

A Comprehensive Review Of Structural Health Monitoring Of Bridge

¹Omkar Salunkhe, ²Tanmay Mangaonkar, ³Shreya Sawant, ⁴Laukik Tonemare, ⁵Asmita Lakhote

¹Student, ²Student, ³Student, ⁴Student, ⁵Professor

Department of Civil Engineering
Saraswati College of Engineering, Navi Mumbai, India

Abstract: This paper presents a comprehensive review of Structural Health Monitoring (SHM) techniques for bridges, focusing on the latest advancements in sensor technology, data acquisition systems, and analytical methods. It explores various SHM approaches, including vibration, strain, temperature, and displacement monitoring, while highlighting the role of machine learning and artificial intelligence in anomaly detection and failure prediction. The review also discusses the challenges and future trends in SHM implementation, emphasizing the potential of these technologies to improve bridge safety, extend service life, and optimize maintenance strategies. This study aims to provide insights for researchers and practitioners seeking to advance SHM practices in infrastructure management.

Index Terms - Structural Health Monitoring, Strain Gauge

I. INTRODUCTION

Bridges are vital to transportation infrastructure, serving as crucial links for communities and economies. However, they are exposed to various stressors, including environmental factors, heavy traffic, and aging materials, which can gradually undermine their structural integrity. Traditional inspection methods, which often depend on periodic assessments, may miss real-time changes or early signs of deterioration.

Structural health monitoring (SHM) provides a more proactive approach to bridge maintenance by utilizing advanced technologies to continuously evaluate the condition of structures. This project focuses on SHM for bridges by measuring and analyzing key parameters such as vibration, strain, temperature, and displacement. By integrating these data points, we can gain deeper insights into the bridge's condition and detect potential issues before they lead to serious failures.

The use of sensor networks and data analytic improves the accuracy of condition assessments and supports data-driven decision-making for maintenance and repairs. This project aims to develop a comprehensive SHM system with real-time monitoring capabilities, ensuring the safety and durability of bridge infrastructure. Through this innovative approach, we aim to advance civil engineering practices and strengthen the resilience of transportation networks.

II. LITERATURE SURVEY

Sdiq Anwar Taher, Jian Li, Jong-Hyun Jeong, Simon Laflamme, Hongki Jo, Caroline Bennett, William N. Collins, and Austin R. J. Downey (1) this paper examines the effectiveness of Structural Health Monitoring (SHM) in detecting fatigue cracks in steel bridge structures using Wireless Large Area Sensing Systems (WLASS). Steel bridges are vulnerable to fatigue cracks, especially in areas subjected to heavy loads like rear trucks, which can compromise their structural integrity. Traditional methods, such as visual inspections, may fail to accurately detect and monitor fatigue fractures. The WLASS system combines soft elastic capacitor (SEC) sensors for wide-area monitoring, a wireless platform for data acquisition and transmission,

and signal processing algorithms designed to detect fatigue-related issues. The algorithm analyzes strain data caused by traffic loads using wavelet transforms and growth indices to track potential fatigue cracks. The system's effectiveness was validated through field deployment on a steel highway bridge, highlighting its potential for the long-term management of fatigue cracks in public infrastructure.

Arvindaan Sivasuriyan, D. S. Vijayan, A. Leema Rose, J. Revathy, S. Gayathri Monicka, U. R. Adithya, J. Jebasingh Daniel (2) in this article they delves into the advancements in smart technology for Health and Maintenance Monitoring (HMM) of bridge structures. It highlights the significance of Structural Health Monitoring (SHM) in evaluating the performance and physical condition of bridges subjected to various stressors such as earthquakes, storms, environmental changes, and heavy traffic. The paper outlines the SHM process, including the selection of sensors, data acquisition techniques, and methods for estimating measurements. It also reviews various SHM applications, including dynamic international techniques and electromechanical impedance (EMI) techniques, discussing their advantages and limitations. The aim of this work is to provide researchers with a deeper understanding of effective bridge equipment maintenance strategies.

Seyedmilad Komarizadehasl, Fidel Lozano, Jose Antonio Lozano-Galant, Gonzalo Ramos, Jose Turmo (3) this paper introduces the development of an edge-based Structural Health Monitoring (E-SHM) system using low-power wireless technology. The key challenge addressed is the limited electrical power available for transmitting sensor data over long distances. The proposed system utilizes low-power sensors to measure damage-sensitive parameters based on local velocity data and wirelessly transmit this information to a cloud platform using the LoRa technology communication protocol. This method overcomes the restrictions of traditional wireless sensor networks, which typically limit data transmission size and frequency. The system was tested on a cantilever beam, where loosening bolts at the fixed end simulated damage. The results demonstrate how an IoT-enabled edge platform facilitates continuous monitoring and disaster detection.

Tadhg Buckley, Bidisha Ghosh, and Vikram Pakrashi (4) they discuss the development of a coastal health monitoring system (E-SHM) powered by low-energy resources. The challenge outlined is the difficulty in transmitting data from sensors over long distances due to limited electrical power. The proposed solution incorporates low-power sensors to capture damage-sensitive metrics from local speed data, which are then wirelessly transmitted to a cloud platform via the LoRa technology communication protocol. This approach addresses the limitations of conventional wireless sensor networks, particularly in terms of data size and transmission frequency. The system was tested on a cantilever beam, where bolt loosening at the fixed end simulated structural damage. The findings show how an IoT-enabled edge platform enables continuous monitoring and disaster detection for coastal infrastructure.

Federico Zanelli, Francesco Castelli-Dezza, Davide Tarsitano, Marco Mauri, Maria Laura Bacci, and Giorgio Diana (5) in this paper they presents the design and field evaluation of a low-power wireless sensor node, called "WindNode," developed for structural health monitoring (SHM) in bridge infrastructure. The WindNode is designed to measure acceleration, process data on-board, and wirelessly transmit the data to a gateway. Key features include the integration of MEMS accelerometers, Bluetooth Low Energy (BLE) communication, and solar power, ensuring high energy efficiency. The authors provide an in-depth description of the hardware and software design, with real-world testing showing the system's accuracy and efficiency in monitoring weather-related structural performance.

Behzad Ghahremani, Alireza Enshaeian, Piervincenzo Rizzo (6) this paper outlines a physical health monitoring (SHM) method for concrete adjacent girder bridges. A detailed finite element model of the bridge was created using ANSYS software to simulate the effects of concentrated loads at different points on the deck. Static analysis was performed to measure the resulting deformations, which were compared with strain data collected by a wireless strain gauge array during live traffic monitoring. The findings demonstrate that physics-based analysis can identify sensor issues and monitor the performance of the girder. Additionally, two years of long-term monitoring data were analyzed to assess the reliability of the SHM system and the environmental factors affecting the structure.

Haksoo Choi, Sukwon Choi, and Hojung Cha (7) the paper introduces an SHM system that uses wireless sensor nodes equipped with low-cost strain gauges. The system comprises sensor boards that amplify and process signals from the strain gauges, and communication software that transmits filtered data to a base station via a multi-hop network. Experimental results indicate that the proposed system is both reliable and

effective in structural health monitoring, providing useful information for condition assessments. The system overcomes the historical limitations of wireless SHM systems, including range restrictions, by offering multi-hop transmission without compromising performance. Key components include linear measurement devices, reliable data transmission systems, and a PC-based data acquisition platform.

Suresh Bhalla and Chee Kiong Soh (8) the paper speaks about presents a novel method for detecting structural damage using piezoelectric impedance sensors. The authors propose a new electroelastic interaction model for piezoelectric (PZT) structures based on the concept of "positive impedance." This model can extract the mechanical impedance of an unknown structure by analyzing the interface properties of the PZT patch. The model simplifies existing approaches, making it more practical for real-world applications. Validation was performed on a test structure, an aluminum block with a PZT patch, and the paper also introduces a method for assessing structural damage through extracted impedance spectra. The approach is applicable to structures ranging from small components to large-scale systems.

Suresh Bhalla and Chee Kiong Soh (9) propose a new method for structural analysis and non-destructive testing using piezoelectric impedance sensors. The authors suggest using this technology to detect and monitor damage in aerospace and related components. The key innovation lies in extracting the effective driving impedance of the structure by measuring conductivity and signal signatures. This impedance data is then used for non-uniform modeling and damage analysis. The study builds upon theoretical developments and experimental validation presented in the first part of the research.

Tyler Harms, Sahra Sedigh, and Filippo Bastianini (10) provide an overview of wireless sensor networks (WSNs) designed for autonomous SHM systems, including their applications, uses, and power requirements for remote monitoring. Traditional health monitoring systems require on-site analysts, making them costly and time-consuming. Autonomous SHM systems, enabled by WSNs, offer a solution, though they often suffer from high power consumption and limited communication capabilities. The authors present the Smart-brick platform, a fully wireless and autonomous SHM system that addresses these limitations by utilizing low-power components, redundant power supplies, and cellular communication capabilities for remote operation.

Zhihang Deng, Minshui Huang, Neng Wan, Jianwei Zhang (11) this paper explores the latest developments in bridge health monitoring (BHM) technology over the past five years, covering all aspects of BHM systems, including monitoring technology, data processing, early warning systems, and disaster detection. The paper emphasizes the critical role of BHM in ensuring safe bridge operations and preventing disasters. Advances in fiber optic sensors and computer vision technologies are discussed, alongside the challenges of data processing and early warning systems. This article provides a clear and structured framework for future BHM research and development.

Simon Laflamme, Matthias Kollosche, Venkata D. Kollipara, Hussam S. Saleem, Guggi Kofod (12) the study introduces a new sensing method for large-scale structural health monitoring. The proposed sensor is a flexible film, similar to biological skin, embedded with a matrix of soft capacitive strain gauges. The sensor is inexpensive, easy to install, and capable of detecting strain and identifying damage across large surfaces. By measuring changes in capacitance, the sensor can detect both static and dynamic stress as well as cracks. The device was tested on sample structures, demonstrating its ability to detect damage, and was preliminary deployed on a bridge, showing promise as a useful tool for large-scale SHM applications.

III. CONCLUSION

Structural health monitoring (SHM) is essential for ensuring the safety, durability, and longevity of bridges, which are critical components of transportation infrastructure. As bridge designs become more complex and traffic loads increase, traditional inspection methods fall short in providing timely and accurate assessments. SHM systems, which integrate sensors, data acquisition technologies, and advanced analytics, offer real-time monitoring and early detection of structural issues, allowing for proactive maintenance.

Wireless sensors, such as strain gauges and accelerometers, play a pivotal role in modern bridge SHM. Strain gauges provide highly accurate measurements of strain and deformation in structural elements, making them vital for detecting early signs of fatigue and cracking. Accelerometers, meanwhile, capture dynamic responses like vibrations and movements from traffic and environmental forces, providing critical insights into the bridge's overall structural health.

Despite the advancements, challenges persist, particularly regarding sensor accuracy, environmental durability, and long-term power management. Ongoing research and development are crucial to improving sensor resilience, data processing capabilities, and seamless integration with existing infrastructure.

The importance of continuous innovation in SHM technologies and sets the stage for future studies aimed at refining these systems for practical use. Advancements in SHM not only enhance infrastructure resilience but also contribute to a safer and more reliable transportation network.

IV. REFERENCES

1. Smart Sensor Networks for Civil Infrastructure Monitoring Sensors 2022, 22, 5076 Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors, July 2022 by Sdiq Anwar Taher, Jian Li, Jong-Hyun Jeong, Simon Laflamme, Hongki Jo, Caroline Bennett, William N. Collins and Austin R. J. Downey
2. Advances in Materials Science and Engineering Volume 2021, Article ID 2615029 Development of Smart Sensing Technology Approaches in Structural Health Monitoring of Bridge Structures, August 2021 by Arvindaan Sivasuriyan, D. S. Vijayan, A .LeemaRose, J. Revathy, S. Gayathri Monicka, U. R. Adithya, J. Jebasingh Daniel
3. Smart Sensor Networks for Civil Infrastructure Monitoring Sensors 2022, 22, 5725 Low-Cost Wireless Structural Health Monitoring of Bridges, July 2022 by Seyedmilad Komarizadehasl, Fidel Lozano, Jose Antonio Lozano-Galant, Gonzalo Ramos, Jose Turmo
4. Smart Sensor Networks for Civil Infrastructure Monitoring Sensors 2021, 21, 6760 Edge Structural Health Monitoring (E-SHM) Using Low-Power Wireless Sensing, October 2021 by Tadhg Buckley, Bidisha Ghosh and Vikram Pakrashi
5. Smart Sensor Networks for Civil Infrastructure Monitoring Sensors 2021, 21, 1050 Design and Field Validation of a Low Power Wireless Sensor Node for Structural Health Monitoring, February 2021 by Federico Zanelli, Francesco Castelli-Dezza, Davide Tarsitano, Marco Mauri, Maria Laura Bacci and Giorgio Diana
6. Smart Sensor Networks for Civil Infrastructure Monitoring Sensors 2022, 22, 5172 Bridge Health Monitoring Using Strain Data and High-Fidelity Finite Element Analysis, July 2022 by Behzad Ghahremani, Alireza Enshaeian, Piervincenzo Rizzo
7. Institute of Electrical and Electronics Engineers (IEEE) Structural Health Monitoring System based on Strain Gauge Enabled Wireless Sensor Nodes, August 2018 by Haksoo Choi, Sukwon Choi, and Hojung Cha
8. Journal of Aerospace Engineering Structural Health Monitoring by Piezo-Impedance Transducers. I: Modeling, June 2019 by Suresh Bhalla and Chee Kiong Soh
9. Journal of Aerospace Engineering Structural Health Monitoring by Piezo-Impedance Transducers. II: Modeling, June 2019 by Suresh Bhalla and Chee Kiong Soh
10. IEEE Instrumentation & Measurement Magazine Structural Health Monitoring of Bridges Using Wireless Sensor Networks, December 2020 by Tyler Harms, Sahra Sedigh, and Filippo Bastianini
11. Smart Sensor Networks for Civil Infrastructure Monitoring Buildings 2023, 13, 1360 The Current Development of Structural Health Monitoring for Bridges: A Review, may 2023 by Zhihang Deng , Minshui Huang, Neng Wan, Jianwei Zhang
12. The International Society for Optical Engineering Large-Scale Surface Strain Gauge for Health Monitoring of Civil Structures, March 2022 by Simon Laflammea, Matthias Kolloscheb, Venkata D. Kolliparaa , Hussam S. Saleema, Guggi Kofod