

Review On Ai Scribe For Medical Transcription

¹Prof. Mrs. U.A.S. Gani, ²Himanshu Shiwane, ³Aditya Prajapati, ⁴Anshuman Raut, ⁵Ceazane Sheikh

¹Professor, ²Student, ³Student, ⁴Student, ⁵Student

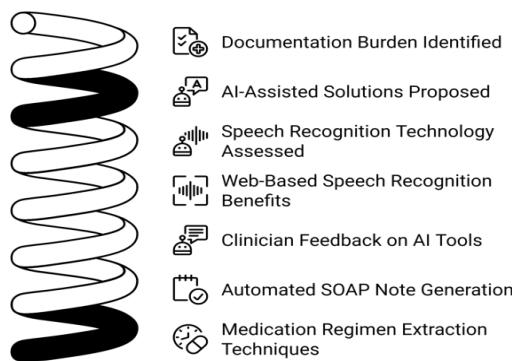
¹Department of Artificial Intelligence & Data Science

Priyadarshini College of Engineering, Nagpur, India

Abstract : Artificial Intelligence (AI) scribes have revolutionized medical transcription, addressing challenges in clinical documentation by leveraging natural language processing (NLP) and speech recognition technologies. These systems alleviate administrative burdens on clinicians by automating transcription and integration into electronic health records (EHRs). This review explores state-of-the-art advancements in AI scribe technologies, their applications, and challenges, focusing on accuracy, efficiency, and privacy. By comparing methodologies and outcome in recent studies, including Sporo AI and others, the paper highlights the transformative potential of AI scribes while underscoring the critical need for regulatory compliance, contextual understanding, and enhanced usability.

Introduction :

Clinical documentation plays a pivotal role in healthcare by providing a record of patient interactions, diagnoses, and treatment plans. This documentation is vital for continuity of care, legal purposes, and quality assurance. However, the administrative burden associated with clinical documentation is a major contributor to burnout among healthcare providers [1].


To address these issues, AI-powered scribes have emerged as transformative tools. These systems automate transcription by converting real-time or recorded physician-patient conversations into structured medical notes [2]. Technologies such as Sporo AI and OpenAI's GPT models are at the forefront, offering high accuracy and scalability [8].

AI scribes have diverse applications in healthcare, enhancing their value as transformative tools. Key applications include:

1. Real-time Transcription: AI scribes automate the creation of clinical notes during consultations, allowing physicians to focus on patient care [4].
2. Integration with EHRs: Structured data integration into EHRs reduces manual entry errors and ensures uniform documentation [8].
3. Clinical Decision Support: By analyzing transcriptions, AI scribes provide real-time alerts and insights that support diagnosis and treatment decisions [6].

4. Telemedicine: AI scribes enhance telehealth by transcribing virtual consultations and ensuring accurate records [7].

Case studies comparing Sporo AI and GPT- 4o mini highlight the potential of AI scribes. Sporo AI achieved higher precision and recall scores, demonstrating its ability to capture clinically relevant details accurately [8].

Despite the progress, AI scribes face challenges. The variability and complexity of medical language pose difficulties in achieving consistent transcription accuracy. Errors or omissions can compromise patient safety, highlighting the importance of contextual understanding [3]. Additionally, compliance with privacy regulations like HIPAA is crucial to protect sensitive patient data [4]. Adoption barriers, including clinicians' resistance to new technology and usability issues, further complicate implementation [5]. By integrating clinician feedback into model development and refining algorithms to handle diverse medical contexts, AI scribes continue to evolve. This review delves into the methodologies and applications of AI scribes, addressing challenges and highlighting their potential impact on healthcare delivery.

Literature survey or related work :

1. Enhancing Speech Recognition Models for Medical Use

References: [2], [3]

Idea: Build custom speech recognition models trained on domain-specific datasets, focusing on medical jargon and accents. Address challenges like misinterpretation of overlapping speech during multi-party conversations (e.g., doctor, patient, nurse).

Approach: Use tools like Mozilla Deep- Speech or Whisper to fine-tune speech recognition systems on publicly available medical datasets like MIMIC-III. Evaluate improvements in word error rate (WER) and transcription speed.

Outcome: Enhanced transcription accuracy for real-world medical scenarios.

2. Improving Contextual Understanding in Transcriptions

References: [3], [8]

Idea: Enhance the contextual understanding of medical language by addressing ambiguities and variability in terminology.

Approach: Incorporate multi-modal learning by combining audio, text, and metadata (e.g., patient history, vitals). Develop embeddings specific to medical language using frameworks like Bio-BERT or Clinical-BERT.

Outcome: Models that can accurately capture context and nuances, minimizing critical transcription errors.

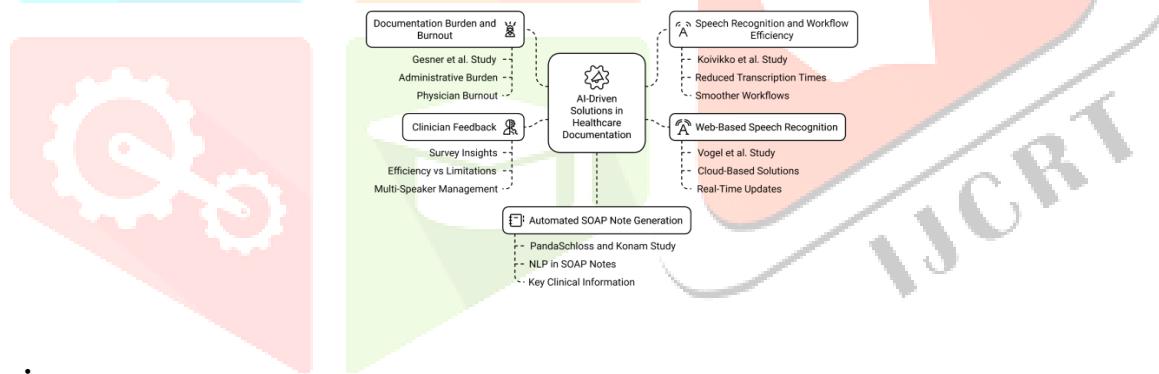
Dynamic Adaptation to Medical Specialties

References: [3], [6]

Idea: Develop systems that adapt transcription outputs based on the specialty of the clinician (e.g., cardiology, oncology).

Approach: Create domain-specific models trained on datasets annotated by specialty.

3. Exploring Voice Biomarkers for Early Diagnosis

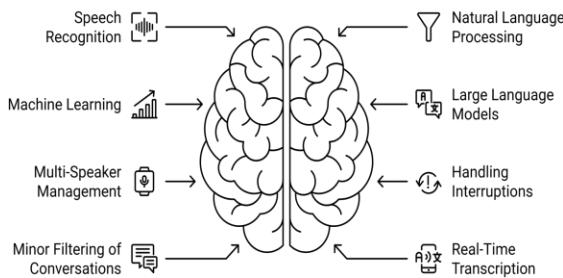

References: [6], [7]

Idea: Extend transcription models to analyze voice biomarkers for early diagnosis of conditions like Parkinson's disease or depression.

Approach: Use existing speech recognition pipelines to extract features like pitch, tone, and pauses. Train classification models to detect biomarkers correlated with specific health conditions.

Outcome: Dual-purpose systems that enhance transcription and support early diagnosis. Test the adaptability of a single base model using transfer learning techniques.

Outcome: Tailored transcription systems that improve note accuracy for specialized fields.



Conclusion:

AI scribes represent a significant advancement in medical transcription, offering solutions to longstanding challenges in clinical documentation. By leveraging advanced NLP, machine learning, and privacy-compliant frameworks, these systems can enhance clinician workflows and improve patient outcomes.

However, their success depends on continued research, clinician collaboration, and adherence to ethical standards.

Future work should focus on refining algorithms for greater accuracy, expanding datasets to include diverse medical scenarios, and addressing user adoption barriers. With these efforts, AI scribes could become indispensable tools in modern healthcare.

References :

[1] E. Gesner, P. Gazarian, and P. Dykes, "The burden and burnout in documenting patient care: an integrative literature review," MEDINFO 2019: Health and Wellbeing e Networks for All, pp. 1194– 1198, 2019.

[2] M. P. Koivikko, T. Kauppinen, and J. Ahovuo, "Improvement of report workflow and productivity using speech recognition—a follow-up study," Journal of Digital Imaging, vol. 21, no. 4, pp. 378–382, 2008.

[3] M. Vogel, W. Kaisers, R. Wassmuth, E. Mayatepek et al., "Analysis of documentation speed using web-based medical speech recognition technology: randomized controlled trial," Journal of Medical Internet Research, vol. 17, no. 11, p. e5072, 2015.

[4] [4]F. R. Goss, S. V. Blackley, C. A. Ortega, L. T. Kowalski, A. B. Landman, C.-T. Lin, M. Meteer, S. Bakes, S. C. Gradwohl, D. W. Bates et al., "A clinician survey of using speech recognition for clinical documentation in the electronic health record," International Journal of Medical Informatics, vol. 130, p. 103938, 2019.

[5] B. Schloss and S. Konam, "Towards an automated SOAP note: classifying utterances from medical conversations," in Machine Learning for Healthcare Conference. PMLR, 2020, pp. 610–631.

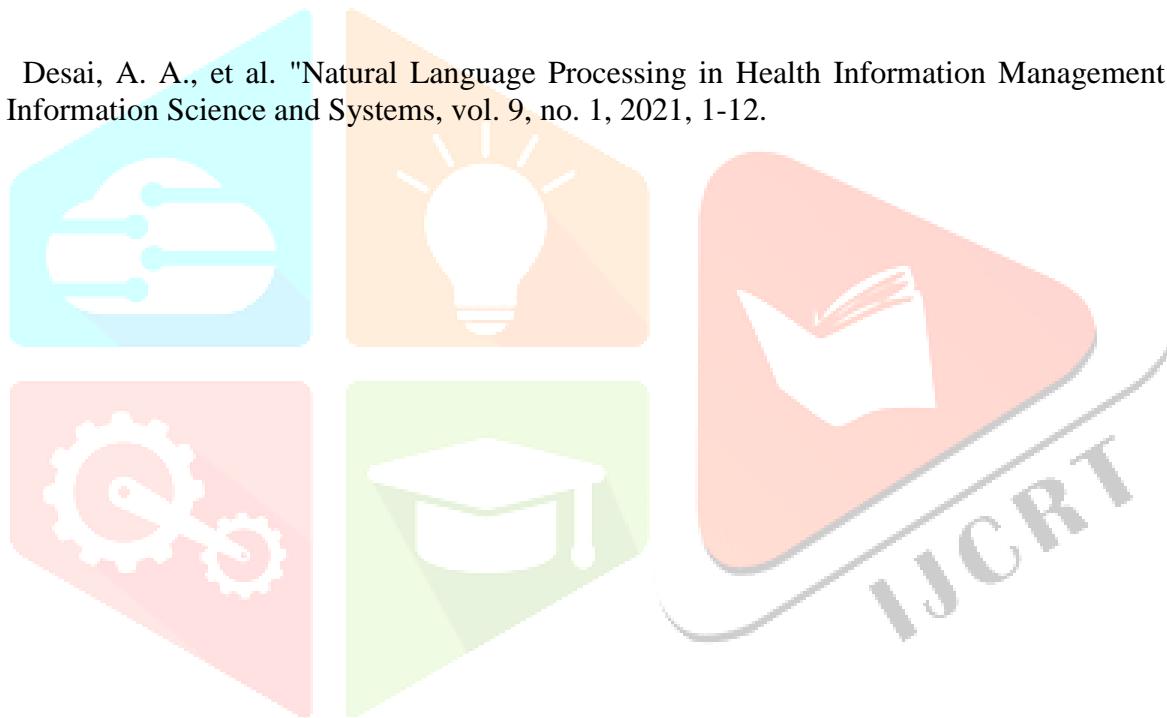
[6] S. P. Selvaraj and S. Konam, "Medication regimen extraction from clinical conversations," CoRR, vol. abs/1912.04961, 2019. [Online]. Available: arXiv:1912.04961v3 .

[7] D. Patel, S. Konam, and S. P. Selvaraj, "Weakly supervised medication regimen extraction from medical conversations," arXiv preprint arXiv:2010.05317, 2020.

[8] Chanseo Lee, Sonu Kumar, Kimon A. Vogt, Sam Meraj, "Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini,". [Online]. Available: arXiv:2410.15528v1 .

[9] Kahn, M. G., et al. "Regulatory Considerations for AI in Healthcare: Balancing Innovation and Safety." Journal of the American Medical Association, vol. 323, no. 5, 2020, pp. 409-410.

[10] Zhang, Y., et al. "Comparative Effectiveness of Speech Recognition vs. Traditional Transcription Methods in Clinical Settings." American Journal of Managed Care, vol. 26, no. 7, 2020, pp. e213-e220.


[11] Blumenthal, D., et al. "The Promise of AI in Medical Documentation: Opportunities and Challenges." *Health Affairs*, vol. 39, no. 3, 2020, pp. 446-453.

[12] He, J., et al. "Evaluating the Impact of AI on Electronic Health Records Efficiency: A Systematic Review." *BMC Medical Informatics and Decision Making*, vol. 20, no. 1, 2020, 4.

[13] Bae, J. H., et al. "Optimizing Clinical Transcription Workflows with AI Tools: A Case Study." *International Journal of Health Services*, vol. 51, no. 2, 2021, pp. 258-267.

[14] Jha, S., et al. "Artificial Intelligence for Patient Care: Benefits and Challenges." *Journal of Patient Safety*, vol. 16, no. 4, 2020, e221-e227.

[15] Desai, A. A., et al. "Natural Language Processing in Health Information Management: A Review." *Health Information Science and Systems*, vol. 9, no. 1, 2021, 1-12.

