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Abstract: This paper provides a thorough introduction to the sandwich approach, a potent method that uses 

simplicial subdivision to compute Brouwer fixed points and solve related issues, such as determining broad 

economic equilibria. We give a self-contained introduction to the basic ideas of simplicial subdivision and 

sandwiching. We explore the nature of the algorithm's approximation capabilities and demonstrate the 

convergence features that are built into the method through thorough analysis. We also provide a brief 

overview of the algorithm's mechanics and showcase a small number of computational outcomes to 

highlight its usefulness. 
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I. INTRODUCTION 

The sandwich method stands out as a versatile technique employed for computing Brouwer fixed points and 

addressing associated challenges, notably including the determination of general economic equilibria. 

Belonging to a class of algorithms known as pivotal methods, it shares a striking combinatorial resemblance 

with the pivot step of the simplex method utilized in solving linear programs. This paper explores the 

foundational principles and practical implications of the sandwich method, shedding light on its 

effectiveness in navigating complex mathematical landscapes and facilitating solutions to diverse problems 

in economics and beyond. 

     In 1964, Lemke and Howson [2] uncovered an algorithm applying pivotal methods to bimatrix games. 

Shortly after, Scarf [4,6] introduced algorithms for approximating Brouwer fixed points and economic 

equilibria in 1967. Following suit, Kuhn [7] proposed a similar algorithm leveraging simplicial subdivision 

in 1968. While these early algorithms provided quick but crude approximate solutions, achieving high 

accuracy at reasonable computational expense remained elusive. 

    Two different approaches evolved to deal with this problem. First, the homotopy technique was 

discovered in 1971 by Eaves [8], and it was later improved upon by Eaves and Saigal [9]. Second, Merrill 

[10,11] invented a different strategy that year known as sandwiching or restart approaches. MacKinnon 

independently rediscovered this method in 1972, and it was later determined that the sandwich method was 

this method applied to Kuhn's 1968 algorithm. Notably, the same idea was later used by Fisher, Gould, and 

Tolle [12] in their research. The sandwich method is versatile, applicable to various problem types. In the 
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version detailed here, these problems are situated on a unit (𝑛 − 1) dimensional simplex 𝑆(𝑛−1), comprising 

all real vectors  𝑥 = (𝑥1, … , 𝑥𝑛) with nonnegative components summing to one. In the first class of 

applications, a continuous function 𝑓 is provided, which maps the simplex into itself. Brouwer's fixed-point 

theorem guarantees the existence of at least one point 𝑥̅ such that 𝑓(𝑥̅) = 𝑥.̅ The sandwich method is 

employed to find approximate solutions to this equation, making it applicable to any problem formulable as 

a Brouwer fixed-point problem. 

     A second class of applications pertains to the classical general equilibrium model of an exchange 

economy, extensively discussed by Scarf [6,13] and Arrow and Hahn [14]. Here, 𝑥1, … , 𝑥𝑛 represent the 

prices of 𝑛 goods exchanged in the economy. The demands and supplies of each good are determined by 

these prices, and the disparity between demand and supply for good 𝑖 is termed the excess demand, denoted 

by 𝑔𝑖(𝑥). These excess demand functions are assumed to be continuous and homogeneous of degree zero 

for nonnegative prices that are not all zero. Additionally, they are assumed to adhere to Walras' law, which 

stipulates that total expenditures must equal total revenues, expressed as  ∑ 𝑥𝑖𝑔𝑖(𝑥) = 0.𝑖  

   An equilibrium is defined as a set of prices 𝑥̅ where the excess demand for every good is non positive, i.e., 

𝑔 𝑖
(𝑥̅) ≤ 0 for all 𝑖. Walras' law further implies that 𝑥̅𝑖 = 0 whenever 𝑔𝑖(𝑥̅) < 0, ensuring 𝑥̅𝑖𝑔𝑖(𝑥̅) = 0 for 

all 𝑖. Price vectors satisfying these conditions can be obtained using the sandwich method in two different 

ways. They can be transformed into Brouwer fixed-point problems, as demonstrated in Scarf [6], or solved 

directly, as outlined in MacKinnon [15]. 

Basic Definitions: 

Definition of an (n-1)-dimensional simplex: It's defined as a set of points expressible as convex 

combinations of n affinely independent vectors. In the case of the unit simplex, its vertices are the unit 

vectors in n-space.  

Faces of a simplex: A simplex has n faces, each formed by dropping one of its n vertices. These faces are 

(n −  2) − simplices. 

Subdivision of a simplex: Any simplex can be subdivided into smaller simplices such that each part is itself 

a simplex. This subdivision ensures that if any two subsimplices share a common boundary of dimension 

(n −  2),  that boundary is a face of both. 

Regular subdivision method: Described as a method of subdividing the unit simplex. In this method, every 

vertex of a sub simplex in the subdivision can be expressed as (
X1

D
,

X2

D
, … ,

Xn

D
),  where D is the degree of the 

subdivision, and X1, X2, … , Xn are nonnegative integers summing to D. 

 Mesh of the subdivision: As D tends to infinity, the distance between any two points in a single sub 

simplex tends to zero. The mesh of the subdivision is not greater than 
√𝑛

𝐷
 , which approaches zero as D 

increases. 

 Proper labeling: An assignment of integer labels to the vertices of the subdivision is termed proper if a 

vertex 𝑥 never gets label 𝑘 if 𝑥𝑘 = 0. This ensures that each vertex receives a label between 1 and n.  

1 Figure Explanation and Path Analysis  

Figure 1 illustrates the 6-subdivision of 𝑆2, where each vertex of the subdivision is assigned an integer label 

ranging from 1 to 3. More generally, for a subdivision of 𝑆𝑛−1, vertices are labeled with integers from 1 to 

n. A labeling is defined as a proper labeling if no vertex x is assigned the label k when xk = 0. As can be 

verified, the labeling in Figure 1 satisfies this condition and is thus a proper labeling.  

   This setup aligns with Sperner’s lemma, which states that in every proper labeling of a subdivision, there 

exists an odd number of completely labeled subsimplices. In Figure 1, dotted lines connect all pairs of 

subsimplices that share a common face labeled with 1, 2, . . . , 𝑛 −  1. Such faces are termed doors. If two 

subsimplices can be connected by passing only through doors, they are considered connected or to lie along 

the same path.  
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    There are four types of paths, all exemplified in Figure 1.  Some paths may form endless loops, such as 

the one passing through C. Other paths must have distinct starting and ending points. Only specific types of 

subsimplices can serve as these endpoints:  

• Subsimplices with labels 1, 2, . . . , 𝑛 − 1 on a boundary face of the simplex are referred to as starts.  

• Subsimplices with all labels 1, 2, . . . , 𝑛 are referred to as ends. As a result, paths can be categorized 

as:  

1. Start-start paths: For example, the path from F to G.  

2. End-end paths: For example, the path from A to B.  

3. Start-end paths: For example, the path from E to D.  

It is critical to note that no paths can originate at a start or end and fail to terminate at another start or end. 

This property is fundamental to the operation of the sandwich method and ensures its structural integrity and 

correctness.  

 
Figure 1 

 

Proposition 2.1 :-  Any path that originates at a start or an end must terminate at a start or an end.  

Proof :- Let us consider a path traversing the simplicial subdivision of 𝑆(𝑛−1). The proof proceeds as 

follows:  

Two-Door Property: Any subsimplex on the path that is neither a start nor an end must possess exactly two 

doors:  

 If the subsimplex has one face labeled 1, 2, . . . , 𝑛 −  1 and no vertex labeled n, then it must have 

exactly two such faces.  

 These faces are not on the boundary of 𝑆(𝑛−1), which ensures that the subsimplex is adjacent to 

exactly two other subsimplices on the path.  

This ensures that the path proceeds uninterrupted through such subsimplices.  

1. Non-Reentrance:  A path cannot revisit the same subsimplex unless adjacent 

subsimplices on the path are revisited as well. If the path originates at a start or an end, at 

least one subsimplex exists that cannot be re-entered due to its unique structure or 

labeling. This guarantees that no subsimplex along the path is visited more than once.  

2. Finiteness of the Subdivision: The simplicial subdivision of 𝑆(𝑛−1) contains a finite 

number of subsimplices. Therefore, a path cannot continue indefinitely and must 

eventually terminate.  

3. Termination Criterion:  Since the path cannot terminate within a subsimplex that is 

neither a start nor an end (as it has two doors and continues), it must terminate at a start 

or an end.  
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By combining the two-door property, the non-reentrance condition, and the finiteness of the simplicial 

subdivision, it follows that any path starting at a start or an end must terminate at a start or an end.  

Corollary 2.1 Restatement and Explanation  

Corollary 2.1:  If there is exactly one start, any path that originates from this start must necessarily 

terminate at an end.  

This corollary forms the foundation of the sandwich method.  The objective of the algorithm is to locate a 

completely labeled subsimplex, which represents an end.  The algorithm achieves this by constructing a 

labeling scheme for a simplicial subdivision such that there is a unique start. Once identified, the path 

originating from this start is followed systematically until it reaches an end.  

  The significance of locating a completely labeled subsimplex lies in its ability to ap- proximate solutions to 

certain mathematical problems when D, the degree of subdivision, is sufficiently large.  One notable 

application is the problem of finding a Brouwer fixed point. Specifically, the task is to determine an n-vector 

𝑥̅ within the unit simplex such that 𝑥̅ = 𝑓(𝑥̅),  where f (x) is a continuous mapping of the simplex into itself.  

In this context, every vertex of a regular subdivision of 𝑆(𝑛−1) corresponds to a vector x.  A labeling scheme 

can then be applied to these vertices, such as the modified rule proposed by Kuhn [16].  

Rule 1 (Modified Kuhn Rule)  

Vertices are labeled according to the following rule:  

𝐿(𝑥) = 𝑘 𝑖𝑓 𝑥𝑘 > 0 𝑎𝑛𝑑 𝑓𝑘(𝑥) − 𝑥𝑘  ≤ 𝑓𝑖(𝑥) − 𝑥𝑖  ∀ 𝑖 𝑤𝑖𝑡ℎ 𝑥𝑖 > 0, 

𝑎𝑛𝑑 𝑖𝑓 𝑓𝑘(𝑥) − 𝑥𝑘 = 𝑓𝑖(𝑥) − 𝑥𝑖 , 𝑡ℎ𝑒𝑛 𝑘 ≤ 𝑖. 

Explanation of Rule 1  

• Proper Labeling: Rule 1 ensures proper labeling because every vertex satisfies  

 𝑥𝑘 > 0 for at least one k, making it eligible for a label.  

• Label Properties: When a vertex x receives label k, it implies𝑓𝑘(𝑥) − 𝑥𝑘  ≤ 0.  If 𝑓𝑘(𝑥) − 𝑥𝑘 were 

positive, it would follow that 𝑓𝑖(𝑥) − 𝑥𝑖 > 0 for all i with xi > 0, 

violating the constraint:  

∑ 𝑓𝑖(𝑥)

𝑖

= ∑ 𝑥𝑖

𝑖

= 1. 

Thus, Rule 1 guarantees that fk(x) − xk ≤ 0 whenever x is labeled k.  

Implications for the Sandwich Method  

The labeling properties defined by Rule 1 ensure the existence of completely labeled subsimplices for every 

D. Furthermore, these subsimplices approximate fixed points as D becomes sufficiently large.  

  Let x1(D), . . . , xn(D) denote the vertices of a completely labeled subsimplex, where each vertex xk(D) is 

labeled k for 𝑘 =  1, . . . , 𝑛. Any point ξ within this subsimplex serves as an approximation to the fixed point.  

This relationship between completely labeled subsimplices and fixed-point approximations will now be 

specified in greater detail. Proposition 2.2: For any  𝜖 >  0, |𝑓 (𝑥̂)  −  𝑥̂|  <  𝜖. for sufficiently large D. In 

other words, 𝑥̂ is approximately a fixed point.  Proof: By the uniform continuity of f , we can select D0 such 

that:  

                                              |𝑓𝑘(𝑥̂) − 𝑓𝑘(𝑥𝑘(𝐷))| <
𝜀

2(𝑛−1)√𝑛
    for D ≥ D0.  

Furthermore, since:  

|𝑥̂𝑘 − 𝑥𝑘
𝑘(𝐷)| ≤

1

𝐷
 , 

we can choose D1 ≥ D0 such that: 

|𝑥̂𝑘 − 𝑥𝑘
𝑘(𝐷)| ≤

𝜀

2(𝑛 − 1)√𝑛
 

for D ≥ D1.  
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Thus, for D ≥ D1, we have: 

𝑓𝑘(𝑥̂) ≤ 𝑓𝑘(𝑥𝑘(𝐷)) +
𝜀

2(𝑛 − 1)√𝑛
 ≤  𝑥𝑘

𝑘(𝐷) +  
𝜀

2(𝑛 − 1)√𝑛
 , 

 

where the second inequality holds because xk(D) is labelled k. Hence,  

𝑓𝑘(𝑥̂)  ≤ 𝑥̂𝑘 +
𝜀

2(𝑛 − 1)√𝑛
, 𝑓𝑜𝑟 𝑘 = 1, … , 𝑛.  

Additionally, since:  

∑(

𝑛

𝑘=1

𝑓𝑘(𝑥̂) − 𝑥̂𝑘) = 0, 

it follows that:  

−(𝑛 − 1)
𝜀

2(𝑛 − 1)√𝑛
 ≤ 𝑓𝑘(𝑥̂) −  𝑥̂𝑘,  

and thus: 

|𝑓𝑘(𝑥̂) − 𝑥̂𝑘| <
𝜀

√𝑛
, 𝑓𝑜𝑟 𝑘 = 1, … , 𝑛. 

From this, we conclude that: 

|𝑓 (𝑥̂) − 𝑥̂| <  𝜖. 

This proves that 𝑥̂ is approximately a fixed point. 

Proposition 2.3: For any ϵ > 0, there exists a fixed point 𝑥̅  (which may depend on D) such that  |𝑥̂ − 𝑥̅| <

𝜀  for sufficiently large D. In other words, 𝑥̂  is close to a fixed point.  

Proof: Using Sperner’s Lemma, select a point 𝑥̂(𝐷)  for each D. Assume, for the sake  of  contradiction, 

that  |𝑥̂(𝐷) − 𝑥̅| ≥ 𝜀 for  all  fixed  points 𝑥̅ , and  for  a  sequence of D approaching infinity. By 

compactness, there exists a subsequence of {𝑥̂(𝐷)}  that converges to a point x∗. From Proposition 2.2 and 

the continuity of f , x∗ must satisfy f (x∗) = x∗, making it a fixed point. This contradicts the assumption that    

|𝑥̂(𝐷) − 𝑥̅| ≥ 𝜀 for all fixed points 𝑥̅ . Therefore, the proposition is proven.  

  Labelling rules similar to Rule 1 can also be applied to solve other types of problems. In fact, many such 

rules share the property that, for sufficiently large D, any point in a fully labelled subsimplex provides an 

approximate solution.  For example, one could assign the label k if k is the first index where fk(x) ≤ xk and xk 

> 0.  Experimental comparisons of different labelling rules in the context of economic general equilibrium 

models are discussed in MacKinnon [15].  

2   Sandwich Method  

Consider the case where X1, X2, . . . , Xn are nonnegative integers summing to D. These integers represent a 

vertex in the D-subdivision of an (n − 1)-simplex.  Now, suppose X = (X1, X2, . . . , Xn, 1). This vector X 

corresponds to a vertex in the (D+1)-subdivision of an n-simplex.  Therefore, the relevant subdivided (n − 

1)-simplex can be embedded within the subdivision of an n-simplex, which we denote as Sn. The subdivided 

(n − 1)- simplices embedded in this structure are labeled as 𝑆0
(𝑛−1)

, 𝑆1
(𝑛−1)

, 𝑆2
(𝑛−1)

, … , where the subscript 

refers to the last component of each vertex.  

 

Figure 2 
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     For clarity, consider the example of a 1-simplex, as shown in Figure 2.  From this figure, it becomes 

apparent why the method is called the sandwich method, since the original simplex 𝑆1
(𝑛−1)

 is sandwiched 

between 𝑆0
(𝑛−1)

  and 𝑆2
(𝑛−1)

 . The additional layers of Sn, such as 𝑆3
(𝑛−1)

 and beyond, do not play a role in the 

algorithm and are therefore omitted from the illustration.  

    In this case, the 1-simplex shown in Figure 2 has three “ends” located at points A, B, and C.  Finding one 

of these ends is straightforward, but the sandwich method achieves this in a nontrivial manner.  The labels 

of 𝑆0
(𝑛−1)

 are selected so that there is a unique start.  The labels for 𝑆2
(𝑛−1)

  are all set to 3.  Since only one 

start exists, by Corollary 2.1, the path that begins at this start must eventually terminate at a fully labeled 2-

subsimplex. This subsimplex must include one vertex from 𝑆2
(𝑛−1)

, as no other vertices have label 3, and two 

vertices from 𝑆1
(𝑛−1)

. These two vertices form a completely labeled subsimplex of 𝑆1
(𝑛−1)

. Thus, solving this 

auxiliary problem automatically solves the original problem.  In practical applications, the sandwich method 

is typically used iteratively rather than only once.  For instance, a solution for a given D1 can serve as the 

starting point for D2 = 2D1 or 3D1.  The solution for D2 can then be used as the start for D3 = 2D2 or 3D2, and 

so on. For n = 2, this iterative process is illustrated in Figure 3.  

 
Figure 3 

 

This method can be continued indefinitely, providing solutions with increasing accuracy at relatively small 

incremental costs compared to less accurate solutions. The only practical constraint is that D cannot exceed 

the largest integer that the computer can handle, which is 231 − 1 for IBM 360 and 370 machines.  

   The discussion above assumes that the sandwich method always terminates with a completely labeled 

subsimplex of 𝑆1
(𝑛−1)

. We now provide a proof for this assertion. 

2.1 Termination of the Sandwich Method  

All vertices of Sn are denoted by integer (n + 1)-vectors that sum to D + 1. We assume that there is a proper 

labeling rule L1(X), such as Rule 1, that assigns integer labels between 1 and n to the vertices of 𝑆1
(𝑛−1)

.  

Vertices of 𝑆0
(𝑛−1)

 are labeled according to the following rule:  

𝐿𝑜(𝑥) = 𝑘 𝑖𝑓 (𝑋𝑘 − 𝑊𝑘) ≥ (𝑋𝑖 − 𝑊𝑖) 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 , 

and 

𝑘 ≤ 𝑖  𝑖𝑓 (𝑋𝑘 − 𝑊𝑘) ≥ (𝑋𝑖 − 𝑊𝑖). 

Here, W represents any vertex from 𝑆1
(𝑛−1)

. Since the start will include W , it should be chosen as the best 

approximation of the expected location of the end.  

Therefore, the labeling of vertices of Sn follows these rules:  

−𝐿(𝑥) = 𝐿0(𝑥)  𝑖𝑓  𝑋(𝑛+1) = 0, 

−𝐿(𝑥) = 𝐿1(𝑥)  𝑖𝑓  𝑋(𝑛+1) = 1, 

−𝐿(𝑥) = 𝑛 +  1 otherwise. 

This labeling strategy guarantees that the sandwich method will always terminate with a completely labeled 

subsimplex.  

 

Proposition 3.1. The labeling rule L(X) is proper.  
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Proof. By assumption, the labeling rule 𝐿1(𝑥) is proper. The rule L(X) assigns the label n + 1 to X only if 

Xn+1 ≥ 2. Consequently, L(X) will be proper if 𝐿0(𝑥) is also proper.  

     Let W be a vector in 𝑆1
(𝑛−1)

 and X be a vector in 𝑆0
(𝑛−1)

 . By definition, the first n components of W sum 

to D, while the first n components of X sum to D + 1. Therefore, the difference (Xi − Wi) must have a 

maximum value of at least 1 for some i.  

        Now, suppose that Xj = 0. Since Wj ≥ 0, it follows that (Xj − Wj ) ≤ 0, which is strictly less than 1. 

Hence, if Xj = 0, (Xj − Wj ) cannot represent the maximum value of (Xi − Wi) across all indices i. This implies 

that 𝐿0(𝑥) cannot assign the label j to X.  

       As a result, the labeling rule Lo(X) satisfies the condition of being proper. Combining this with the 

properness of L1(X), it follows that L(X) is a proper labeling rule.  

 

Proposition 3.2. If 𝑋1, 𝑋2, … , 𝑋(𝑛+1) are the vertices of a subsimplex of Sn, then for all i, j, and k, the 

components 𝑋𝑘
𝑖  and 𝑋𝑘

𝑖  differ by at most one.  

Proof. Let ∆k be a vector of n + 1 elements where the k-th coordinate is 1, the (k − 1)-th coordinate is −1 

(with k − 1 = n + 1 if k = 1), and all other entries are 0. A subsimplex in a regular subdivision of an n-

simplex can be fully characterized by a non-negative integer vector X whose components sum to   𝐷̅ (where 

𝐷̅ = 𝐷 + 1  in the case of Sn) and a permutation P of the first n + 1 integers, as established by Kuhn [7].  

    The construction of the subsimplex proceeds as follows: the first vertex, 𝑋1 , is given by X. Subsequent 

vertices are generated iteratively:  

 𝑋2 = 𝑋1 + ∆𝑃(1), 𝑋3 = 𝑋2 + ∆𝑃(2), … , 𝑋𝑛+1 = 𝑋𝑛 + ∆𝑃(𝑛). 

     Key to this argument is the observation that only ∆k  has a k-th coordinate equal to 1, and only ∆k+1 has a  

k-th coordinate equal to −1. When constructing any vertex 𝑋𝑗   from 𝑋1, the vectors ∆k and ∆k+1 can each 

contribute at most once to the 𝑘 − 𝑡ℎ coordinate. Consequently, the k-th component 𝑋𝑘
𝑖  differs from 𝑋𝑘

1 by 

at most one.  

    This argument is not limited to 𝑋𝑘
1 and 𝑋𝑘

𝑖 ; it generalizes to any pair of vertices 𝑋𝑖 and 𝑋𝑗 within the 

subsimplex. By reordering the vertices and selecting a new permutation P such that any vertex occupies the 

first position, the same logic applies. Hence, 𝑋𝑘
𝑖  and 𝑋𝑘

𝑗
 differ by at most one for all 𝑖, 𝑗, 𝑘.  

 

Proposition 3.3  

Let 𝑋1, 𝑋2, … , 𝑋(𝑛+1) be the vertices of a subsimplex of Sn, and suppose these vertices are assigned the 

labels 1, 2, . . . , 𝑛 +  1, respectively. Then, the (𝑛 +  1) − 𝑡ℎ component of 𝑋𝑖 satisfies  𝑋𝑛+1
𝑖 = 1   for 𝑖 =

 1, 2, . . . , 𝑛. 

Proof: Since the vertex 𝑋(𝑛+1) has the label 𝑛 +  1, it follows that 𝑋𝑛+1
𝑛+1 = 2. None of the other vertices 

𝑋1, 𝑋2, … , 𝑋𝑛 are labeled n + 1, which implies they do not belong to 𝑆2
(𝑛−1)

 . By Proposition 3.2, these 

vertices must belong to 𝑆1
(𝑛−1)

 , where the (n + 1)-th component is equal to 1. Therefore,                𝑋𝑛+1
𝑖 =

1 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛. 

Next, we establish the uniqueness of the starting point. Define the vectors 𝑍1, 𝑍2, … , 𝑍(𝑛+1) as follows:  

𝑍𝑗
𝑖 = 𝑊𝑗 + 𝛿𝑗,𝑖 − 𝛿𝑗,𝑛+1 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 + 1, 

where δi,j is the Kronecker delta, equal to 1 𝑖𝑓 𝑖 =  𝑗 𝑎𝑛𝑑 0 otherwise.  

The vectors 𝑍1, 𝑍2, … , 𝑍(𝑛+1)  satisfy the conditions for being the vertices of a subsimplex of Sn, as defined 

in the proof of Proposition 3.2.  Specifically, the vector 𝑍(𝑛+1) is equal to W , and the  (𝑛 +  1) − 𝑡ℎ 

component of 𝑍𝑖 satisfies 𝑋𝑛+1
𝑖 = 0 for 𝑖 =  1, 2, . . . , 𝑛.   

Consequently, the first n vectors 𝑍1, 𝑍2, … , 𝑍𝑛 span a subsimplex of 𝑆0
𝑛−1. 

Furthermore, the first n components of 𝑍𝑖 − 𝑊 are unit vectors with a 1 in the i-th position and zeros 

elsewhere. Thus, the labeling rule 𝐿𝑜(𝑍𝑖) = 𝑖 holds for =  1, 2, . . . , 𝑛 . It follows that 𝑍1, 𝑍2, … , 𝑍𝑛+1 

uniquely determine the starting configuration for the algorithm.  
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Proposition 3.4  

The vectors 𝑍1, 𝑍2, … , 𝑍𝑛 span the unique subsimplex of 𝑆0
𝑛−1 with all labels 1, 2, . . . , 𝑛.  

Proof :  Let us assume, for contradiction, that there exists another subsimplex of 𝑆0
𝑛−1 with vertices         V 

1, V 2, . . . , V n, where these vertices are assigned the labels 1, 2, . . . , n  respectively. We aim to show that 

this assumption can only hold under specific conditions that imply 𝑉𝑖 = 𝑍𝑖 for all i.                       

Consider the difference 𝑉𝑖 − 𝑊,   where W represents some reference point. We hypothesize that the vector 

𝑉𝑖 − 𝑊 must be the vector (1, 0, . . . , 0) for each i. To substantiate this hypothesis, we analyze the 

following cases:  

• Case 1: If  𝑉1
1 − 𝑊1 < 1, it follows that vertex 𝑉1could not be assigned the label 1. 

• Case 2: If 𝑉1
1 − 𝑊1 > 1  then the difference (𝑉𝑖

1 − 𝑊𝑖) must be negative for at least one i.  

However, by Proposition 3.2, this implies a contradiction, as the vector (𝑉𝑖
𝑖 − 𝑊𝑖) cannot 

simultaneously be both positive and negative. Therefore, V i cannot receive the label i.  

From these cases, we conclude that for each j, the difference (𝑉𝑗
1 − 𝑊𝑗) must satisfy (𝑉𝑗

1 − 𝑊𝑗) = 0  . If 

this were not the case, further contradictions would arise 

• If (𝑉𝑗
1 − 𝑊𝑗) < 0, 𝑡ℎ𝑒𝑛 (𝑉𝑗

𝑖 − 𝑊𝑗)   , could not be positive, and hence vertex V could not receive 

label j 

• If (𝑉𝑗
𝑖 − 𝑊𝑗) > 0, it would follow that  (𝑉𝑘

1 − 𝑊𝑘) < 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘, leading to a similar 

contradiction.  

Consequently, we deduce that for each i, the difference (𝑉𝑖 − 𝑊) must be a vector that has a 1 in the 

i-th position and zeros in all other positions. This implies that 𝑉𝑖 = 𝑍𝑖 for all i, thereby establishing 

that the vertices 𝑍1, 𝑍2, … , 𝑍𝑛 are the only vertices satisfying the required label assignments.  

Therefore, the vectors 𝑍1, 𝑍2, … , 𝑍𝑛 span the unique subsimplex of 𝑆0
(𝑛−1)

 with all labels 1, 2, . . . , 𝑛, 

completing the proof.  

 

Proposition 3.5  

If the algorithm starts at 𝑍1, 𝑍2, … , 𝑍𝑛 and follows the path that begins at these vertices, it must eventually 

terminate with a subsimplex that includes a completely labelled subsimplex of 𝑆1
(𝑛−1)

.  

Proof : By Proposition 3.4, there is only one starting point on 𝑆0
(𝑛−1)

. Additionally, by Proposition 3.1, 

there are no starting points on any of the other faces of Sn. Therefore, by Corollary 2.1, the path that starts 

at 𝑍1, 𝑍2, … , 𝑍𝑛+1  must eventually reach an endpoint. Furthermore, by Proposition 3.3, we conclude that 

any such endpoint must include a completely labelled subsimplex of S(n−1). Thus, the algorithm, when 

following the path from 𝑍1, 𝑍2, … , 𝑍𝑛+1, must eventually terminate at a subsimplex that contains a fully 

labelled subsimplex of 𝑆1
(𝑛−1)

, completing the proof.  

3 Concise Description of the Algorithm  

The following description provides a detailed outline of the algorithm, which could serve as the basis for its 

implementation in a computational setting. Let X be an (n + 1) × (n + 1) matrix, where each row of X 

represents the vertices of the subsimplex currently occupied by the algorithm. Denote the i-th row of X as 

𝑋𝑖 , which corresponds to the i-th vertex of the subsimplex.  For each i, let 𝑋𝑗
𝑖 denote the j-th coordinate of 

the i-th vertex, scaled by D + 1. All elements of X are integers, and each row sums to   D + 1.  

       Let W be an integer vector that sums to D + 1, where the first n elements of W represent the best 

available integer approximation to the location of the solution. Let L be an integer vector with n + 1 

elements, where Li is the label associated with 𝑋𝑖 Let Do be the degree of the initial subdivision, and D 

represent the degree of the current subdivision. Define Lo(Z) as the artificial labelling rule, as discussed 

earlier, and let L1(Z) represent any proper labelling rule, such as Rule 1, which guarantees that completely 

labelled subsimplices approximate the solution.  
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The algorithm proceeds as follows:  

1. Initialization:  Set D = Do.  If W is not specified, initialize W as an integer approximation to 

(
𝐷

𝑛
,
𝐷

𝑛
, … ,

𝐷

𝑛
, 1). 

2. Vertex Update:  

𝑋𝑗
𝑖 = 𝑊𝑗 + 𝛿𝑗,𝑖 − 𝛿𝑗,𝑛+1 , 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑛 + 1. 

Here, Li = i for i = 1, . . . , n, and E = n + 1 denotes that 𝑋𝑛+1 is the entering vertex.  

 

3. Labelling Step:  

𝐿𝐸 = {
𝐿0(𝑋)   𝑖𝑓  𝑋𝑛+1

𝐸 = 0,

𝐿1(𝑋)   𝑖𝑓  𝑋𝑛+1
𝐸 = 0.

 

4. Pivoting and Update: Set E = k if LE = Lk. Then, calculate the new vertex as:  

𝑍 =  X𝐸−1  +  X𝐸+1−X𝐸 , 

with boundary conditions X𝐸−1 = X𝑛+1  when E = 1, and X𝐸+1 = X1 when 𝐸 =  𝑛 +  1.  This 

pivoting rule is taken from Kuhn [7]. Set XE = Z. If  Xn+1
E < 2, return to step (3).  

5. Solution Approximation: Set XE = 0 and compute:  

𝑥̅j =
1

𝑛D
∑ X𝑗

𝑖

𝑛+1

𝑖=1

  for 𝑗 = 1, … , 𝑛. 

The vector 𝑥̅  is then an approximation to the solution. If 𝑥̅ is a sufficiently accurate approximation, 

terminate the algorithm. Otherwise, increase 𝐷 𝑡𝑜 𝑟𝐷,  , where r is a positive integer greater than 1, and 

update 𝑊 to the integer approximation of  

( 𝑥̅1𝐷, 𝑥̅2𝐷, … , 𝑥̅𝑛𝐷, 1). 

Return to step (2).  

3.1  Notes on Parameters:  

The choice of 𝐷0 and r depends on the specific problem being addressed. Both theoretical considerations 

and empirical experience suggest that 𝐷0 should be reasonably small (e.g., 4n) unless prior information is 

available. The best choice for r is often 3, though values of 2, 4, and 5 may also yield good results. It is not 

strictly necessary for W to be chosen as an approximation to the barycenter for D/r. In some problems, the 

solution tends to move systematically as D increases, making it useful to extrapolate from previous moves. 

These considerations are discussed in MacKinnon [15].  

4   Computational Experience  

The sandwich method has been applied to a wide variety of problems, primarily involving economic general 

equilibrium models. This experience, discussed in detail in MacKinnon[15], demonstrates that the cost of 

solving these problems varies significantly depending on the specific problem. The number of iterations 

required to achieve a desired accuracy level appears to scale approximately with (n − 1)2. Since the cost per 

labelling operation typically scales as      n − 1 or (n − 1)2, the total computational cost grows as (n − 1)3 or 

(n − 1)4. This implies that while the sandwich method may be less effective for very large problems, it is 

often highly efficient for smaller ones.  

  One notable advantage of the sandwich method is its reliance on integer arithmetic to store the current 

subsimplex as a matrix. This approach avoids the numerical issues associated with floating-point arithmetic.  

Provided that the solution is not required to exceed six-digit accuracy, the labelling routine can be 

implemented in single-precision arithmetic.  For many computational environments, this can yield 

significant cost savings compared to the double-precision arithmetic typically required by gradient-based 

methods.  
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  To illustrate the method’s effectiveness, it was applied to three theoretical economic general equilibrium 

models originally solved by Scarf [6].  These problems are highly nonlinear but relatively well-behaved 

compared to other cases. The labelling rule used was:  

L1(x) = 𝑘  𝑖𝑓 𝑥𝑘 > 0 𝑎𝑛𝑑 
𝑥𝑘𝑔𝑘(𝑥)

𝑠𝑘(𝑥)
 ≥

𝑥𝑖𝑔𝑖(𝑥)

𝑠𝑖(𝑥)
   ∀ 𝑖 with 𝑥𝑖 > 0, 

and 

 𝑘 ≤ 𝑖 𝑖𝑓  
𝑥𝑘𝑔𝑘(𝑥)

𝑠𝑘(𝑥)
 ≥

𝑥𝑖𝑔𝑖(𝑥)

𝑠𝑖(𝑥)
 . 

 

Here, 𝑔𝑖(𝑥) represents the excess demand for good 𝑖, 𝑎𝑛𝑑 𝑠𝑖(𝑥) denotes the supply of good i. This rule is a 

proper labelling rule and ensures an approximate equilibrium. Both theoretical arguments and experimental 

results suggest that it performs better than many other rules for problems of this type (see MacKinnon [15]).  

4.1  Results Summary  

The results for the three problems are summarized in Tables 1–3. The accuracy of each solution is evaluated 

by comparing demand and supply. All computations were performed on an IBM 360/91 using a program 

written in FORTRAN and compiled with the H compiler. The reported time represents the CPU time for 

executing the compiled program. The majority of computational resources are utilized in evaluating L1(x), as 

the opera- tions associated with artificial labellings and pivoting are computationally inexpensive in 

comparison.  

Table 1: Computational Results for 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 1 (𝑛 =  5, 𝐷 =  20 × 310 =  1, 180, 980) 

 

Good Price Demand Supply Excess Demand 

1 0.674543 2.6000 2.6000 0.000002 

2 0.079105 10.0000 10.0000 -0.000029 

3 0.033422 45.0000 45.0000 -0.000031 

4 0.122178 11.0000 11.0000 -0.000006 

5 0.090752 18.7999 18.8000 -0.000063 

 

Additional Metrics: Number of genuine labellings: 161 Number of artificial labellings: 140, Time: 0.18 

seconds 

 

   

Table 2: Computational Results for Problem 2 (𝑛 =  8, 𝐷 =  32 × 310 =  1, 889, 568) 

 

 

 

 

 

 

 

 

 

 

 

Additional Metrics: Number of genuine labellings: 461 Number of artificial labellings: 308, Time: 1.17 

seconds 

 

 

 

Good  Price  Demand  Supply  Excess Demand  

1  0.271236  3.4000  3.4000  0.000001  

2  0.029566  20.1998  20.2000  -0.000161  

3  0.062938  10.4000  10.4000  0.000009  

4  0.093090  10.4000  10.4000  -0.000010  

5  0.067234  14.2001  14.2000  0.000059  

6  0.305901  3.4000  3.4000  -0.000003  

7  0.104365  7.4000  7.4000  -0.000015  

8  0.065672  17.2999  17.3000  -0.000064  
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Table 3: Computational Results for Problem 3 (𝑛 =  10, 𝐷 =  40 ×  310 =  2, 361, 960) 

 

Good Price  Demand  Supply  Excess Demand  

1  0.187262  10.2000  10.2000  0.000034  

2  0.109379  26.2000  26.2000  0.000039  

3  0.098896  47.1998  47.2000  0.000133  

4  0.043191  55.0000  55.0000  0.000043  

5  0.116867  25.4000  25.4000  0.000001  

6  0.076974  27.9000  27.9000  0.000004  

7  0.116966  39.1000  39.1000  0.000007  

8  0.102381  23.0999  23.1000  0.000066  

9  0.098691  26.2000  26.2000  0.000003  

10  0.049393  63.9997  64.0000  0.000304  

 

Additional Metrics: Number of genuine labellings: 733 Number of artificial labellings: 524 ,Time: 2.33 

seconds  

 

5 Conclusion 

The sandwich method represents a straightforward and efficient algorithm for identifying Brouwer fixed 

points and addressing related computational problems.  The method is mathematically guaranteed to 

terminate, ensuring robustness. Empirical results demonstrate its practical effectiveness, particularly for 

problems with low to moderate dimensionality, where convergence is achieved in a reasonable timeframe.  

   The algorithm is characterized by its simplicity in both implementation and application. Once 

implemented, it provides a versatile framework for solving a diverse array of problems.  Moreover, 

solutions can be computed to virtually any desired degree of accuracy, subject only to the inherent 

limitations of the computational hardware. This flexibility, coupled with its ease of use, underscores the 

utility of the sandwich method as a reliable computational tool for fixed-point problems.  
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