

A Review: Investigation Of The Use Of Recycled Asphalt Pavement (RAP) Material In Economical And Eco-Friendly Road Construction And Rehabilitation Projects

¹Vinit Chaudhary, ²Lovepreet Kaur, ³Kamalpreet Kaur

¹Research Scholar, ²Assistant Professor, ³Assistant Professor

¹SRM Institute of Engineering And Technology Burewala (Ambala),

²SRM Institute of Engineering And Technology Burewala (Ambala),

³SRM Institute of Engineering And Technology Burewala (Ambala)

Abstract: A well-developed road network is vital for swift economic growth as it links remote areas, provides access to markets, schools, and hospitals, and promotes trade and investment in underdeveloped regions. Roads facilitate inter-modal transport, connecting airports, railway stations, and ports. India's road network spans approximately 4.2 million kilometers, making it the second-largest in the world after the United States. This extensive network handles around 65% of freight traffic and 87% of passenger traffic. National Highways (NH), covering about 70,934 kilometers or just 2% of the total network, carry nearly 40% of the road traffic. State Highways (SH) and Major District Roads (MDR) make up the secondary road transport system, playing a significant role in the rural economy and industrial growth of the country. The traditional method of applying bituminous surfacing on flexible pavements requires a substantial amount of energy, as it involves producing bituminous binder from crude petroleum, drying aggregates, and producing the bituminous mix at a hot mix plant (HMP). Hot mix recycling involves combining reclaimed asphalt pavement materials with new materials, often along with a recycling agent, to create hot mix asphalt mixtures. Properly designed recycled mixtures can perform as well as or better than new conventional hot mix asphalt mixtures. Recycling or rejuvenating agents are organic materials with chemical and physical characteristics chosen to restore aged asphalt properties to desired specifications. The viscosity characteristics of the combined aged asphalt binder and recycling agent determine the choice of recycling agent, which can also be called softening agents, reclaiming agents, modifiers, fluxing oils, extender oils, and aromatic oils. The grade of Recycling Agent (RA) used depends on the amount and hardness of the asphalt in the aged pavement. Lower viscosity RA types can restore aged asphalts with high viscosity, and vice versa. Laboratory studies on asphalt mixes with RAP material and rejuvenating agents compared their performance to virgin asphalt mixes. Various performance tests, including Retained Stability, Indirect Tensile Strength (ITS), Creep test, beam fatigue test, resilient modulus, and wheel tracking test, have been conducted to compare the performance properties. This paper presents the results of these performance tests on asphalt mixes with RAP and virgin mixes. Laboratory results indicate that asphalt mixes with RAP and rejuvenating agents provide better performance compared to virgin mixes. The paper also recommends using the Accelerated Pavement Testing Facility (APTF) to evaluate the actual field performance of recycled pavements more quickly and effectively.

INTRODUCTION

Reclaimed asphalt is mixed with aggregates and old asphalt to the same degree as before to create new asphalt mixtures. The use of recycled asphalted material as a foundation, filling or basis of the harvested aggregate and bitumen is known as reuse asphalt as a lesser function than in the original use. One of the most widely used waste products (RAP) is asphalt pavement. RAP will guarantee a project's environmentally friendly development while assisting in cost reduction. Therefore, this study aims to provide a thorough review of RAP development to guarantee both economic and environmental viability. Pavement construction, restoration, and repair. In well-thought-out and executed prior studies, RAP can produce outcomes that are on par with or superior to virgin or first mixes. RAP mixes have two advantages: improved density and efficient moisture resistance. This investigation goes farther in demonstrating the benefits of RAP asphalt blends.

Today's asphalt pavements frequently incorporate recycled materials for their foundation coatings. Both urban and rural lane pavements use hot-in-place or cold recycling. Very little of the additives are added to the asphalt. The Federal Highway Administration (FHWA) is anticipated to grind up to 100 million tons of hot mix asphalt annually. The main advantage of RAP is that it eliminates the requirement for asphalt and aggregates in existing flooring. Following the destruction of asphaltated floors, the items are grouped for restoration and repair. High-quality asphalt cement-capped aggregates make up the RAP.

Because of its qualities, RAP can be used as an acceptable alternative to virgin materials, reducing the need for virgin aggregate. RAP is therefore a cost-effective and environmentally friendly substitute for fresh aggregates. RAP frequently reduces the quantity of expensive new asphalt binders used in asphalt paving mixtures. The three primary benefits of recycled asphalt liners are their great performance, affordability, and environmental friendliness. Because of these advantages, the FHWA has set goals to encourage asphalt pavement recycling. The usage of RAP has significant environmental advantages. In addition to saving money, using recycled materials in road construction improves the surface appearance. As disposable materials, sand, rubber, and even glass is currently used in pavement design. Recycled asphalt pavement (RAP) is the most often utilized recycled material in pavement design. According to the National Asphalt Paving Association (NAPA).

RAP was utilized in the United States in 2014 to construct new pavements. Recycled Asphalt Pavement (RAP) generates significant savings for US taxpayers, approximately USD 2.5 billion annually. In 2018 alone, over 100 million tonnes of RAP were reused in the United States, conserving nearly 61.4 million cubic yards of landfill space. Recycled materials like RAP are both cost-effective and environmentally friendly, making them an appealing choice in various regions globally. Recycled Asphalt Pavement (RAP) has been incorporated into asphalt mixtures since 1915, driven by both economic and environmental factors. The Superpave initiative plays a crucial role in advancing RAP, aiming to refine Superpave guidelines. During the Arab oil embargo in the 1970s, the use of RAP became especially appealing due to rising oil prices. Consequently, asphalt paving technologists were compelled to innovate recycling technologies, significantly lowering the costs associated with asphalt paving mixtures. Even today, many techniques developed early on remain in use, especially for routine pavement renovation and construction. The US State Departments utilized RAP for several years before transitioning to the Superpave Mixed Requirement Criteria in the late 1990s. Currently, the Department of Transportation (DOT) frequently incorporates RAP into surface layers, particularly within government programs. Although RAP constitutes only a small portion of Hot Mix Asphalt (HMA) at around 15%, the industry faces challenges due to rising asphalt binder costs between 2006 and 2013 and a shortage of aggregates, leading to increased use of RAP.

For over 30 years, recycling principles have guided the standards for both virgin and RAP mixtures, ensuring RAP mixtures meet or exceed the quality of virgin mixtures. As of 2013, new asphalt blends in the United States had a cumulative RAP content of 12 to 15%. The National Asphalt Pavement Association (NAPA) aimed to raise this to 25% by the end of 2013. For a decade, high-quality RAP mixtures, containing at least 30% RAP, have been well-prepared and processed, with studies from the United States and Canadian provinces demonstrating that they perform on par with mixtures using virgin materials.

A rejuvenator is a recycling agent well-suited for highly oxidized mixtures or those with a high RAP content. Rejuvenating bitumen involves replacing the oils lost during the aging process and rebalancing the bitumen composition to restore its flexibility. However, the use of rejuvenators is discouraged or even prohibited in some US states due to concerns about the rutting properties of recycled mixtures containing these agents.

The percentage of rejuvenator added is crucial for the properties of blended aged asphalt. Proper application ensures improved low-temperature properties without adversely affecting high-temperature properties. Additionally, rejuvenators can penetrate pavement voids, filling them and minimizing binder oxidation. Various commercial rejuvenators and warm mix asphalt (WMA) technologies have been used in previous asphalt recycling works. Oliveira utilized used motor oil, and the results indicated that a 100% recycled mixture outperformed a conventional mixture. This study aims to examine the sustainability of roads constructed and rehabilitated with 100% recycled asphalt materials.

LITERATURE REVIEW

To purpose and defend the research work, a number of research papers are analyzed. Following are the excerpts from the different research work performed by number of academicians and researchers.

Gonzalo Valdés et al (2011) RAP rates between 10% and 30% are commonly used in hot recycled bituminous mixes. According to several studies, with these rates bituminous mixtures perform similarly to conventional mixtures. The aim of this work is to analyse the behaviour of mixtures with large RAP contents (specifically, 40% and 60%) and compare it with that of conventional mixtures. These percentages were selected based on the Spanish General Technical Specifications for Highway Rehabilitation, which define and specify the design requirements of recycled mixtures with RAP contents between 10% and 50%. Therefore, the mixture with 40% RAP is within the specified acceptable range while the mixture with 60% RAP is outside this range. The selected project consisted in rehabilitating the pavement of a section of highway A-140, located in Huesca, Spain. The section was 5.9 km long and the annual average daily traffic was 6980 with 8.5% of heavy vehicles. The top 80 mm of the asphalt mix was milled from the damaged pavement, and an 80 mm asphalt layer of S-20 recycled mixture containing 60% RAP (S20R60) was then laid. On top of this course, a 50 mm intermediate course of S-12 recycled mixture containing 40% RAP (S12R40) was placed. Mechanical properties of laboratory specimens: The analysis of stiffness modulus and indirect tensile strength in laboratory specimens has a behavior closer to that of a high modulus mixture and higher values than that of the conventional mixture with 60/70 penetration grade bitumen. Similar conclusions can be drawn from the analysis of dynamic modulus (fatigue tests).

T. Anil Pradyumna et al (2013) in this experimental the testing work carried out on virgin mixes and mixes with 20 % RAP, Moisture Susceptibility Values obtained for 20 % RAP mixes are higher as compared to the virgin mixes, which clearly indicates that mix made with RAP is less susceptible to moisture damage as compared to the virgin mixes. Higher viscosity of rejuvenated binder ensures greater affinity of binder with aggregates and renders it less prone to stripping. The results further confirm the increased resistance of RAP mixes towards moisture damage. Dynamic creep tests the accumulated permanent strain at the end of 10000 cycles was found to be less for 20 % RAP mixes compared to the

virgin mixes at both the temperatures of 35 C and 45 C. This indicates that mixes with 20 % RAP have more potential to resist permanent deformation compared to the virgin mix. This Behaviour is attributed to the hardened bitumen in RAP that possesses higher bitumen viscosity. Rutting test It can be seen from the figure that the rut depth for virgin mix was obtained as 8.20 mm, whereas for 20 % RAP mix, it was 7.6 mm only after 20,000 passes. This indicates that the rut depth for 20 % RAP mix is less compared to the virgin mix. This substantiates that the addition of RAP improves the rutting resistance of the mix. The RAP containing mixes become stiffer compared to the mix without RAP and thus has better resistance to permanent deformation. Fatigue Characteristics Improvement in the fatigue life of BC mix with addition of RAP was observed as compared to the virgin mix. The average percentage increase in fatigue life of the RAP mixes was found to be 67.2% compared to the virgin mix. Therefore, the increased fatigue life implies that the mix prepared with addition of RAP is more durable than the mix without RAP. Resilient modulus Test, MR the resilient modulus test indicates the improvement in the resilient modulus values of bituminous mix on using RAP. This increase in stiffness values might be attributed to the rejuvenation between virgin and RAP binder. As the stiffness of RAP binder is considerably higher than that of virgin VG-30 binder, the specimens with RAP have higher stiffness value

Arshad Hussain and Qiu Yanjun (2013) et al Effect of Reclaimed Asphalt Pavement on the Properties of Asphalt Binders by in this research conventional and Superpave both methods were used to determine the virgin and residual binder properties. The residual binders obtained from two RAP sources using solvent extraction and abson recovery methods were blended with a virgin binder in different proportions. Ductility, Penetration, dynamic modulus, stiffness and viscosity of the different blends were compared. Viscosity Penetration, and PG grading blending charts were developed based on the corresponding test data. It was concluded that the properties of blends depend on the individual property of the binders. The stiffness of binder is increasing with increasing Reclaimed asphalt pavement binder. This research only pointed to the binder related study so to quantify RAP in asphalt mix design.

S M Mhlongo (2014) et al in this experimental the results of the indirect tensile strength (ITS) and stability tests are presented, as well as the mean of the volumetric properties of the tested specimens. The original asphalt material without additional bitumen i.e. 5.3% bitumen had high relative density (2528 kg/m³) and high air void ratio which is above the specification. The air voids at 5.9% bitumen was slightly higher than the maximum value recommended by specification (3 – 6%). The HMA fabricated with 50/70 bitumen, regardless of the percentage of the bitumen added, exhibited a higher ITS, which is higher than the minimum specified. It can be noticed that the relative density and air voids decreases with the increase in binder content. Revealed that as the bitumen content increases, the workability of the mixtures studied increases and invariably has an influence on the volumetric properties of HMA. The result also demonstrates that the fatigue resistance of the recycled mixtures appears to increases as the bitumen content increases while the bearing capacity decreases. The results obtained in the present study have shown that totally recycled pavement mixtures may be used for wearing course. As shown from ITS, fatigue and volumetric results that the use of 100% RAP with addition of some percentage of bitumen is a very promising solution in terms of economic and environmental factors

Ahmed Ebrahim Abu El Maaty et al (2015) presented the experimental study Characterization of Recycled Asphalt Pavement (RAP) for use in Flexible Pavement the result showed. The mechanical properties include stability; flow and Marshall Quotient are shown where the Marshall mix design of HMA containing RAP and the corresponding optimum binder content (OBC) are illustrated. OBC for each RAP mixture are 4.5%, 4.58%, 4.13%, 4.5% and 5.5% for RAP contents 0.0%, 25%, 50%, 75% and 100% respectively. The results which are average of three samples show that the OBC varies due to the percentage of (RAP) where the lowest OBC value is provided at 50% RAP whereas, the highest value is obtained at 100% RAP. OBC increases by about 2% when RAP content increases from 0% to 25% and by about 22% when RAP content increases from 0% to 100%. The results shown in illustrate that the

percentage of RAP plays a significant role in mechanical properties of bituminous mixtures where 100% RAP mixture achieves the maximum stability. For flow value it decreases with increasing the RAP ratio where all flow values are located within the required specifications range (from 2 to 4 mm according to Egyptian Code) except the mixture contains 100% RAP at 4.13 % bitumen content. As shown the Marshall quotient (MQ) of control mixture slightly increases at 3.5 % to 4% bitumen content, after that it slightly decreases at bitumen content up to 5.5%, while MQ of RAP mixtures increases then decreases significantly at a sharp rate by increasing the bitumen content. Based on the Marshall test results discussed previously, an optimum RAP content of 100% is recommended for obtaining the highest stability and Marshall Quotient.

The variations of mechanical properties of RAP mixtures at the optimum bitumen content are shown. It is observed that the addition of 100% RAP has a great impact on the stiffness of the mixture. It can be concluded that there is a significant improvement in the stiffness characteristics of HMA after adding RAP.

P Akhilesh Rao et al (2019) Form the study of literature reviews and preliminary study of the topic there are some remarks are concluded Overall from this study it was concluded that RAP 35% showed results similar to that of virgin bituminous mix and its performance was best amongst other RAP percentages. Also, with the use of RAP 35% the cost of project was reduced by 50 %. The optimum asphalt content is decreased as the Reclaimed asphalt pavement percent increase. Stability of mixes decreases as the recycled aggregate percent increases. This may due to the fatigue of such material by aging. Increasing the recycling aggregate percent in the asphalt mixes decreases the air voids percent which may leads to asphalt bleeding. Increasing of RAP material percent increases the loss of stability of asphalt mix. However, the increasing in loss of stability of asphalt mix is more significant when the percent of Reclaimed asphalt pavement is higher than 30 %. Based on the study analysis and conclusions, the following recommendations are obtained: The RAP is recommended to use in the hot asphalt mixes to save the virgin aggregate for longer time and also to improve the environment. A percent of Reclaimed asphalt pavement may be 30% is suitable to be used in pavement

Dudhwala Rinkal et al (2021) The results show that each method/technology addresses RAP materials on its own, resulting in a different proportion and content of the proposed components. This enables the problem of waste disposal from RAP to be addressed easily and adverse environmental consequences to be avoided by the use of the RAP materials in light paving construction. A greater proportion of RAP goods have been used today, resulting in considerable costs and material savings, to save capital and natural resources. The addition of RAP to HMA reduced life expectancy. In addition, the lower racking tolerance of HMA-RAP mixtures, with higher RAP percentages. This is the explanation for the effects of the two tests, which are due to the ageing RAP-binding effect on the mixed virgin RAP binder. In previous experiments, higher RAP content was found to increase permeability, thereby reducing the shear strength. The degeneration of the floor and solid modulus in RAP materials were also greater.

In addition, the greater RAP percentage decreases shear intensity according to another study. RAP may minimize a substance's bearing capacity unlike virgin aggregates. An improving RAP degeneration and a reduction in CBR value led to an increased RAP. It is also recommended to pair RAP with virgin aggregates such that the weight of the RAP should not exceed 50 percent. WMA-high RAP mixes have less rutting and moisture resistance relative to HMA-high RAP mixtures. Strong RAP-WMA mixtures have greater fatigue resistance, regardless of the surface of pavement or WMA technology used, than low RAP-WMA mixtures. Rutting can therefore also be a problem with high RAP-WMA mixtures, though exhaustion may not be a problem

Arindam Karmakar et al (2023) in this study it was observed that the physical properties improve. The optimum moisture content was seen to be decreasing and maximum dry density increasing with increase of course materials. The results of the compaction test for different mixture gradations. It is also found that MDD and OMC increase with an increase in cement content. This may be because of better packing of RAP material with cement and the higher specific gravity of cement. Highest MDD was found to be 2.516 gm/cc for gradation 2. UCS of the samples were seen to be increasing with better grading of the materials. Between the UCS and cement content of various mixes, a linear relationship is found. The samples before and after testing and the results for UCS test for different mixes after 7 days of curing. Gradation 2 has shown better UCS value than gradation 1 and 3 may be because of higher MDD of the mixture. Gradation 4 found to satisfy the minimum 7 days UCS value of 4.5 MPa as specified by IRC:37 (2018) with 5% cement content. This indicates that along with aggregates right quantities of fines are also very important for proper filling of the voids in the sample. Whereas cement acted as the binder providing strength and stiffness to the mixture. This is due to the presence of mortar and improved interlocking between RAP material and cement.

Long-term performance of treated RAP materials is studied through durability test under extreme moisture changes, which are likely to occur during the pavement's service life. The study assessed the average mass loss as a percentage after 12 cycles of wetting and drying, offering valuable insights into the durability of the treated mix under various environmental conditions. The results demonstrated that the average mass loss of the optimized DSFC blend was measured at 3.2%, well below the permissible limit of 14% as given in IRC:37 (2018). Result shows the sample before and after durability test. This finding indicates excellent longevity for the optimized blend, making it highly durable and suitable for long-term usage on pavements.

In summary, this study emphasizes the promising potential of base course layers of flexible pavements that include existing damaged pavement material using FDR technology. In the field of infrastructure development, careful blend optimization and thorough experimentation is found to enhance the use of industrial waste and lower the consumption of natural aggregates while also improving performance and environmental stewardship.

MATERIAL AND METHODOLOGY

Material used

1. Cement: This study used Ordinary Portland cement (OPC) of 43 grades (Ultratech brand).
Test of Ordinary Portland cement:-
 - a) Fineness –
 - b) Specific gravity –
 - c) Consistency –
 - d) Initial and Final setting time –
2. Water: The correct amount of water in RAP mix. In present research, the water used in all mixes was local tap water.
3. Milling Material (RAP): It was essential to conduct tests on the materials to ensure their suitability for use in bituminous mixes. This section outlines the various tests performed on both aggregates and bitumen (virgin and recovered). Additionally, it provides details on the rejuvenating agent and its optimization process.

Test of Milling Material: -

- a) Sieve Analysis (Grading) –
- b) Aggregate Impact Value –
- c) Elongation and Flakiness –
- d) Specific Gravity –
- e) Water Absorption –
- f) Stripping value –
- g) Moisture Content
- h) Binder Content

4. Fine Aggregate (Stone Dust): - The characteristics and performance of Stone dust, often referred to as rock dust, is a byproduct of crushing stones. It consists of finely ground stone particles and has various uses in construction.

Test of Stone dust: -

- a) Sieve Analysis –
- b) Water Absorption –
- c) Specific Gravity –

5. Bitumen: - Bitumen is a crucial component in asphalt, which is widely used for paving roads, highways, and runways. Its binding properties help hold the aggregate particles together, providing a smooth and durable surface. Bitumen is a sticky, black, and highly viscous liquid or semi-solid form of petroleum.

Test of Bitumen: -

- a) Penetration –
- b) Softening Point-
- c) Ductility-
- d) Specific Gravity-
- e) Viscosity

RAP Mix & Material Testing

There are two type of process to prepare a mix. Asphalt materials can be recycled using either hot or cold processes. Hot-in-place recycling specifically applies to the hot process, while cold-free recycling encompasses all other recycling methods (IRC: SP:120-2015). The existing surface is heated, causing the bituminous material to soften, melt, or become scarified. The recycled material is then reutilized. Cold process recycling involves cooling the paving material, which is then cracked or fractured. The recycled materials must be compressed and stored in large chunks. Before storage, these materials can be separated and divided into different size fractions. Cold recovery methods may include the ripening and sulfurizing of non-bituminous bases or subbases (IRC: SP:120-2015).

Recycling technology can be categorized into two main types:

1. In- Place
2. In- Plant

The Following are the process of Reclaimed Asphalt process (RAP) Mixing.

1. Hot in-place recycling (HIR)
2. Cold in-place recycling (CIR)
3. Hot in-plant recycling (HIP)
4. Cold in-plant recycling (CIP)
5. Full depth reclamation (FDR)

The various tests were conducted on material used to prepare the RAP mix in accordance with the MoRTH, American Standard for Testing of Materials (ASTM) and Indian standards (IS). The following tests were performed: -

Sieve Analysis: Sieve analysis helps to determine the particle size distribution of the coarse and fine aggregates. This is done by sieving the aggregates as per IS and MoRTH.

Water Absorption: This test helps to determine the water absorption of RAP Mix as per IS: 2386 (Part III) – 1963. For this test a sample not less than 2000g was used.

Moisture Susceptibility: A significant durability concern related to moisture damage is known as loss of adhesion. Stripping occurs when water or water vapor infiltrates between the bitumen film and aggregates, disrupting the adhesive bond between them. To evaluate this, laboratory tests are conducted. The testing principle involves determining the strength ratio of the conditioned specimen compared to the controlled or unconditioned specimen, prepared according to mix design, and comparing it with the minimum acceptable strength ratio specified in the standards.

Binder Content: The binder content in bitumen roads is crucial for ensuring the durability and performance of the pavement. The binder, typically bitumen, acts as the glue that holds the aggregates (such as crushed stone, sand, and gravel) together in the asphalt mixture. The optimal binder content ensures that the pavement can withstand traffic loads, temperature variations, and other environmental factors.

Optimum Fluid Content: The **optimum fluid content** in bitumen roads, particularly in cold in-place recycling, is crucial for achieving the desired performance and durability of the pavement. This involves determining the right amount of bitumen emulsion or other binding agents to ensure the mix is workable, strong, and durable.

Dry Density: The **dry density** of a Reclaimed Asphalt Pavement (RAP) mix is a critical factor in determining its quality and performance. It refers to the mass of the dry aggregate particles per unit volume of the mix, excluding any moisture content. Achieving the optimum dry density ensures that the RAP mix has sufficient strength and stability for use in pavement construction.

Soaked and Unsoaked Stability: The **soaked and Unsoaked stability** of a Reclaimed Asphalt Pavement (RAP) mix refers to its strength and performance under different moisture conditions:

Unsoaked Stability: This measures the strength of the RAP mix when it is dry or has not been exposed to water. It indicates the mix's inherent strength and stability without the influence of moisture.

Soaked Stability: This measures the strength of the RAP mix after it has been soaked in water for a specified period. It assesses how well the mix retains its strength and stability when subjected to moisture, which is crucial for real-world performance where the pavement may be exposed to rain or groundwater.

Testing both soaked and Unsoaked stability helps ensure that the RAP mix will perform well under various conditions, maintaining its durability and structural integrity over time.

Flow Value: The **flow value** in a Reclaimed Asphalt Pavement (RAP) mix refers to the deformation or flow of the mix under loading during the Marshall Stability Test. It measures the ability of the mix to withstand deformation under stress, which is crucial for determining its performance and durability.

Stability loss: **Stability loss** in a Reclaimed Asphalt Pavement (RAP) mix refers to the reduction in strength and performance of the mix over time, especially when subjected to repeated loading and environmental conditions. This can be influenced by factors such as the aging of the binder, the quality of the recycled materials, and the mix design

OBJECTIVES

1. Review previous research Reclaimed Asphalt process (RAP) on material and structural behavior of pavement.
2. Review previous experimental research on the impact behavior of pavement layer and use of Reclaimed Asphalt process (RAP).
3. Review the numerical studies conducted by previous researchers to analyses the impact behavior of Reclaimed Asphalt process (RAP).
4. This reduction leads to savings in material costs because part of the virgin binders is substituted with Reclaimed Asphalt Pavement (RAP), thereby lowering delivery expenses.
5. Reduce Costs: By reusing existing materials, the need for new aggregates and bitumen is minimized, leading to significant cost savings.
6. Environmental Benefits: Recycling asphalt reduces the demand for virgin materials, conserves natural resources, and decreases CO2 emissions.
7. Enhance Durability: Properly processed RAP can yield mixtures with performance comparable to or better than those made with virgin materials.
8. Minimize Waste: Utilizing RAP helps reduce the amount of construction waste sent to landfills.
9. Promote Sustainability: Incorporating recycled materials supports sustainable construction practices and reduces the environmental impact of road construction
10. Reduced use of fuel.
11. The effect of Reclaimed Asphalt process (RAP) on Marshal Stability.
12. From present investigation we find the behavior of pavement layer with Reclaimed Asphalt process (RAP).
13. The effect of Reclaimed Asphalt process (RAP) is to determine the increase in tensile strength of Mix.

FUTURE SCOPE

The future scope of Reclaimed Asphalt Pavement (RAP) is promising and involves several key areas of focus:

1. **Technological Advancements:** Continued research and development to improve the processing, mixing, and application techniques for RAP. Innovations in recycling technology will enhance the quality and performance of RAP mixtures.
2. **Increased Usage:** Expanding the use of RAP in road construction projects, aiming for higher percentages of recycled materials in asphalt mixtures. This will contribute to sustainability and cost savings.
3. **Environmental Impact:** Reducing the environmental footprint of road construction by minimizing the use of virgin materials and decreasing CO₂ emissions.
4. **Global Adoption:** Encouraging more countries to adopt RAP in their road construction practices, supported by appropriate guidelines and standards.
5. **Life Cycle Assessment:** Conducting comprehensive life cycle assessments to evaluate the long-term performance and environmental benefits of using RAP.
6. **Sustainable Practices:** Promoting sustainable construction practices and integrating RAP into the circular economy to reduce waste and conserve resources
7. **Economical:** Due to reuse of Aggregate it will be economical.

References:

1. Gonzalo Valdes; Felix Perez-Jimenez; Rodrigo Miro; Adriana Martinez. Experimental Study Of Recycled Asphalt Mixtures With High Percentages Of Reclaimed Asphalt Pavement (RAP). Elsevier Journal Issue 3, March 2011, pages 1289-1297
2. T.Anil Pradyumna, Abhishek Mittal, Dr.P.K.Jain. Characterization of Reclaimed Asphalt Pavement (RAP) for Use in Bituminous Road Construction. Procedia - Social and Behavioral Sciences 104 (2013) 1149 – 1157
3. Ahmed Ebrahim Abu El-Maaty, Abdulla Ibrahim Elmohr, Characterization of Recycled Asphalt Pavement (RAP) for Use in Flexible Pavement. American Journal of Engineering and Applied Sciences 2015, Volume Number: Page Numbers 1-13
4. P Akhilesh Rao, Prof. Vinay Deulkar, Reclaimed Asphalt Pavement Using Ceramic Waste, International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES), Volume 5, Issue 03, March-2019
5. Dudhwala Rinkal, Dr. L.B. Zala, Amit A. Amin, RECLAIMED ASPHALT PAVEMENT (RAP) - A REVIEW, International Research Journal of Modernization in Engineering Technology and Science, Volume:03/Issue:05/May-2021
6. Arindam Karmakar, Arif Iqbal, Supriya Pal, Kamal Bhattacharya, Assessment of Cement-Modified Reclaimed Asphalt Pavement Material as A Promising Base Course Material for Flexible Pavements in India. Conference Paper, Dec 2023
7. ASTM D1856 (2004). Standard Test Method for Recovery of Asphalt from Solution by Abson Method, American Society for Testing and Materials, Annual Book of ASTM Standards, Volume 04.03.
8. ASTM D4402 (2002), Standard test Method for viscosity determinations of asphalts at elevated temperatures using a rotational viscometer. American Society for Testing and Materials, Annual Book of ASTM Standards, Volume 04.03.

9. ASTM D4867 (2004) Standard Test Method for Effect of Moisture on Asphalt Concrete paving Mixtures, American Society for Testing and Materials, Annual Book of ASTM Standards, Volume 04.03
10. ASTM D 1559 1989 “Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus”
11. ASTM D 6931 “Indirect Tensile (IDT) Strength for bituminous mixtures” American society for testing and materials, (2007).
12. ASTM D 792 “Standard test method for density and specific gravity of plastic by displacement” American society for testing and materials, (2008).
13. ASTM D7329 (2012) Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures. American Society for Testing and Materials, Annual Book of ASTM Standards, Volume 04.03.
14. IS:1202 (1978) Methods for Testing Tar & Bituminous Materials: Determination of Specific Gravity Penetration, Bureau of Indian Standards, New Delhi.
15. IS:1203 (1978) Methods for Testing Tar & Bituminous Materials: Determination of Penetration, Bureau of Indian Standards, New Delhi.
16. IS:1205 (1978), Methods for Testing Tar & Bituminous Materials: Determination of Softening Point, Bureau of Indian Standards, New Delhi.
17. IS:2386 (Part 1) (Reaffirmed 2002), Methods of Test for Aggregates for Concrete Particle Size and Shape, Bureau of Indian Standards, New Delhi.
18. IS:2386 (Part 4) (Reaffirmed 2002), Methods of Test for Aggregates for Concrete Mechanical Properties, Bureau of Indian Standards, New Delhi.
19. IS:6241 (Reaffirmed 2003), Method of Test for Determination of Stripping Value of Road Aggregates, Bureau of Indian Standards, New Delhi.
20. Mix design methods for asphalt concrete and other hot-mix types. The Asphalt Institute Manual Series No.2 (MS-2), Sixth Edition, Asphalt Institute, Kentucky, USA 1997.
21. MoRT&H, (2001), Specifications for Road and Bridges Works, Fourth Revision, Ministry of Road Transport and Highways, Indian Roads Congress, New Delhi.