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Abstract: This paper provides a thorough introduction to the sandwich approach, a potent method that uses
simplicial subdivision to compute Brouwer fixed points and solve related issues, such as determining broad
economic equilibria. We give a self-contained introduction to the basic ideas of simplicial subdivision and
sandwiching. We explore the nature of the algorithm's approximation capabilities and demonstrate the
convergence features that are built into the method through thorough analysis. We also provide a brief
overview of the algorithm's mechanics and showcase a small number of computational outcomes to

highlight its usefulness.
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I. INTRODUCTION

The sandwich method stands out as a versatile technique employed for computing Brouwer fixed points and
addressing associated challenges, notably including the determination of general economic equilibria.
Belonging to a class of algorithms known as pivotal methods, it shares a striking combinatorial resemblance
with the pivot step of the simplex method utilized in solving linear programs. This paper explores the
foundational principles and practical implications of the sandwich method, shedding light on its
effectiveness in navigating complex mathematical landscapes and facilitating solutions to diverse problems
in economics and beyond.

In 1964, Lemke and Howson [2] uncovered an algorithm applying pivotal methods to bimatrix games.
Shortly after, Scarf [4,6] introduced algorithms for approximating Brouwer fixed points and economic
equilibria in 1967. Following suit, Kuhn [7] proposed a similar algorithm leveraging simplicial subdivision
in 1968. While these early algorithms provided quick but crude approximate solutions, achieving high
accuracy at reasonable computational expense remained elusive.

Two different approaches evolved to deal with this problem. First, the homotopy technique was
discovered in 1971 by Eaves [8], and it was later improved upon by Eaves and Saigal [9]. Second, Merrill
[10,11] invented a different strategy that year known as sandwiching or restart approaches. MacKinnon
independently rediscovered this method in 1972, and it was later determined that the sandwich method was
this method applied to Kuhn's 1968 algorithm. Notably, the same idea was later used by Fisher, Gould, and
Tolle [12] in their research. The sandwich method is versatile, applicable to various problem types. In the
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version detailed here, these problems are situated on a unit (n — 1) dimensional simplex S™=1, comprising
all real vectors x = (x4, ...,x,) with nonnegative components summing to one. In the first class of
applications, a continuous function f is provided, which maps the simplex into itself. Brouwer's fixed-point
theorem guarantees the existence of at least one point X such that f(x) = x. The sandwich method is
employed to find approximate solutions to this equation, making it applicable to any problem formulable as
a Brouwer fixed-point problem.

A second class of applications pertains to the classical general equilibrium model of an exchange
economy, extensively discussed by Scarf [6,13] and Arrow and Hahn [14]. Here, x4, ..., x, represent the
prices of n goods exchanged in the economy. The demands and supplies of each good are determined by
these prices, and the disparity between demand and supply for good i is termed the excess demand, denoted
by gi(x). These excess demand functions are assumed to be continuous and homogeneous of degree zero
for nonnegative prices that are not all zero. Additionally, they are assumed to adhere to Walras' law, which
stipulates that total expenditures must equal total revenues, expressed as ).; x;g;(x) = 0.

An equilibrium is defined as a set of prices x where the excess demand for every good is non positive, i.e.,
g ;(x) < 0 for all i. Walras' law further implies that x; = 0 whenever g;(x) < 0, ensuring x;g;(x) = 0 for
all i. Price vectors satisfying these conditions can be obtained using the sandwich method in two different
ways. They can be transformed into Brouwer fixed-point problems, as demonstrated in Scarf [6], or solved
directly, as outlined in MacKinnon [15].

Basic Definitions:

Definition of an (n-1)-dimensional simplex: It's defined as a set of points expressible as convex
combinations of n affinely independent vectors. In the case of the unit simplex, its vertices are the unit
vectors in n-space.

Faces of a simplex: A simplex has n faces, each formed by dropping one of its n vertices. These faces are
(n — 2) — simplices.

Subdivision of a simplex: Any simplex can be subdivided into smaller simplices such that each part is itself
a simplex. This subdivision ensures that if any two subsimplices share a common boundary of dimension
(n — 2), that boundary is a face of both.

Regular subdivision method: Described as a method of subdividing the unit simplex. In this method, every
X1 X3
D’'D’
subdivision, and X, X, ..., X,, are nonnegative integers summing to D.
Mesh of the subdivision: As D tends to infinity, the distance between any two points in a single sub

vertex of a sub simplex in the subdivision can be expressed as ( ...,X—D“), where D is the degree of the

simplex tends to zero. The mesh of the subdivision is not greater than ‘/Fﬁ , Which approaches zero as D

Increases.

Proper labeling: An assignment of integer labels to the vertices of the subdivision is termed proper if a
vertex x never gets label k if x;, = 0. This ensures that each vertex receives a label between 1 and n.

1 Figure Explanation and Path Analysis

Figure 1 illustrates the 6-subdivision of S?, where each vertex of the subdivision is assigned an integer label
ranging from 1 to 3. More generally, for a subdivision of S™*~1, vertices are labeled with integers from 1 to
n. A labeling is defined as a proper labeling if no vertex x is assigned the label k when xx = 0. As can be
verified, the labeling in Figure 1 satisfies this condition and is thus a proper labeling.

This setup aligns with Sperner’s lemma, which states that in every proper labeling of a subdivision, there
exists an odd number of completely labeled subsimplices. In Figure 1, dotted lines connect all pairs of
subsimplices that share a common face labeled with 1,2,...,n — 1. Such faces are termed doors. If two
subsimplices can be connected by passing only through doors, they are considered connected or to lie along
the same path.
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There are four types of paths, all exemplified in Figure 1. Some paths may form endless loops, such as
the one passing through C. Other paths must have distinct starting and ending points. Only specific types of
subsimplices can serve as these endpoints:
» Subsimplices with labels 1, 2,...,n — 1 on a boundary face of the simplex are referred to as starts.
» Subsimplices with all labels 1, 2,...,n are referred to as ends. As a result, paths can be categorized
as:

1. Start-start paths: For example, the path from F to G.
2. End-end paths: For example, the path from A to B.
3. Start-end paths: For example, the path from E to D.

It is critical to note that no paths can originate at a start or end and fail to terminate at another start or end.
This property is fundamental to the operation of the sandwich method and ensures its structural integrity and
correctness.

Figure 1

Proposition 2.1 :- Any path that originates at a start or an end must terminate at a start or an end.
Proof :- Let us consider a path traversing the simplicial subdivision of S™=1. The proof proceeds as
follows:
Two-Door Property: Any subsimplex on the path that is neither a start nor an end must possess exactly two
doors:
e If the subsimplex has one face labeled 1,2,...,n — 1 and no vertex labeled n, then it must have
exactly two such faces.
e These faces are not on the boundary of S~ which ensures that the subsimplex is adjacent to
exactly two other subsimplices on the path.

This ensures that the path proceeds uninterrupted through such subsimplices.

1. Non-Reentrance: A path cannot revisit the same subsimplex unless adjacent
subsimplices on the path are revisited as well. If the path originates at a start or an end, at
least one subsimplex exists that cannot be re-entered due to its unique structure or
labeling. This guarantees that no subsimplex along the path is visited more than once.

2. Finiteness of the Subdivision: The simplicial subdivision of S™~1 contains a finite
number of subsimplices. Therefore, a path cannot continue indefinitely and must
eventually terminate.

3. Termination Criterion: Since the path cannot terminate within a subsimplex that is
neither a start nor an end (as it has two doors and continues), it must terminate at a start
or an end.
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By combining the two-door property, the non-reentrance condition, and the finiteness of the simplicial
subdivision, it follows that any path starting at a start or an end must terminate at a start or an end.
Corollary 2.1 Restatement and Explanation

Corollary 2.1: If there is exactly one start, any path that originates from this start must necessarily
terminate at an end.

This corollary forms the foundation of the sandwich method. The objective of the algorithm is to locate a
completely labeled subsimplex, which represents an end. The algorithm achieves this by constructing a
labeling scheme for a simplicial subdivision such that there is a unique start. Once identified, the path
originating from this start is followed systematically until it reaches an end.

The significance of locating a completely labeled subsimplex lies in its ability to ap- proximate solutions to
certain mathematical problems when D, the degree of subdivision, is sufficiently large. One notable
application is the problem of finding a Brouwer fixed point. Specifically, the task is to determine an n-vector
X within the unit simplex such that x = f(x), where f (x) is a continuous mapping of the simplex into itself.
In this context, every vertex of a regular subdivision of S™~1 corresponds to a vector x. A labeling scheme
can then be applied to these vertices, such as the modified rule proposed by Kuhn [16].

Rule 1 (Modified Kuhn Rule)
Vertices are labeled according to the following rule:
L(x) =kif x, >0and fi,(x) —x;, < fi;(x)—x; Viwithx; >0,
and if fi,(x) —x; = f;(x) — x;, then k < i.

Explanation of Rule 1
» Proper Labeling: Rule 1 ensures proper labeling because every vertex satisfies
x> 0 for at least one k, making it eligible for a label.
» Label Properties: When a vertex x receives label k, it impliesf (x) — xx < 0. If fi.(x) — x; were
positive, it would follow that f;(x) — x; > 0 for all i with x; > 0,

violating the constraint:
Y A=) m=1
i

L
Thus, Rule 1 guarantees that fk(X) — xk < 0 whenever X is labeled k.
Implications for the Sandwich Method
The labeling properties defined by Rule 1 ensure the existence of completely labeled subsimplices for every
D. Furthermore, these subsimplices approximate fixed points as D becomes sufficiently large.

Let xX}(D), . . ., x"(D) denote the vertices of a completely labeled subsimplex, where each vertex x¥(D) is
labeled k for k = 1,...,n. Any point & within this subsimplex serves as an approximation to the fixed point.
This relationship between completely labeled subsimplices and fixed-point approximations will now be
specified in greater detail. Proposition 2.2: Forany € > 0,|f (X) — X| < e. for sufficiently large D. In
other words, x is approximately a fixed point. Proof: By the uniform continuity of f , we can select Do such
that:

[e@® = fi(x*D))| < 555 forD=Do
Furthermore, since:
- K 1
|2 — xf(D)| < D
we can choose D1> Do such that:

&
o k
2 — k(D) € ———
A e N
for D > Ds.
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Thus, for D > D3, we have:

& &€
%) < fil*D) ) + —————= < (D) + ———=,
fe® < fil(x (D)) = S MO e =
where the second inequality holds because x“(D) is labelled k. Hence,
&
X) <X +———m——, k=1,..,n
fi(®) < X 2(n— 1)vn for n

Additionally, since:

n
Y @ -2 =0,
k=1
it follows that:

—(n—-1)

< fix(®) — Ry,

_ &
2(n—1DVn

and thus:
&
fi () — |l <—, fork=1,..,n

Vn

From this, we conclude that:

If ®) - 2l < e
This proves that X is approximately a fixed point.
Proposition 2.3: For any ¢ > 0, there exists a fixed point X (which may depend on D) such that |x — x| <
¢ for sufficiently large D. In other words, X is close to a fixed point.
Proof: Using Sperner’s Lemma, select a point X(D) for each D. Assume, for the sake of contradiction,
that |x(D) —x| = ¢ for all fixed points x , and for a sequence of D approaching infinity. By
compactness, there exists a subsequence of {X(D)} that converges to a point x*. From Proposition 2.2 and
the continuity of f, x* must satisfy f (x*) = x*, making it a fixed point. This contradicts the assumption that
|x(D) — x| = ¢ for all fixed points x . Therefore, the proposition is proven.

Labelling rules similar to Rule 1 can also be applied to solve other types of problems. In fact, many such
rules share the property that, for sufficiently large D, any point in a fully labelled subsimplex provides an
approximate solution. For example, one could assign the label k if k is the first index where fi(x) < xxand x«
> (0. Experimental comparisons of different labelling rules in the context of economic general equilibrium
models are discussed in MacKinnon [15].

2 Sandwich Method

Consider the case where X1, X2, . . ., Xn are nonnegative integers summing to D. These integers represent a
vertex in the D-subdivision of an (n — 1)-simplex. Now, suppose X = (X1, X2, . . ., Xn, 1). This vector X
corresponds to a vertex in the (D+1)-subdivision of an n-simplex. Therefore, the relevant subdivided (n —
1)-simplex can be embedded within the subdivision of an n-simplex, which we denote as S". The subdivided

(n — 1)- simplices embedded in this structure are labeled as S{* ™", s, 5"V, . where the subscript
refers to the last component of each vertex.

Figure 2
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For clarity, consider the example of a 1-simplex, as shown in Figure 2. From this figure, it becomes

apparent why the method is called the sandwich method, since the original simplex Sl("_l) is sandwiched

between S((,"_l) and Sz("_l) . The additional layers of S", such as 5§"‘1> and beyond, do not play a role in the
algorithm and are therefore omitted from the illustration.

In this case, the 1-simplex shown in Figure 2 has three “ends” located at points A, B, and C. Finding one
of these ends is straightforward, but the sandwich method achieves this in a nontrivial manner. The labels
of Sé"_l) are selected so that there is a unique start. The labels for Sz(n_l) are all set to 3. Since only one
start exists, by Corollary 2.1, the path that begins at this start must eventually terminate at a fully labeled 2-

subsimplex. This subsimplex must include one vertex from Sz(n_l), as no other vertices have label 3, and two

vertices from Sl("_l). These two vertices form a completely labeled subsimplex of Sl("_l). Thus, solving this
auxiliary problem automatically solves the original problem. In practical applications, the sandwich method
is typically used iteratively rather than only once. For instance, a solution for a given D1 can serve as the
starting point for D2 = 2Dz or 3D:1. The solution for D2 can then be used as the start for Dz = 2D or 3D, and
so on. For n = 2, this iterative process is illustrated in Figure 3.

¢
I 111 1je2r2222222222

Ll tpneeeseszeeeee

Figure 3'

This method can be continued indefinitely, providing solutions with increasing accuracy at relatively small
incremental costs compared to less accurate solutions. The only practical constraint is that D cannot exceed
the largest integer that the computer can handle, which is 23! — 1 for IBM 360 and 370 machines.

The discussion above assumes that the sandwich method always terminates with a completely labeled
subsimplex of Sl("_l). We now provide a proof for this assertion.
2.1 Termination of the Sandwich Method
All vertices of S"are denoted by integer (n + 1)-vectors that sum to D + 1. We assume that there is a proper

labeling rule LY(X), such as Rule 1, that assigns integer labels between 1 and n to the vertices of Sl(”_l).

Vertices of Sén_l) are labeled according to the following rule:
L°x) =kif X, — W) =X, —W)) fori=1.2,..,n,
and
k<iif (X,—W)=WX;—W).

Here, W represents any vertex from Sl(n_l). Since the start will include W , it should be chosen as the best
approximation of the expected location of the end.
Therefore, the labeling of vertices of S" follows these rules:

—L(x) = L°Q) if Xy =0,

—L(x) = (%) if Xgnen = 1,

—L(x) =n + 1 otherwise.

This labeling strategy guarantees that the sandwich method will always terminate with a completely labeled
subsimplex.

Proposition 3.1. The labeling rule L(X) is proper.
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Proof. By assumption, the labeling rule L!(x) is proper. The rule L(X) assigns the label n + 1 to X only if
Xn+1> 2. Consequently, L(X) will be proper if L°(x) is also proper.

Let W be a vector in Sl(”_l) and X be a vector in Sé”_l) . By definition, the first n components of W sum
to D, while the first n components of X sum to D + 1. Therefore, the difference (Xi — Wi) must have a
maximum value of at least 1 for some i.

Now, suppose that X; = 0. Since Wj > 0, it follows that (X; — W) < 0, which is strictly less than 1.
Hence, if X;= 0, (Xj— W;) cannot represent the maximum value of (Xij— W;) across all indices i. This implies
that L°(x) cannot assign the label j to X.

As a result, the labeling rule L°(X) satisfies the condition of being proper. Combining this with the
properness of L1(X), it follows that L(X) is a proper labeling rule.

Proposition 3.2. If X%, X?,...,X™*1 are the vertices of a subsimplex of S", then for all i, j, and k, the
components X: and X}, differ by at most one.

Proof. Let A* be a vector of n + 1 elements where the k-th coordinate is 1, the (k — 1)-th coordinate is —1
(with k —1 =n + 1 if k = 1), and all other entries are 0. A subsimplex in a regular subdivision of an n-
simplex can be fully characterized by a non-negative integer vector X whose components sum to D (where
D =D + 1 in the case of S") and a permutation P of the first n + 1 integers, as established by Kuhn [7].

The construction of the subsimplex proceeds as follows: the first vertex, X , is given by X. Subsequent
vertices are generated iteratively:

X2 =Xx14+AP@, X3 =X24 AP, X"+ = X1 4 AP,

Key to this argument is the observation that only A¥ has a k-th coordinate equal to 1, and only A*** has a
k-th coordinate equal to —1. When constructing any vertex X/ from X!, the vectors A and A¥*! can each
contribute at most once to the k — th coordinate. Consequently, the k-th component X: differs from X1 by
at most one.

This argument is not limited to X} and X}; it generalizes to any pair of vertices X* and X’ within the
subsimplex. By reordering the vertices and selecting a new permutation P such that any vertex occupies the

first position, the same logic applies. Hence, X} and X,{ differ by at most one for all i, j, k.

Proposition 3.3

Let X1, X2,...,X™*D pe the vertices of a subsimplex of S", and suppose these vertices are assigned the
labels 1,2,...,n + 1, respectively. Then, the (n + 1) — th component of X! satisfies X.,, =1 fori =
1,2,...,n

Proof: Since the vertex X1 has the label n + 1, it follows that X71 = 2. None of the other vertices
X1, X2, ..., X™ are labeled n + 1, which implies they do not belong to S(" 2 . By Proposition 3.2, these

vertices must belong to S(" D' where the (n + 1)-th component is equal to 1. Therefore, el =
1fori=12,..,n
Next, we establish the uniqueness of the starting point. Define the vectors Z?, Z2, ..., Z(™*1 as follows:

Zji =W+ 6j,i — 6j,n+1 Jfori=1.2,...,n+1,
where i is the Kronecker delta, equal to 1 if i = j and 0 otherwise.
The vectors Z1,Z2, ..., Z™*D satisfy the conditions for being the vertices of a subsimplex of S", as defined
in the proof of Proposition 3.2. Specifically, the vector Z™*V s equal to W , and the (n + 1) —th
component of Z¢ satisfies X}, = 0fori = 1,2,...,n
Consequently, the first n vectors Z1, Z2, ..., Z™ span a subsimplex of 57~
Furthermore, the first n components of Z! — W are unit vectors with a 1 in the i-th position and zeros
elsewhere. Thus, the labeling rule L°(ZY) =i holds for = 1,2,...,n . It follows that Z%,Z2, ..., 2"
uniquely determine the starting configuration for the algorithm.
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Proposition 3.4

The vectors Z1,Z2, ..., Z™ span the unique subsimplex of S3~* with all labels 1, 2,...,n.

Proof : Let us assume, for contradiction, that there exists another subsimplex of S~ with vertices \Y
L'v2 ..., V" where these vertices are assigned the labels 1, 2, . .., n respectively. We aim to show that
this assumption can only hold under specific conditions that imply V* = Z* for all i.

Consider the difference V¢ — W, where W represents some reference point. We hypothesize that the vector
Vi — W must be the vector (1, 0, . . ., 0) for each i. To substantiate this hypothesis, we analyze the
following cases:

« Casel: If V! —w, <1, itfollows that vertex V1could not be assigned the label 1.

e Case 2: If V1 —W; >1 then the difference (V! —W,) must be negative for at least one i.
However, by Proposition 3.2, this implies a contradiction, as the vector (V} —W;) cannot
simultaneously be both positive and negative. Therefore, V ' cannot receive the label i.

From these cases, we conclude that for each j, the difference (le — W;) must satisfy (le -W)=0 .If

this were not the case, further contradictions would arise

o If (le —W;) <0, then (Vji —W;) , could not be positive, and hence vertex V could not receive
label j

o If (Vji —W;) >0, it would follow that (Vi —W,) <0 forsomek, leading to a similar
contradiction.

Consequently, we deduce that for each i, the difference (V* — W) must be a vector that has a 1 in the
i-th position and zeros in all other positions. This implies that V¢ = Z* for all i, thereby establishing
that the vertices Z1, Z2, ..., Z™ are the only vertices satisfying the required label assignments.

Therefore, the vectors Z1,Z2,...,Z™ span the unique subsimplex of Sg"_l) with all labels 1,2,...,n,
completing the proof.

Proposition 3.5
If the algorithm starts at Z1, Z2, ..., Z™ and follows the path that begins at these vertices, it must eventually

terminate with a subsimplex that includes a completely labelled subsimplex of Sl(”_l).

Proof : By Proposition 3.4, there is only one starting point on Sé""l). Additionally, by Proposition 3.1,
there are no starting points on any of the other faces of S". Therefore, by Corollary 2.1, the path that starts
at Z%,72,..,Z™"1 must eventually reach an endpoint. Furthermore, by Proposition 3.3, we conclude that
any such endpoint must include a completely labelled subsimplex of S"%. Thus, the algorithm, when

following the path from Z1,Z2,...,Z™*"1, must eventually terminate at a subsimplex that contains a fully

labelled subsimplex of Sl(”_l), completing the proof.

3 Concise Description of the Algorithm

The following description provides a detailed outline of the algorithm, which could serve as the basis for its
implementation in a computational setting. Let X be an (n + 1) x (n + 1) matrix, where each row of X
represents the vertices of the subsimplex currently occupied by the algorithm. Denote the i-th row of X as
X%, which corresponds to the i-th vertex of the subsimplex. For each i, let in denote the j-th coordinate of
the i-th vertex, scaled by D + 1. All elements of X are integers, and each row sumsto D + 1.

Let W be an integer vector that sums to D + 1, where the first n elements of W represent the best
available integer approximation to the location of the solution. Let L be an integer vector with n + 1
elements, where L; is the label associated with X! Let Do be the degree of the initial subdivision, and D
represent the degree of the current subdivision. Define L°(Z) as the artificial labelling rule, as discussed
earlier, and let L1(Z) represent any proper labelling rule, such as Rule 1, which guarantees that completely
labelled subsimplices approximate the solution.
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The algorithm proceeds as follows:
1. Initialization: Set D = D,. If W is not specified, initialize W as an integer approximation to

D D D
(2.2,..20)
nn n
2. Vertex Update:
X =W+ 68,;—8ns1,fori=12,..,n+1
Here, Li=ifori=1,...,n,and E = n+ 1 denotes that X"+ is the entering vertex.

3. Labelling Step:

FOLx) if XE =0
4. Pivoting and Update: Set E = k if Le = Lk. Then, calculate the new vertex as:

7 = XE—l + XE+1—XE
with boundary conditions X£~1 = X"®*1 when E = 1, and XE*1 =X when E = n + 1. This
pivoting rule is taken from Kuhn [7]. Set XE = Z.1f XE,, < 2, return to step (3).

5. Solution Approximation: Set XE = 0 and compute:
n+1

_ 1 ; .
Xj = EZ X} forj=1,..,n.
1=

The vector x is then an approximation to the solution. If x is a sufficiently accurate approximation,
terminate the algorithm. Otherwise, increase D to rD, , where r is a positive integer greater than 1, and
update W to the integer approximation of

_ {LO(X) if XEuq =0,

(x1D,x,D, ..., %,D, 1).
Return to step (2).
3.1 Notes on Parameters:
The choice of D, and r depends on the specific problem being addressed. Both theoretical considerations
and empirical experience suggest that D, should be reasonably small (e.g., 4n) unless prior information is
available. The best choice for r is often 3, though values of 2, 4, and 5 may also yield good results. It is not
strictly necessary for W to be chosen as an approximation to the barycenter for D/r. In some problems, the
solution tends to move systematically as D increases, making it useful to extrapolate from previous moves.
These considerations are discussed in MacKinnon [15].
4 Computational Experience
The sandwich method has been applied to a wide variety of problems, primarily involving economic general
equilibrium models. This experience, discussed in detail in MacKinnon[15], demonstrates that the cost of
solving these problems varies significantly depending on the specific problem. The number of iterations
required to achieve a desired accuracy level appears to scale approximately with (n — 1)?. Since the cost per
labelling operation typically scalesas  n — 1 or (n — 1), the total computational cost grows as (n — 1)% or
(n — 1)* This implies that while the sandwich method may be less effective for very large problems, it is
often highly efficient for smaller ones.

One notable advantage of the sandwich method is its reliance on integer arithmetic to store the current
subsimplex as a matrix. This approach avoids the numerical issues associated with floating-point arithmetic.
Provided that the solution is not required to exceed six-digit accuracy, the labelling routine can be
implemented in single-precision arithmetic. ~For many computational environments, this can vyield
significant cost savings compared to the double-precision arithmetic typically required by gradient-based
methods.
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To illustrate the method’s effectiveness, it was applied to three theoretical economic general equilibrium

models originally solved by Scarf [6]. These problems are highly nonlinear but relatively well-behaved

compared to other cases. The labelling rule used was:

X gk () _ xigi(®)
sk(x) si(x)

L'x) =k if x, > 0and

Vi with x; > 0,
and
X _ xigi(x)

se(®) T osi(x)

k<iif
Here, g;(x) represents the excess demand for good i, and s;(x) denotes the supply of good i. This rule is a
proper labelling rule and ensures an approximate equilibrium. Both theoretical arguments and experimental
results suggest that it performs better than many other rules for problems of this type (see MacKinnon [15]).
4.1 Results Summary
The results for the three problems are summarized in Tables 1-3. The accuracy of each solution is evaluated
by comparing demand and supply. All computations were performed on an IBM 360/91 using a program
written in FORTRAN and compiled with the H compiler. The reported time represents the CPU time for
executing the compiled program. The majority of computational resources are utilized in evaluating L(x), as
the opera- tions associated with artificial labellings and pivoting are computationally inexpensive in
comparison.
Table 1: Computational Results for Problem 1 (n = 5,D = 20 x 31° = 1,180,980)

Good Price Demand | Supply | Excess Demand
1 | 0.674543 | 2.6000 | 2.6000 0.000002
0.079105 | 10.0000 | 10.0000 -0.000029
0.033422 | 45.0000 | 45.0000 -0.000031
0.122178 | 11.0000 | 11.0000 -0.000006
0.090752 | 18.7999 | 18.8000 -0.000063

gl

Additional Metrics: Number of genuine labellings: 161 Number of artificial labellings: 140, Time: 0.18
seconds

Table 2: Computational Results for Problem 2 (n = 8,D = 32 x 3!° = 1,889,568)

Good Price Demand | Supply | Excess Demand
1 0.271236 | 3.4000 | 3.4000 0.000001

2 0.029566 | 20.1998 | 20.2000 -0.000161
3 0.062938 | 10.4000 | 10.4000 0.000009
4 0.093090 | 10.4000 | 10.4000 -0.000010
5 0.067234 | 14.2001 | 14.2000 0.000059
6 0.305901 | 3.4000 | 3.4000 -0.000003
7 0.104365 | 7.4000 | 7.4000 -0.000015
8

0.065672 | 17.2999 | 17.3000 -0.000064

Additional Metrics: Number of genuine labellings: 461 Number of artificial labellings: 308, Time: 1.17
seconds
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Table 3: Computational Results for Problem 3 (n = 10, D = 40 x 3!’ = 2,361, 960)

Good Price Demand | Supply | Excess Demand
1 0.187262 | 10.2000 | 10.2000 0.000034
2 0.109379 | 26.2000 | 26.2000 0.000039
3 0.098896 | 47.1998 | 47.2000 0.000133
4 0.043191 | 55.0000 | 55.0000 0.000043
5 0.116867 | 25.4000 | 25.4000 0.000001
6 0.076974 | 27.9000 | 27.9000 0.000004
7 0.116966 | 39.1000 | 39.1000 0.000007
8 0.102381 | 23.0999 | 23.1000 0.000066
9 0.098691 | 26.2000 | 26.2000 0.000003

10 | 0.049393 | 63.9997 | 64.0000 0.000304

Additional Metrics: Number of genuine labellings: 733 Number of artificial labellings: 524 ,Time: 2.33
seconds

5 Conclusion
The sandwich method represents a straightforward and efficient algorithm for identifying Brouwer fixed
points and addressing related computational problems. The method is mathematically guaranteed to
terminate, ensuring robustness. Empirical results demonstrate its practical effectiveness, particularly for
problems with low to moderate dimensionality, where convergence is achieved in a reasonable timeframe.
The algorithm is characterized by its simplicity in both implementation and application. Once
implemented, it provides a versatile framework for solving a diverse array of problems. Moreover,
solutions can be computed to virtually any desired degree of accuracy, subject only to the inherent
limitations of the computational hardware. This flexibility, coupled with its ease of use, underscores the
utility of the sandwich method as a reliable computational tool for fixed-point problems.
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