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Abstract.-In this paper, we study a class of almost vanishing H- curvature. As a consequence of this result,
we prove that a general of Finsler metric called general (a,) metrics and obtain an equation that
characterizes these Finsler metrics (a, 8)- metric has almost vanishing H- curvature if and only if it has
almost vanishing = —curvature.

Introduction:-

One of the finest differential geometry of twentieth century Chern, used to say “Finsler geometry is just
Riemannian geometry without the quadratic restriction on its metrics” [8]. In the study of Finsler geometry,
we often encounter long and complicated calculation. However, when we consider Finsler metrics with
certain  symmetries that would make things much easier. In 1996, Rutz [15] introduced a special class of
Finsler metrics called spherically symmetric which is invariant under rotation. In general relativity, the
solution of vacuum Einstein field equation describing the gravitational field, which is spherically symmetric,
we obtain the Schwarzschild metric in four - dimensional space —time [22]. A Finsler metric F on B™(6) is
called spherically symmetric if F (Ax,By) = F (x,y), for all m x n orthogonal matrix A, x = (x%) €
B™"(8)andy = (yi) € T,B™(5) .Here B™*(§)denotes the Euclidean ball of radius 6 around the origin and
T,.B™(&)denotes the tangent space of B™(§) at the point X. Zhou [23] proved that a Finsler metric F on B™(6)
on is spherically symmetric if and only if there exist a function ¢: [0,5) X R — R such that

Feoy) = Iylg (1x1,52) (1)
Where |. | denotes the Euclidean norm and (, ) denotes the Euclidean Inner product onR™.

The concept of (a, ) — metrics was introduced by Matsumoto in 1972 [10] as a generalization of Randers
metrics, and the Randers metrics was introduced by Randers [14]. The (a, 8) — matrics are of the form F =

ap(s) , where ¢ is a C” positive function and s :g. In 2012, Yu and Zhu [21] introduced a new class of
Finsler metric, called general («, ) — Finsler metrics given by F = a¢(b?,s), where ¢ = ¢(b?,s)isaC”
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positive function and b%: = ||B]|2 . This class of Finsler metrics not only generalize (a, 8) — metrics in a
natural way, but also include spherically symmetric Finsler metrics.

It is interesting family of Finsler metric constructed by Bryant [6, 5, and 4]. Bryant metrics are rectilinear
Finsler metrics on the unit sphere S" flag curvature K = 1 defined by

\/Q(x’x)Q(y'y) - Q(X,y) _ Q(X,y)

Floy) =R 0000 e

Where  Q(X,Y) = xoy, + e®Plx;y, + eP2x,y, + -+ eP"x,y, is a complex quadratic form on
R"*1 for n > 2 with the parameters satisfying 0 < pl < p2 < - < pn< mand x = (xg,..,X,) €
S™MY = (Yo, e Yn) € T S™.

Shen et al. showed that a Randers metric is locally projectively flat and of constant flag curvature if and only
if a is locally projectively flat and g is closed and homothetic with respect to «[3, 16].The Beltrami theorem
says that a Riemannian metric is locally projectively flat if and only if it has a constant sectional curvature.
Thus in this case a and £ have to satisfy the following:

Ri = u(a6f —y'y;),  by; = c(®ay; (1.2)

Where R} denotes the Riemann curvature of the Riemannian metric @ and p is the Ricci constant. Shen [19]
also showed that a general (a,f) — metrics satisfying (1.2) will be projectively flat if and only if ¢
satisfiesss = 2(dp2 — SPp2s).

The spherically symmetric metric F given by (1.1) satisfies the property (1.2) automatically.

The Cartan torsion, the S - curvature, the = — curvature, and the H — curvature are the example of few non —
Riemannian quantities in Finsler geometry as they vanish for Riemannian metrics. The S- curvature
S(x, y)was introduced by Shen [7, 17] and was defined as follows:

() = [t (YO, Y ©)]

t=0
Where 7(x, y) is the distortion of the metric F and Y (¢t) is the geodesic with Y(0) = x and Y =y on M
The non — Riemannian quantity Z — curvature is denoted by Z = Zjdx! and is defined as

g = Sjuy" = Sijp

Where “|” denotes the horizontal covariant derivative and ” Denotes the vertical covariant derivative of F [17].
The Finsler metric F is said to have almost vanishing Z — curvature if

= —(n+1)F? (%)y]_ (1.3)

In 1988, Akbar — Zadeh introduced H- curvature which is closely related to the S- curvature [2]. The H —
curvature H, = H;;dx" dx/ is defined by

H;j = i(Ei.j - 5.). (1.4)
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Also F is said to have almost vanishing H — curvature if

Hyj ="=0F ., (1.5)
Several authors studied the H — curvature of different class of Finsler metrics [11, 13]. In [11], Mo proved that
all spherically symmetric Finsler metrics of almost vanishing H- curvature are of almost vanishing E —
curvature and corresponding one forms are exact, generalizing a result previously only known in the case of
metrics with vanishing H-curvature. In general, it is difficult to find the Riemann curvature tensor for general
(a, B)- metrics. In this paper, we further generalize Mo’s result for general (a, ) — metrics under the
assumption (1.2) and prove the following results.

Theorem 1.1 The general (a, ) — metric F = a¢(b?, s) satisfying (1.2) almost vanishing H- curvature if
and only if

R,
ds

[(n +1)==2+43(b? - sz)% +2(n+ 1)R3] =3+ Dp(p — s¢s), = 6;(x)y’ (1.6)

where R; , R, and R5 are given in (2.6), (2.9), and (2.8), respectively.
As an application of Theorem (1.1), we have the following corollary.

Corollary 1.2. For the general (a, ) — metric F = a¢(b?, s) satisfying (1.2) the H-curvature almost vanishes
if and only if the = — curvature almost vanishes .In this case, the corresponding 1-form 8 is an exact form.

As a consequence of Corollary 1.2, for@ = O, we get the following corollary.

Corollary 1.3.For the general (a, ) — metric F = a¢(b?,s) satisfying (1.2) the H — curvature almost
vanishes if and only if the E — curvature vanishes.

A Finsler metric is said to be R - quadratic if its Riemann curvature Ry is quadratic in-y € T,M . These R-
quadratic Finsler metrics always have vanishing H- curvature [11]. Together with Corollary 1.3, we have the
following.

Corollary 1.4.The E- curvature of a R — quadratic general (a, ) — metric always vanishes.
2. Preliminaries

Let M be an N — dimensional smooth manifold. T,, M Denotes the tangent space of M at x. The tangent bundle
of M is the union of tangent space TM = Ux¢p T, M. we denote the elements of TM by (x, y) where y € T,M
and TM, :=TM \ {0}

Definition 2.1 (see [9])A Finsler metric on M is a functionF: TM — [0, «) satisfying the following conditions:
()FisC”onTM,

(i1) F is a positively 1 - homogeneous on the fibers of tangent bundle TM.

22

2
(iii) The Hessian of — with element g;; = >2-

P Is positive definite on TM,,.

The pair (M, F) is called a Finsler space. The metric F is called the fundamental function and g;; is called the
fundamental tensor.
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The spray coefficient of the Finsler metric F is defined by
Gi _l il{[FZ] m __ [FZ]}
- 4g xmyly
-1
Where 'gU = ('gl])

Definition 2.2A Finsler metric F on a manifold M is called a general (a, 8) — metric, if it can be expressed in
the form

F =a¢p (b?%s)

For some C*function ¢»(b?,s) , where « is a Riemannian metric and S is a 1- form. Also F is called an (a, 8)
— metric, if F can be expressed as F = a¢(s) for some C* function ¢(s) , Riemannian metrica, and 1-
formp.

You and Zhu [21] proved that a general (a, 8) — metric F = a¢ (b?, s) satisfies
¢ —sp; >0, ¢—sps+ (b2 —5)pss >0, for,n=3,
or
¢ —sps + (b2 —s)pss >0, forn=2,
where s and b are arbitrary numbers with|s| < b < b,.

Here ¢, denote the differentiation of ¢ with respect to s.

Definition 2.3
Let the metricbe F = a+ B + ;2 where s = g
2
=a [1 + E + (E) l
a a
=a(l+s+s?)

p(s)=1+s+s?, ps=(1+25), ¢g=2

gij = (1 +s+s2)(1 —sHa;; + 3(1 + 25 + 2s*)b;b; + (1 — 3s® — 4‘53)(bi0(yj + b]'O(yi) — s(1—
3s% — 453)ayiay,-, (2.3)

Where
p=0+s+s>)(1-5%), po=3(1+2s+2s2?), p,=1—3s%2—4s3

Moreover,

det(g;;) = (1 + s+ D))" (1 —s2)"2(1 — s% + 2(b* — s?))det(a;),
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And the inverse metric g%/ is given by

1 {al'j + (_ 1;) blb] _ (1—52)(1+ZS)—25(1+S+52) a_l(biyj n b]yl) n

9ij = Wrsts?)(1-52) —s2+2(b%—s?) (1+5+52)(1-s2)+2(b2—s2)
s(1-s2)+b2(1+25)[1-3s2-4s3] _, j}
(1+5+52)%2(1—352—-4s3) a-yy

(2.4)
Where (aij) = (aij)_l, bi = aijbj,

B 2 (=51 +2s)—25(1 +5+5?)
n= 1—52+2(b2—52)'n°_ (1+s+52)(1—52)+2(b2 —s2)

_ s(1=5*)+b*(1 +25)[1 — 35% — 45°]
= (1+s+52)?2(1—3s2—4s3)

Forany x € M and y € T, M \{0} the Riemann curvature R,, = R,i(;—x®dxkof F is defined by

dG! 902Gt 02G! oGt IG™

RL=2—- m42G™ - :
K dxk 6xm6yky + dxkaym  gym gyk

The Riemann curvature tensor R}' of the general (a, 8) — metric under the assumption (1.2) is given by [20]
R} = R1a®8] — sRyy;b" + Rya®bib' + Rsbjy' + +R,y;y", (2.5)
Where
Ry = p(1+ sP) + C?[Y? = 2s9pe — P + 2x(1 + syp + wiy)] (2.6)

Ry = —u(2x —sxs) + C? [22Y,2 — sPp2s) — xos + 2X(2x =sxs) + uQyxss — x2)]

(2.7)
R3 = _/1(21!} . Slps) + Cz [2(2¢b2 - SlprS) i ll”l}s - lpss + 2)((77[) - Slps + ulpss) - Xs(l + SSI/) + uws)],
(2.8)
Ry = —u[1 = s@p — sp)] + C2[s + sthss — (@ — s;) — 25 (2 — sthpas) — 2x (1 + s +
UI,DS) + SX2 (1 + Sl»b + ull}s) - ZSX(IP - Slpslpss)]’ (29)
with
_ ¢SS_2(¢1_S¢b25) _ ¢S+25¢b2 X 2 _ o2
X = 2msori-sign Y = 29 pls® T 077500
One can observe that here
c2=k—ub?> and R;+R,+5sR;=0 (2.10)
For some constant k.
Therefore, using (2.10) in (2.5), we have
R} = Rl(azsji - yiyi) + Rz(abi—syj)abi+R3(abj—syi)yi' (211)
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THE E — CURVATURE AND H — CURVATURE OF A GENRAL (a, ) —METRIC

In this section, we find the expression of non-Riemannian quantities = and H of general (a, 8)- Finsler
metrics.

The Ricci curvatureRic = R}, and for a general (a, 8)- metrics, Ric can be obtained as -
Ric = R} = Ry (a?6] — y;y’) + Ry(ab; — sy)ab' + Ry(ab; — sy;)y’
= a?[(n— 1R, + (b* — s*)R,] = a*R (3.1)
where
R=m—-1DR; + (b®> —s*)R, (3.2)

By some simple calculations, we can obtain the following results:

da? __ab;-sy;
o7 = 2V Sy =T (33)
and
b2_52
Syiyj‘ =0, Syibj =— (3.4)

Using above the both equation, we have

da? . 0
%Rlc = mazR = aRsb;j + (2R — sR,)yj, (3.5)

R
where R, = o5

Now differentiating (2.11) with respect to y* and using (3.3) and (3.4) and then taking the summation over I,
we have

Zl-zij =[Rys + SRy + (b® = s*)Rys + (n + DR3]ab; + [(1 —n)Ry — sRys — b*R, —
s(b? = s*)Rys — (n + 1)sRz]y; (2.6)
Let
M = R;s + SR, + (b?2 — s?)R,, + (n + 1)R;
and
N =(1—-n)R, —sR;; — b?R, — s(R?* = S?*)R,, — (n + 1)sR;.
Therefore, (3.6) becomes
Zl’z_j = Mab; + Ny;. (3.7)

We will use the following lemma to calculate the E — curvature .
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Lemma 3.1(see [11, 17]).The E — curvature of a Finsler metric F is given by

— 1 dR: 9
Ej = —5(2 Zia—y]i+a—yiRic) (38)
Plugging (3.5) and (3.7) into (3.8), we obtain
gy = —<[(2M + R)ab; + (2N + 2R — sRs)y,] (3.9)

From (3.2), we have
R, = (n— 1)Rys + (b% — s?)R,s — 2sR,.
Then we can have
(2M +R,) = (n+ 1)Rys + 3(b? —s?)R,s + 2(n + 1)R3: = k. (3.10)
And
2N + 2R + sR; = —sk (3.11)

Substituting (3.10) and (3.11) into (3.9), we obtain the following formula for Z as:

5 = — < (ab; — sy)), (3.12)

where K is given as in (3.10).

Now differentiating (3.12) with respect to y* and using (3.3), we have

3 ks k (bjyi —biy; s
gji = —5 7 (abi— sy))(ab; — sy;) — 3 <T +o3ViY 7Sy ),

k__ak

where , $ = o

Therefore, from (1.4), we have

ks sk /y;y; s
Hij = == (ab; - sy))(ab; — sy;) — ra (# - aij) (bjyi + biy;) — =2 (k + sks)yiy;
1 ks
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4. Almost vanishing h- curature
In this section, we prove Theorem 1.1 and Corollary 1.2. Using (3.3), we obtain

a? aij=YiVj

Ayiyj =~ 5 4.2)
3sy;yj—ab;yi—abyi-sa’a;;
Syiyi = : ]a4 . L, 4.2)
Proof of Theorem 1.1. Differentiating (2.2) with respect toyi, we have
C— 2 .
Fui= ayl(l +s+s9)+a(l+ Zs)syl. (4.3)

Differentiating again (4.3) with respect to y* yields

Foiyi = ayiyi(1+s+52) + (ayisy + a5, (1 +25) + 2as,is,; +as,i,j(1+2s)  (4.4)

yiy/l
Plugging (3.3), (4.1), into (4.4) yields
Fliyi= % [(1—s®)a?a;; + 2a®b;b; — 2as(b;y; + byy;) — (1 — 3s2)yy;].

In the view of (1.5), the general (a, ) —metric is of almost vanishing H- curvature if and only if

s
ska;j — ksb;b; + ( iy + biyj) - ?(k + sks)yiy;

6
= 3(n(;1) [(1—s®)a?a;; + 2a®b;b; — 2as(b;y; + bjy;) — (1 — 3s2)yy;]. (4.5)

Now equating the similar coefficients of both sides of (4.5), we have the following equations:

sk =320 (1 - 52), (4.6)
. @ (4.7)
—sks = 601:;1)9 s, (4.8)

sCk + sky) = 20 (1 - 352), (4.9)

At first we show that (4.6) implies (4.7), (4.8), and (4.9).

Suppose (4.6) holds. Since F is a Finsler metric, we have ¢ — s¢g > 0.since s = g,the 1- form 6 can be
expressed by

k
¢ = 3(n+1)(1—52)ﬁ (4.10)
k . . 5
Furthermore, D@00 is independent of y. In fact, it depends only on b-. Let
k b?
3mD-s2) 0 (?) (4.11)
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Therefore, from (4.10) and (4.11), we have

b2
as s = ﬁ, we have
a
9 b2
2=s0(2). (4.13)

By using (4.11) and (4.13), we obtain
ks =[30+ Do (%)@ -52)] —6(m+ 12

Thus we get (4.7). Now multiplying (4.7) by s yields (4.8). Equation (4.9) can be obtained easily from (4.6)
and (4.7).

Now substitute the value of k from (3.10) into (4.6), we get (1.6), which proves the theorem.

Proof of Corollary 1.2. It is sufficient to show that = —curvature almost vanishes if the H- curvature almost
vanishes and in this case corresponding 1- form is exact.

Suppose that a general (a, ) —metric F = a¢ (b2 g) has almost vanishing H- curvature. Then (4.6), (4.11),
and (4.12) hold. By using (4.12), we have

)= (E)5)-oi5om=o

where f(t) := [ o(t) dt. Hence 0 is an exact form. Using (3.3) into (4.3) yields
s2—s
ij =1+ Zs)bj +7yj.

Using (4.12), we get

(2>yf = @ (1 —s?)(ab; — sy;). (4.14)

F2

Now we have

_ k
B =— (ab; —sy;)  (From (3.12))

=—(n+ (1 - 590 (%) (ab; - 7)) -
= —(n+ 1)F?(3) (using (4.14))
y]

Hence we have the proof of Corollary 1.2.
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