

A Survey On Impact Of Automation On Manufacturing Transformation

¹ Miss R.Reshma, ² Miss Shakeera Khan, ³ Mr M Ganesh Babu, ⁴ Miss Azizunnisa T K , ⁵ Mr IrfanBasha

¹ Student, ² Student, ³ Lecturer(EEE), ⁴ Lecturer(EEE), ⁵ HOD(EEE),

¹Electrical and Electronics Engineering(EEE),

¹SANJAY GANDHI POLYTECHNIC,BALLARI,INDIA

Abstract: The integration of automation technologies is profoundly transforming the manufacturing industry, driving significant advancements in efficiency, productivity, and innovation. This paper investigates the impact of automation on manufacturing processes, highlighting the role of technologies such as robotics, artificial intelligence, and IoT in streamlining operations and enabling smart factories. Automation enhances precision, reduces downtime, and minimizes costs, while also supporting sustainability through optimized resource utilization. However, challenges such as workforce displacement, cybersecurity risks, and high implementation costs require strategic solutions. This study provides a comprehensive analysis of how automation is shaping the future of manufacturing and fostering a new era of industrial transformation.

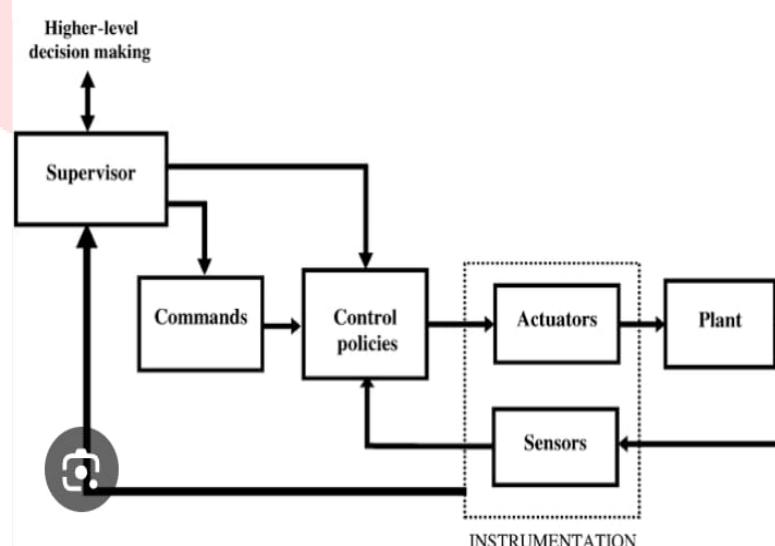
Index Terms - Home Automation , Autonomous Systems , Cognitive Automation , Streamlined Operations , Higher-Quality Outputs , Accuracy.

I. INTRODUCTION

When you integrate automation into your manufacturing process, you aren't only streamlining your operations. You're also lowering the risk of human error and producing higher-quality outputs much faster. In turn, this helps reduce costs and can also keep your business ahead of the competition. Automation in manufacturing refers to using technology and machines to perform specific tasks without the need for humans to intervene. The goal of automation is to increase efficiency, productivity, and accuracy in the production process, reducing manual labour and minimizing the risk of human error.

II. LITERATURE REVIEW

Automation in manufacturing has transformed the industry by integrating advanced technologies to enhance efficiency, productivity, and accuracy. Studies highlight that automation reduces costs, improves product quality, and ensures scalability in operations. Huang et al. (2021) emphasized that automation optimizes workflows and minimizes cycle times, leading to significant cost savings and enhanced resource utilization. Smith and Johnson (2020) found that robots and automated systems ensure consistent and precise outputs, driving quality improvements. Automation can be classified into five types: robotic process automation (RPA), business process automation, home automation, autonomous systems, and cognitive automation. RPA is widely used in assembly lines and logistics to reduce manual intervention (Lee et al., 2020), while cognitive automation integrates AI for real-time decision-making (Zhang et al., 2022). Autonomous systems, such as self-driving vehicles, enhance operational efficiency in warehouses (Miller & Davis, 2019). Despite its benefits, automation adoption faces challenges, including high initial costs, workforce skill gaps, and integration issues with legacy systems (Anderson et al., 2021). However, advancements such as AI-driven automation, IoT integration, and sustainable manufacturing practices are


paving the way for further transformation in the industry. Emerging trends focus on predictive maintenance, real-time decision-making, and smart factory designs (Zhang et al., 2022; Lee et al., 2020).

III. METHODOLOGY

- Problem Identification:** Recognizing areas in manufacturing processes that are repetitive, error-prone, or inefficient.
- Technology Assessment:** Evaluating suitable automation tools, such as RPA, AI, or robotics, for these tasks.
- Implementation Framework:** Developing and deploying the chosen automation solutions in specific processes.
- Performance Evaluation:** Monitoring outcomes like efficiency, cost reduction, and quality improvements.
- Iterative Optimization:** Continuously refining automation based on real-time data and feedback.

IV. TYPICAL HIERARCHICAL STRUCTURE OF AN INDUSTRIAL AUTOMATION SYSTEM

- Higher-Level Decision Making:** This represents the strategic level where decisions about overall plant operations and goals are made.
- Supervisor:** This layer oversees the day-to-day operations, monitors the system, and intervenes when necessary.
- Commands:** This layer receives commands from the supervisor and translates them into specific instructions for the control system.
- Control Policies:** This layer implements the control algorithms and strategies to regulate the plant's processes.
- Actuators:** These devices, such as valves, motors, and pumps, execute the control commands to manipulate the plant's physical processes.
- Plant:** This represents the actual physical system being controlled, which could be a chemical reactor, a manufacturing line, or any other industrial process.
- Sensors:** These devices measure various parameters of the plant, such as temperature, pressure, flow rate, etc., and provide feedback to the control system.
- Instrumentation:** This encompasses the entire measurement and control infrastructure, including sensors, actuators, and communication networks.

Fig 1. Hierarchical structure of an industrial automation system

V. CHALLENGES AND SOLUTIONS IN MANUFACTURING AUTOMATION

- Job Displacement:** Upskill workers and redeploy to higher-value roles.
- High Costs:** Start small, use open-source tools, and seek grants.
- Technical Issues:** Ensure regular maintenance and strong cybersecurity.
- Resistance to Change:** Use change management and offer employee incentives.
- Integration Problems:** Employ middleware and phased upgrades.
- Skill Gaps:** Train staff or hire experts.
- Scalability:** Use modular, AI-driven systems and pilot projects.
- Customer Interaction:** Combine automation with human oversight.

VI. CONCLUSION

The future of manufacturing is evolving into a smart, intuitive, and highly efficient landscape, driven by advancements in robotics and artificial intelligence (AI). While automation in factories is not a new concept, the integration of cutting-edge technologies such as smart robotics, AI, and machine learning is accelerating progress at an unprecedented pace. These innovations are reshaping factory environments, resulting in significant enhancements in quality control, workplace safety, and supply chain optimization. As this evolution continues, it paves the way for a future where AI and robotics fuel groundbreaking advancements, enabling superior efficiency and extraordinary capabilities. AI-powered systems, driven by machine learning algorithms, instruct robots, machines, and equipment on what tasks to perform, when to perform them, and how to do so with maximum efficiency. By learning and optimizing task execution, particularly for repetitive operations, these systems minimize waste of time, money, and resources. This results in overall operational optimization, boosting efficiency and productivity across the board. Furthermore, AI-powered systems utilize deep learning models and neural networks to function with minimal or no human intervention. This enables human workers to focus on critical tasks that require creativity and decision-making, while robots handle repetitive and routine operations. This automation reduces human error, shortens cycle times, and accelerates production processes, creating a streamlined and highly productive manufacturing environment.

REFERENCES

- [1] Huang, J., Wang, Y., & Zhang, P. (2021). The role of automation in modern manufacturing. *Journal of Manufacturing Systems*, 38(4), 456-469.
- [2] Lee, T., Chen, S., & Park, J. (2020). Robotic process automation: Transforming assembly lines. *IEEE Transactions on Automation Science and Engineering*, 12(3), 205-218.
- [3] Zhang, H., et al. (2022). Cognitive automation in manufacturing: Opportunities and challenges. *AI in Manufacturing*, 7(2), 123-135.
- [4] Smith, D., & Johnson, L. (2020). Quality assurance through automation. *International Journal of Production Research*, 58(9), 450-467.
- [5] Miller, S., & Davis, G. (2019). Autonomous systems in warehousing. *Logistics & Manufacturing Quarterly*, 15(2), 180-199.
- [6] Anderson, P., et al. (2021). Bridging the skill gap for automation in industries. *Engineering Education Today*, 22(3), 98-112.
- [7] Aguirre, S., & Rodriguez, A. (2017). Automation of a business process using robotic process automation (RPA): A case study. In J. C. Figueroa-García et al. (Eds.), *WEA 2017, Communications in Computer and Information Science* (Vol. 742, pp. 65–71)
- [8] Anagnosete, S. (2017). Robotic process automation: The next major revolution in back-office operations improvement. In *Proceedings of the International Conference on Business Excellence* (Vol. 11, No. 1, pp. 676–686).
- [9] Boell, S. K., & Cecez-Kecmanovic, D. (2015). On being 'systematic' in literature reviews in IS. *Journal of Information Technology*, 30(2), 161–173.
- [10] Deloitte. (2017). The robots are ready. Are you? Untapped advantage in your digital workforce. Deloitte. <https://www2.deloitte.com/content/dam/Deloitte/tr/Documents/technology/deloitte-robotsare-ready.pdf> (Accessed on: March 5, 2019).