry, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram, Kerala, India.

⁴Professor, Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram,
Kerala, India.

Abstract: Aromatase, a key enzyme in estrogen biosynthesis, is a critical therapeutic target for hormone-dependent breast cancer. This study aimed to design novel 2-methyl indole derivatives as aromatase inhibitors using in silico strategies. Fifty-one ligands were computationally designed, and their drug-likeness, ADME properties, binding affinity (via molecular docking), and toxicity were evaluated. Ligand 41 exhibited the highest docking score (-7.5 kcal/mol) with four hydrogen bonds to the aromatase active site (PDB:3S7S) and lower toxicity (Class V, LD50: 2125 mg/kg) compared to the reference compound (6-chloro-5-cyano-2-methyl indole; docking score: -6.0 kcal/mol, Class IV toxicity). All ligands adhered to Lipinski's Rule of Five, indicating favorable oral bioavailability. These results highlight ligand 41 as a promising candidate for further development as a potent and safer aromatase inhibitor.

Index term: Aromatase inhibitors, Breast cancer therapy, 2-Methyl indole derivatives, molecular docking and protein.

1.INTRODUCTION

Breast cancer remains the most commonly diagnosed cancer among women globally, accounting for over 2.3 million new cases annually. The enzyme aromatase (CYP19A1) plays a pivotal role in the biosynthesis of estrogen by converting androgens (testosterone and androstenedione) into estrogens. Overexpression of aromatase leads to increased estrogen levels, stimulating the growth of ER+ breast tumors. [1][2][3]

Current aromatase inhibitors (AIs), including letrozole, anastrozole, and exemestane, effectively block estrogen synthesis. However, long-term use can lead to resistance, osteoporosis, and cardiovascular side effects. To overcome these limitations, the discovery of novel, potent, and safer AIs is necessary. [4][5][6]

2-Methylindole derivatives have emerged as promising pharmacophores in medicinal chemistry due to their anti-cancer, anti-inflammatory, and enzyme-inhibiting properties. This study employs computational drug design to identify potential 2-methylindole derivatives as aromatase inhibitors using molecular docking, ADME prediction, and toxicity analysis. [7][8]

II. MATERIALS AND METHODS

Ligand Design and Preparation

A series of fifty-one 2-methyl indole derivatives were designed using Avogadro software. Substituents at R₁ and R₂ positions included halogens, nitro, and alkyl groups (Table 1). Physicochemical properties (molecular weight, logP, hydrogen bond donors/acceptors) were calculated via SwissADME. to ensure compliance with Lipinski's rule of five, which predicts oral bioavailability. [9][10][11]

Protein Preparation

The three-dimensional crystal structure of human placental aromatase (PDB ID: 3S7S) was retrieved from the Protein Data Bank (PDB). The protein was optimized by removing bound water molecules and adding hydrogen atoms using Discovery Studio to enhance docking accuracy. [12][13]

Molecular Docking

Molecular docking studies were performed using PyRx software, which utilizes AutoDock Vina for ligand-protein interaction analysis. The docking grid was centered at coordinates (86.29, 53.6, 42.20). A grid box (60×60×60 ų). Binding affinities were evaluated based on docking scores (kcal/mol), with more negative values indicating stronger interactions. pharmacokinetic properties and toxicity classes, respectively. [14][15][16]

ADME and Toxicity Prediction

ADME properties, including absorption, distribution, metabolism, and excretion, were predicted using SwissADME. Toxicity risks, including hepatotoxicity, carcinogenicity, and respiratory toxicity, were assessed using ProTox, which classifies compounds into six toxicity classes based on LD50 values (lethal dose for 50% of test subjects)(Table 4). [17][18][19]

III. RESULTS

All 51 ligands were filtered through Lipinski's rule of five, ensuring drug-like properties. The reference compound (6-chloro-5-cyano-2-methylindole) had a molecular weight of 190.63 g/mol, logP of 3, and one hydrogen bond donor and acceptor. The optimized ligand 41 demonstrated better drug-likeness and metabolic stability, making it a strong candidate.

Ligand 41 demonstrated the highest binding affinity (-7.5 kcal/mol) and formed four hydrogen bonds with ARG A:159, ARG A:205, and LEU A:202 (Fig. 7). In contrast, the reference compound showed only one interaction (LEU A:372) and a lower score (-6.0 kcal/mol) (Table 5).

Ligand 41 exhibited Class V toxicity (LD50: 2125 mg/kg), indicating lower acute toxicity than the reference compound (Class IV, LD50: 1230 mg/kg). Most ligands were non-carcinogenic and inactive in hepatotoxicity assays (Table 7).

IV. DISCUSSION

The study focused on designing and evaluating 2-methylindole derivatives as potential aromatase inhibitors using molecular docking techniques against the 3S7S enzyme. The modifications at the 5th and 6th positions of the 2-methylindole core played a significant role in enhancing binding interactions and inhibitory potential. The docking results demonstrated that several designed ligands exhibited stronger binding affinity compared to the reference compound, 6-chloro-5-cyano-2-methylindole.

The structural analysis revealed that electron-donating (-OH) and electron-withdrawing (-NO₂) groups influenced the activity of these compounds. Ligand 50, containing a hydroxyl (-OH) group at the 5th position, showed the highest docking score (-9.6), indicating strong binding affinity. Additionally, ligand 41 exhibited the highest number of hydrogen bond interactions (four hydrogen bonds), particularly with amino acid residues such as ARG A: 159, ARG A: 205, and LEU A: 202, enhancing its stability in the active site. The presence of a nitro (-NO₂) group facilitated electrostatic interactions with ARG A: 205, contributing to the increased binding strength.

Pharmacokinetic evaluations, including ADME predictions, revealed that ligand 41 demonstrated good gastrointestinal absorption (GI), non-permeability to the blood-brain barrier (BBB), and was a substrate for P-glycoprotein (P-gp). The lipophilicity (Log P = 2.28) of ligand 41 was found to be more stable compared to ligand 40 (Log P = 2.01), further supporting its drug-likeness properties. The bioavailability score of 0.55 and full compliance with Lipinski's Rule of Five suggest that ligand 41 has favorable oral bioavailability and drug-like characteristics.

Toxicity prediction indicated that ligand 41 exhibited lower toxicity risk (Class 5: $2000 < LD_{50} \le 5000$), making it safer than the reference compound (Class 4: $300 < LD_{50} \le 2000$). Functional group contributions to toxicity were analyzed, with findings indicating that nitro groups could be associated with mutagenicity, whereas halogen substitutions increased lipophilicity but also posed a risk of hepatotoxicity. Amidecontaining derivatives showed varied toxicity profiles, depending on metabolic pathways.

V. CONCLUSION

This study highlights the potential of 2-methylindole derivatives as promising aromatase inhibitors for breast cancer therapy through computational drug design. Among the designed compounds, ligand 41 exhibited the highest docking score (-7.5 kcal/mol) and strong hydrogen bonding interactions, making it a superior candidate compared to the reference inhibitor (6-chloro-5-cyano-2-methylindole). Additionally, ligand 41 demonstrated favorable pharmacokinetic properties and lower toxicity (Class V, LD50 = 2125 mg/kg), suggesting improved safety and drug-likeness. The strong binding affinity, favorable ADME profile, and reduced toxicity risk indicate that ligand 41 could serve as a potential next-generation aromatase inhibitor. However, further in vitro and in vivo studies are necessary to validate its efficacy and safety before clinical application. These findings contribute to the ongoing efforts in developing more effective and safer alternatives to current aromatase inhibitors for hormone-dependent breast cancer treatment.

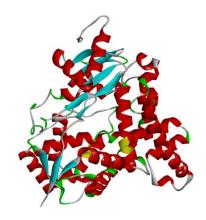


Fig.1. Crystal structure of human placental aromatase PDB ID: 3S7S.



Fig.2.Crystal structure of 3S7S

$$R_1$$
 CH_3 R_2

Fig.3. 2-Methyl indole

$$R_1$$
 CH_3 R_2

Fig.4. General structure of docked ligand

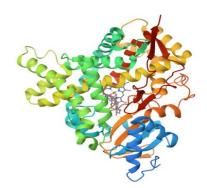


Fig.5. Crystal structure of human placental aromatase complexed with breast cancer drug exemestane. PDB ID:3S7S.

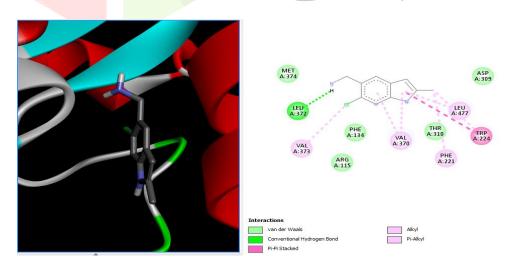


Fig.6. Interaction between reference compound and protein (3S7S)

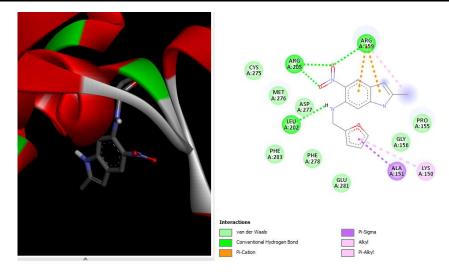


Fig.7. Interaction between ligand 41 and protein (3S7S)

 Table 1: Ligand structure detailes

SL. NO	LIGAND	Rı	R ₂	IUPAC NAME
1	1(Reference)	CN	Cl	6-chloro-5-cyano- 2-methyl indole
2	2	F	-CH ₂ CH ₂ CH ₂ CH ₃	6-butyl-5-fluoro-2- methyl indole
3	3	ОН	Br	6-bromo-5- hydroxy-2-methyl indole
4	4	Н	NO ₂	2-methyl-6-nitro indole
5	5	Н	-CH ₂ CH ₂ CH ₂ CH ₃	6-butyl-2-methyl indole
6	6	CH ₂ CH ₃	Cl	6-chloro-5-ethyl-2- methyl indole
7	7	CH ₂ CH ₃	Br	6-bromo-5-ethyl- 2-methyl indole
8	8		CH ₂ CH ₂ CH ₂ CH ₂ NH ₂	4-(5-phenyl-2-methyl-1H-indole-6-yl)butanamine

9	9	CH₂F	СН3	2,6-dimethyl-5- fluoro methyl indole
10	10	NO ₂	Cl	6-chloro-2-methyl- 5-nitro indole
11	11	I	Н	5-iodo-2-methyl indole
12	12	CH ₃		2,5-dimethyl-6- phenyl indole
13	13	CN	NO ₂	5-cyano-2-methyl- 6-nitro indole
14	14	ОН		5-hydroxy-2- methyl-6-phenyl indole
15	15	Н	CH ₃	6-(methyl phenyl)- 2-methyl indole
16	16	Н	CH ₂ CH ₂ CH ₂ CH ₂ COOH	5-(2-methyl-1H- indole-6- yl)pentanoic acid
17	17	OCH ₂ CH ₃	Н	5-ethoxy-2-methyl indole
18	18	СН3	-CH ₂ OCH ₃	6-(methoxy methyl)-5-methyl- 1H-indole-2-amine
19	19	CH₂Br	CH ₃	5-(bromomethyl)- 2,6-dimethyl-1H- indole
20	20	СНО	-CH ₂ NH ₂	6-(amino methyl)- 2-methyl-1H- indole-5- carbaldehyde
21	21	СООН	F	6-fluoro-2-mehyl-

				1H-indole-5- carboxylic acid
22	22	CH ₂ OH	F	6-(fluoro-2- methyl-1H-indole- 5-yl)methanol
23	23	CONH ₂	Н	2-methyl-1H- indole-5- carboxamide
24	24	COCH ₃	Н	1-(2-methyl-1H- indol-5-yl)ethan-1- one
25	25	O'	NH ₂	1-(6-amino-2- methyl-1H-indole- 5-yl)-2-methyl propan-1-one
26	26	-CH ₂ CH ₃	NO ₂	2-methyl-5-ethyl-6-nitro indole
27	27	СН	Cl	6-chloro-2-methyl- 5-(propan-2-yl)- 1H-indole
28	28	CH ₃		2,5-dimethyl-6-naphthyl indole
29	29	-CH ₂ CH ₂ OH	-CH ₂ CH ₂ OH	4-(2-methyl-1H-indole-5,6 diyl)dimethanol
30	30		-CH ₃	5-cyclopropyl-2,6- dimethyl-1H- indole
31	31	Н	CCl ₂ CH ₃	6-(1,1- 32dichloroethyl)- 2-methyl-1H- indole

				2,5-dimethyl-6-
32	32	CH ₃	CH(CH ₃) ₂	(propan-2-yl)-1H-
32	32	C11 ,	C11(C113)2	indole
				mdore
				N-(6-hydroxy-2-
33	33	NHCOCH ₃	ОН	methyl-1H-indol-
				5-yl)acetamide
				6-(1H-imidazol-1-
2.4	2.4	11		
34	34	Н	HN N	yl)-2-methyl-1H-
				indole
		/==N		2-methyl-5-(1H-
35	35	HN.	Н	1,2,4-triazol-1-yl)-
		N		1H-indole
			, , , , , ,	5-(cyclo butyl
36	36		Н	methyl)-2-methyl
		H ₃ C		indole
				5-cyclopropyl-2-
37	37		CN	
3/	3/		CN	methyl-1H-indole-
	,			6-carbonitrile
7				6-ethyl-2-methyl-
38	38	-CH(CH ₃) ₂	-CH ₂ CH ₃	5-(propan-2-yl)-
		GII(GII3)2	-CH2E113	1H-indole
		\		111-mdole
			ÇH₃ ÇH₃	6-(1,8-
		_	\downarrow , \downarrow ,	dimethylnaphthale
39	39	F		ne-2-yl)-5-fluoro-
				3-methyl indole
				2-methyl-6-nitro-
40	40	-CH ₂ NH ₂	NO_2	5-(nitromethyl)-
				1H-indole
			NH ₂	2-{[(2-methyl-5-
				nitro-1H-indol-6-
41	41	NO_2	O [†]	
				yl)amino]methyl}-
				2H-furan-1-ium
		l	<u> </u>	

42	42	ОН	OCH ₃	4-(6-methoxy-2-methyl-1H-indole-5-yl)phenol
43	43		CH ₂ Cl	6-(chloro methyl)- 5-(cyclopenta-2,4- dien-1-yl)-2- methyl indole
44	44	H ₂ C	Н	(2E)-3-(2-methyl- 1H-indole-5-yl)-1- phenyl prop-2-en- 1-one
45	45	Cl	CI	5-chloro-6-(4- chlorophenyl)-2- methyl-1H-indole
46	46	CH ₂ CHOHCH ₂ CH ₃	-CH=CHCH ₃	2-methyl-5-(1E)- prop-1-en-1-yl)- 1H-indole-6-yl butan-2-ol
47	47	COCH ₃	но	1-[6-(4- hydroxyphenyl)-2- methyl-1H-indol- 5-yl]ethan-1-one
48	48	-CH2CH2CH3	CH ₃	2-methyl-6-(2- methyl cyclopentyl)-5- propyl-1H-indole
49	49	S N	Н	2-methyl-5-(4- phenyl-1,3-thiazol- 2-yl)-1H-indole
50	50	ОН		1-[4-(5-hydroxy-2-methyl-1H-indol-6-yl)phenyl]-2-phenylethane-1,2-dione

51	51	СН3		6-(anthracen-2-yl)- 2,5-dimethyl-1H- indole
----	----	-----	--	---

Table 2: Physicochemical data of the ligands

SL NO	LIGAND	M.F	M.WT	TPSA(Å) ²
1	1(Reference)	$C_{10}H_{11}CIN_2$	190.63	39.58
2	2	C ₁₀ H ₁₆ FN	205.27	15.79
3	3	C ₉ H ₈ BrNO	226.07	36.02
4	4	C ₉ H ₈ N ₂ O ₂	176.17	61.61
5	5	C ₁₃ H ₁₇ N	187.28	15.79
6	6	C ₁₁ H ₁₂ CIN	193.79	15.79
7	7	C ₁₁ H ₁₂ BrN	238.12	15.79
8	8	C ₁₉ H ₂₂ N ₂	278.39	41.81
9	9	C ₁₁ H ₁₂ FN	177.22	15.79
10	10	C ₉ H ₇ CIN ₂ O ₂	210.62	61.61
11	11	C ₉ H ₈ IN	257.07	15.79
12	12	C ₁₆ H ₁₅	221.303	15.79
13	13	C ₁₀ H ₇ N ₃ O ₂	201.18	85.24
14	14	C ₁₅ H ₃ NO	223.27	36.02
15	15	C ₁₆ H ₁₅ N	221.3	15.79
16	16	C ₁₄ H ₁₇ NO ₂	231.29	53.09
17	17 C ₁₁ H ₁₃ NO 175.22		175.23	25.02
18	18	C ₁₂ H ₁₅ NO	189.26	25.02
19	19	C ₁₁ H ₁₂ BrN	238.12	15.79
20	20	$C_{11}H_{12}N_2O$	188.23	58.88

21	21	C ₁₀ H ₈ FNO ₂	103.17	53.09
22	22	C ₁₀ H ₁₀ FNO	179.19	36.02
23	23	C ₁₀ H ₁₁ N ₂ O	175.21	55.88
24	24	C ₁₁ H ₁₁ NO	173.21	32.86
25	25	C ₁₂ H ₁₆ N ₂ O	204.27	51.04
26	26	C ₁₁ H ₁₂ N ₂ O ₂	204.23	61.62
27	27	C ₁₂ H ₁₄ ClN	207.70	15.79
28	28	C ₂₀ H ₁₇ N	271.36	15.79
29	29	C ₁₁ H ₁₃ NO ₂	243.74	15.79
30	30	C ₁₃ H ₁₅ N	185.26	15.79
31	31	C ₁₁ H ₁₁ C ₁₂ N	228.12	15.79
32	32	C ₁₃ H ₁₇ N	187.29	15.79
33	33	C ₁₁ H ₁₃ N ₂ O ₂	205.23	71.11
34	34	C ₁₂ H ₁₁ N ₃	197.24	33.61
35	35	C ₁₁ H ₁₀ N ₄	198.22	46.50
36	36	C ₁₄ H ₁₇ N	199.30	15.79
37	37	C ₁₃ H ₁₂ N ₂	196.25	39.58
38	38	C ₁₄ H ₁₉ FN	201.31	15.79
39	39	C ₂₁ H ₁₈ FN	303.37	15.79
40	40	C ₁₀ H ₉ N ₃ O ₄	235.20	107.43
41	41	C ₁₅ H ₁₄ N ₂ O ₃	270.28	85.02
42	42	C ₁₆ H ₁₅ NO ₂	253.30	42.25
43	43	C ₁₅ H ₁₄ CIN	243.74	15.79
44	44	C ₁₈ H ₁₅ NO	261.32	32.86
45	45	C ₁₅ H ₁₁ Cl ₂ N	276.16	15.79
46	46	C ₁₆ H ₂₁ NO	243.35	36.02
47	47	C ₁₇ H ₁₆ NO ₂	266.31	59.08
		1		

48	48	C ₁₈ H ₂₅ N	255.41	15.79
49	49	$C_{18}H_{14}N_2S$	290.39	28.68
50	50	C ₂₃ H ₁₇ NO ₃	355.39	70.16
51	51	C ₂₄ H ₁₉ N	321.41	15.79

Table 3: Ligand data based on Lipinski rule of five

SL NO	LIGAND	M.wt(g/mol)	Log P	noHNH	noN	MOLAR REFRACTI VITY
1	1(Referen ce)	190.63	3	1	1	52.99
2	2	205.27	4.38	1	1	62.61
3	3	226.07	2.94	2	1	52.99
4	4	176.17	2.385	1	2	52.09
5	5	187.28	3.82	1	0	62.65
6	6	193.79	3.69	1	0	58.05
7	7	238.12	3.8	1	0	60.74
8	8	278.39	4.03	2	1	85.99
9	9	177.22	3.52	<u> </u>	1	53.25
10	10	210.62	3.04	1	2	57.1
11	11	257.41	5.21	1	0	84.73
12	12	221.303	4.452	1	0	73.204
13	13	201.18	2.26	1	3	56.8
14	14	223.27	3.85	2	1	70.72
15	15	221.3	3.85	2	0	70.72
16	16	231.29	4.45	1	2	73.67
17	17	175.23	2.79	1	2	54.56
18	18	189.26	2.69	1	2	59.09
19	19	238.12	3.53	1	0	61.07
20	20	188.23	1.6	2	2	56.33

21	21	103.17	2.38	2	3	50.18
22	22	179.19	2.38	2	2	49.35
23	23	175.21	0.45	2	1	53.42
24	24	173.21	2.68	1	1	53.42
25	25	204.27	2.85	2	1	53.42
26	26	204.23	3.16	1	4	61.86
27	27	207.7	4.25	1	0	62.85
28	29	243.74	3.73	1	1	73.16
29	30	185.26	3.6	1	0	60.7
30	31	228.12	3.96	1	1	62.51
31	32	187.29	3.77	1	1	62.81
32	33	205.23	2.18	3	2	59.03
33	34	197.24	2.66	1		60.39
34	35	198.22	2.06	1	2	58.18
35	36	199.3	3.58	1	1	65.34
36	37	196.25	3.161		1	60.45
37	38	201.31	4.24	1	10	67.62
38	40	235.2	2.01	1	4	65.16
39	41	270.28	0.73	2	3	75.48
40	42	253.3	3.86	2	2	77.22
41	43	243.74	3.73	1	1	73.16
42	44	261.32	4.23	1	2	83.07
43	46	243.35	3.62	2	2	78.71
44	47	266.31	4.02	2	2	80.13
45	49	290.39	4.88	1	2	89.81

46	50	355.39	4.19	2	3	105.83

 Table 4: ADME Studies of selected ligands

SL	LIGAND	GI	BBB	P-gp	Bioavailability	Synthetic
NO		Absorption	Permeant	Substrate	Score	Accessibility
1	1(Reference)	High	Yes	No	0.55	1.72
2	2	High	Yes	No	0.55	1.97
3	3	High	Yes	No	0.55	1.43
4	4	High	Yes	No	0.55	1.76
5	5	High	Yes	No	0.55	1.60
6	6	High	Yes	No	0.55	1.60
7	7	High	Yes	No	0.55	1.76
8	8	High	Yes	Yes	0.55	2.37
9	9	High	Yes	No	0.55	1.63
10	10	High	Yes	No	0.55	1.79
11	11	High	Yes	No	0.55	1.71
12	12	High	Yes	No	0.55	1.77
13	13	High	Yes	No	0.55	1.74
14	14	High	Yes	No	0.55	1.56
15	15	High	Yes	No	0.55	1.86
16	16	High	Yes	No	0.85	1.76
17	17	High	Yes	No	0.55	1.35
18	18	High	Yes	No	0.55	1.87
19	19	High	Yes	No	0.55	1.89
20	20	High	Yes	No	0.55	1.47
21	21	High	Yes	No	0.85	1.68
22	22	High	Yes	No	0.55	1.96
23	23	High	No	No	0.55	1.87
24	24	High	Yes	No	0.55	1.27
25	25	High	Yes	No	0.55	3.30
26	26	High	Yes	No	0.55	2.43
27	27	High	Yes	No	0.55	1.76
28	29	High	Yes	No	0.55	1.54
29	30	High	Yes	No	0.55	1.34
30	31	High	Yes	No	0.55	1.23
31	32	High	Yes	No	0.55	1.56

32	33	High	Yes	No	0.55	1.62
33	34	High	Yes	Yes	0.55	1.66
34	35	High	Yes	No	0.55	1.69
35	36	High	Yes	No	0.55	1.65
36	37	High	Yes	Yes	0.55	1.89
37	38	High	No	No	0.55	1.97
38	40	High	Yes	No	0.55	2.15
39	41	High	No	Yes	0.55	3.46
40	42	High	Yes	Yes	0.55	2.07
41	43	High	Yes	No	0.55	2.31
42	44	High	Yes	No	0.55	2.08
43	46	High	Yes	No	0.55	2.23
44	47	High	Yes	Yes	0.55	2.47
45	49	High	Yes	Yes	0.55	2.78
46	50	High	No	No	0.55	2.35

Table 5: The docking score of the selected ligands

SL NO	LIGAND	DOCKING SCORE
1	1(Reference)	-6.0
2	16	-6.1
3	17	-6.2
4	18	-6.2
5	19	-6.2
6	20	-6.2
7	21	-6.3
8	22	-6.3
9	23	-6.3
10	24	-6.4
11	25	-6.4
12	26	-6.5

13	27	-6.5
14	29	-6.6
15	30	-6.6
16	31	-6.7
17	32	-6.7
18	33	-6.7
19	34	-6.7
20	35	-6.8
21	36	-6.9
22	37	-6.9
23	38	-7.0
24	40	-7.4
25	41	-7.5
26	42	-7.5
27	43	-7.6
28	44	-7:7
29	46	-7.9
30	47	-8.1
31	49	-8.4
32	50	-9.6

 Table 6: The number of hydrogen bond of the selected ligands

SL NO	LIGAND	NO. OF HYDROGEN BOND		
1	1(Reference)	1		

2	16	2
3	17	2
4	21	3
5	33	2
6	40	4
7	41	4
8	49	2

 Table 7: Toxicity study of selected ligands

SL NO	LIGAND	HEPTO TOXICITY	RESPIRAT ORY TOXICIT Y	CARCIN OGENIC ITY	PREDICTE D LD 50	TOXICIT Y
1	1(Referen ce)	Inactive	Inactive	Inactive	1230mg/kg	CLASS:4
2	16	Inactive	Active	Inactive	200mg/kg	CLASS:3
3	17	Inactive	Inactive	Inactive	1230mg/kg	CLASS:4
4	21	Active	Inactive	Inactive	1000mg/kg	CLASS:4
5	33	Inactive	Inactive	Active	1000mg/kg	CLASS:4
6	40	Inactive	Active	Inactive	104mg/kg	CLASS:3
7	41	Inactive	Inctive	Inctive	2125mg/kg	CLASS: 5
8	49	Active	Inactive	Inactive	200mg/kg	CLASS:3

ACKNOWLEDGMENT

We thank the almighty who is constantly showering his blessings on us, which helped us to complete the dissertation work successfully.

We would like to express my sincere gratitude to Mr. Mohammed Siddique K M, Secretary and Manager, Jamia Salafiya Pharmacy College, Pulikkal, for providing us with the opportunity to undertake this project.

We express our wholehearted gratitude to our guide **Dr. Jyothisree G,** Professor, Department of Pharmaceutical Chemistry, Jamia Salafiya Pharmacy College, Pulikkal, for her indispensable guidance and tremendous encouragement at each and every step of this dissertation work. Without her critical advice and deep-rooted knowledge, this work would not have been a reality.

We would like to express our gratitude and thankfulness to **Dr. Sirajudheen M.K,** Principal, Jamia Salafiya Pharmacy College, Pulikkal, for the support and advice and providing all facilities during the study period.

We are deeply grateful to Mr. Sherin A, Vice Principal & HOD, Department of Pharmaceutical Chemistry, Jamia Salafiya Pharmacy College, Pulikkal, for his encouragement and valuable support throughout our work.

We are grateful to **Dr. Celestin Baboo R V**, Academic Director, Jamia Salafiya Pharmacy College, Pulikkal, for his meticulous guidance and encouragement throughout our work.

We extend our sincere thanks to **Dr. Thasneem C K**, Associate Professor, Jamia Salafiya Pharmacy College, Pulikkal, for timely and cherished help.

It is our great privilege pride and honour in expressing our most cordial and humble thanks to our lovely parents for their valuable guidance, keen interest, inspiration and constant encouragement throughout the course of this investigation. Last but not the least, we extend our heart full thanks to the teaching and non-teaching staffs of Jamia Salafiya Pharmacy College, Pulikkal for their kindly co-operation and moral support.

REFERENCES

- 1. Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. N Engl J Med. 2003 Jun 12;348(24):2431-42
- 2. Ghosh D, Lo J, Egbuta C, Xu F. Recent progress in the structural and functional understanding of aromatase. J Mol Endocrinol. 2018 Jun;60(3):129-39.
- 3. Brueggemeier RW. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol. 2012 Jan;125(1-2):1-3.

- 4. Brodie AMH, Njar VCO. Aromatase inhibitors in breast cancer therapy. Endocr Relat Cancer. 2000 Dec;7(4):227-43.
- 5. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet. 2005 Jan 1;365(9453):60-2.
- 6. Geisler J, Lønning PE. Aromatase inhibition: Translation into a successful therapeutic approach. Clin Cancer Res. 2005 Apr 15;11(8):2809-21.
- 7. Sachdeva H, Mathur J, Guleria A. Indole derivatives as potential anticancer agents: A review. J Chil Chem Soc. 2020 Sep;65(3):4900–7.
- 8. Dhiman A, Sharma R, Singh RK. Target-based anticancer indole derivatives and insight into structure-activity relationship: A mechanistic review update (2018–2021). Acta Pharm Sin B. 2022 Jul;12(7):3006–27.
- 9. Kamal A, Reddy KS, Shaik TB, Reddy VL, Raju RR. Indole derivatives as potential anticancer agents for breast cancer therapy. Eur J Med Chem. 2015 Apr;90:707-18.
- 10. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics and drug-likeness. Sci Rep. 2017 Mar 3;7:42717.
- 11. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002 Jun 6;45(12):2615-23.
- 12. Hong Y, Li H, Yuan YC, Chen S, Lan L. Structure-based screening and discovery of new aromatase inhibitors. Chem Biol Drug Des. 2009 Dec;74(6):571-6.
- 13. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016 May;11(5):905-19.
- 14. Morris GM, Lim-Wilby M, Huey R. Molecular docking using AutoDock. Curr Protoc Bioinformatics. 2008;24(1):8-14.
- 15. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr Comput-Aided Drug Des. 2011;7(2):146-57.
- 16. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2014;1263:243-50.
- 17. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717.
- 18. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: A web server for the prediction of toxicity of compounds. Nucleic Acids Res. 2014 Jul;42(W1):W53-8.
- 19. Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV. ToxAlerts: A web server for prediction of toxicities. J Chem Inf Model. 2012 Aug 27;52(8):2310-6