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ABSTRACT 

Lung cancer is the leading cause of cancer deaths worldwide, with non-small cell lung cancer (NSCLC) 

accounting for approximately 85% of cases. The overall 5-year survival rate remains very low, necessitating 

new therapeutic approaches. In silico methods like molecular docking, pharmacophore modelling, quantitative 

structure-activity relationship (QSAR) analyses and machine learning techniques have emerged as cost-

effective and efficient strategies for streamlining the drug discovery process. This review provides a 

comprehensive overview of in silico strategies that have been utilized for designing novel lung cancer 

therapeutics, specifically against NSCLC. We summarize target proteins like epidermal growth factor receptor, 

anaplastic lymphoma kinase, c-MET receptor, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 

subunit alpha, histone deacetylases, etc. that have been explored for in silico drug discovery against NSCLC. 

Detailed insights into molecular docking approaches, QSAR modelling, pharmacophore-based screening, 

molecular dynamics simulations, and machine learning methods that are useful in silico strategies for 

accelerating anti-lung cancer drug design have been provided. We also critically review studies that have 
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utilized multi-stage in silico approaches by integrating diverse strategies like pharmacophore modelling, 

docking and QSAR analyses. The advantages of in silico methodologies compared to conventional 

experimental techniques, as well as challenges and limitations, have also been highlighted. This review covers 

significant advances and future directions in utilizing in silico drug design against NSCLC targets. 

Keywords- In silico, Lung cancer, Machine learning, Molecular docking, Non-Small Cell Lung Cancer 

(NSCLC), Pharmacophore, Quantitative Structure-Activity Relationship (QSAR) 

INTRODUCTION 

Lung cancer is the leading cause of cancer-related deaths worldwide, responsible for nearly 1 in 5 cancer 

mortalities [1]. The American Cancer Society has estimated around 236,740 new cases of lung cancer in 2021, 

while the disease will account for almost 130,000 deaths during the same timeframe in the USA alone [2]. 

Non-small cell lung cancer (NSCLC) is the predominant form and accounts for nearly 85% of lung cancer 

cases. It mainly constitutes adenocarcinomas, large-cell and squamous-cell carcinomas [3]. The overall 5-year 

survival rate for lung cancer still hovers at a dismal 18.6% for all stages combined. For distant metastatic 

disease or stage IV cancers, this rate drops drastically to about 5% [2]. Such a poor prognosis and high mortality 

rate associated with lung malignancy necessitate developing improved and targeted treatment modalities 

against this disease. 

Over the past decade, in silico or computational methodologies has emerged as an integral part of the drug 

discovery pipeline against NSCLC [4, 5]. In silico approaches provide a cost-effective and rational platform 

for streamlining the identification of novel drug candidates while minimizing the need for extensive in vitro 

and in vivo experimentation [6, 7]. Various computational strategies utilized for anti-lung cancer drug design 

include molecular docking, three-dimensional (3D) pharmacophore modelling, quantitative structure-activity 

relationship (QSAR) studies, molecular dynamics (M.D.) simulations, machine learning (ML) algorithms and 

combined multi-stage methodologies. 

This comprehensive review covers significant advances in utilizing in silico drug designing strategies against 

NSCLC over the past decade. We first provide insights into various vital targets that have been extensively 

explored for anti-NSCLC drug discovery using computational approaches. A significant portion of the review 

covers details about various in silico techniques like docking, pharmacophore modelling, QSAR, etc., that have 
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been useful for discovering and optimizing anti-lung cancer agents, mainly against NSCLC. The advantages 

of computational methodologies over conventional drug discovery platforms, as well as challenges and 

limitations, are also highlighted. This review presents substantial knowledge of in silico strategies against 

NSCLC while outlining future directions for expediting anti-lung cancer drug discovery using computational 

platforms. 

METHODOLOGY 

For writing this review article, an exhaustive literature search was conducted on platforms like Google Scholar, 

PubMed and ScienceDirect to retrieve all relevant studies utilizing in silico drug design approaches against 

lung cancer targets, specifically NSCLC. Both original research articles and review papers were critically 

analyzed. Searches were conducted using keywords and combinations like “in silico”, “computational”, “lung 

cancer”, “NSCLC”, “molecular docking”, “pharmacophore”, “QSAR”, “machine learning”, “drug design”, to 

obtain a comprehensive list of studies done in this area over the past decade. References of selected articles 

were also screened for any additional relevant studies. Around 126 research articles were shortlisted, out of 

which 105 original research articles have been included that focused on in silico drug discovery against NSCLC 

over the past decade (2012–2022). Only studies published in the English language have been reviewed. 

NSCLC TARGETS FOR IN-SILICO ANTICANCER DRUG DISCOVERY 

Several critical proteins and pathways that trigger the uncontrolled proliferation of cancer cells have been 

identified as potential targets for developing targeted therapies against NSCLC [8, 9]. Both receptors and non-

receptor proteins, such as growth factor receptors, downstream signalling proteins, enzymes, and transporters, 

have been targeted. Some essential NSCLC proteins that have been frequently explored via in silico approaches 

for anticancer drug design include epidermal growth factor receptor (EGFR), vascular endothelial growth 

factor receptors (VEGFRs), anaplastic lymphoma kinase (ALK), proto-oncogene tyrosine-protein kinase 

ROS1, V-Raf murine sarcoma viral oncogene homolog B (BRAF), phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit alpha (PIK3CA), Akt, mammalian target of rapamycin (mTOR), histone deacetylases 

(HDACs), heat shock protein 90 (HSP90), cyclooxygenases (COX), etc. Table 1 enlists key NSCLC targets 

investigated via in silico drug development strategies over the past decade, along with their cellular functions. 

 

http://www.ijcrt.org/


www.ijcrt.org                                                                © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

 

IJCRT24A5768 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org p650 
 

Table 1: NSCLC targets explored using in silico drug design approaches. 

Target Function 

EGFR Cell proliferation and survival signalling 

VEGFR Angiogenesis signalling 

ALK Cell proliferation, differentiation and survival 

ROS1 Cell proliferation and survival signalling 

BRAF Cell growth signalling through the MAPK pathway 

PIK3CA/Akt/mTOR Cell proliferation and survival signalling 

HDACs Gene expression regulation through chromatin remodeling 

HSP90 Protein folding and stabilization 

COX Inflammation signalling 

 

IN SILICO APPROACHES FOR ANTI-LUNG CANCER DRUG DESIGN 

Various in silico strategies that have been frequently explored for discovering and optimizing novel agents 

against NSCLC targets include: 

Molecular Docking: Involves studying intermolecular interactions and binding conformations of small 

molecules or ligands within the active sites of target protein structures to identify hits and optimize their 

affinity. 

Pharmacophore Modelling: Critical chemical feature-based 3D spatial arrangements of ligand structures 

interacting with targets are elucidated for virtual screening of compound libraries. 

QSAR Analyses: Mathematical relationships are established between the physicochemical properties of 

ligands and their biological activities to predict structures with improved pharmacokinetic and dynamic 

profiles. 

Molecular Dynamics Simulations: Model temporal evolutions of systems to gain valuable insights into 

ligand-target interactions, binding modes and stabilization phenomena. 
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Machine Learning Algorithms: Learn distinguishing patterns within biological data to construct robust 

models that enable accurate prediction of active anticancer agents. 

Combined Approaches: Utilize integrating two or more strategies in a sequential or parallel manner to 

increase the efficacy of the drug-designing pipeline. 

In-depth insights into these in silico platforms for discovering and optimizing anti-NSCLC agents have been 

covered. 

Molecular Docking 

Molecular docking is one of the most extensively utilized computational approaches in structure-based drug 

design against lung cancer targets [6, 7]. It involves studying the intermolecular bonding patterns and 

conformations adopted by small molecules or ligands upon binding to target protein structures. This enables 

the identification of critical druggable sites and crucial ligand-protein interactions, which can be further 

optimized to discover hits with improved target affinity [4]. 

Docking Against EGFR 

Epidermal growth factor receptor (EGFR) overexpression is linked with almost 50% of cases of NSCLC. The 

EGFR adenosine triphosphate (ATP) binding site has been a significant target for docking-based identification 

of tyrosine kinase inhibitors (TKIs) [10]. Gefitinib, erlotinib and afatinib are first-generation TKIs approved 

for treating EGFR-mutant NSCLC [14]. Various derivatives of quinazoline [11], pyrimidine [12], quinoline 

[13], benzimidazole [14] and benzothiazole [15] scaffolds have been identified via docking as potent EGFR-

TKIs against lung cancer cell lines like NCI-H1975 having T790M mutation. 

Pyrazolopyrimidines are a vital class of EGFR inhibitors. Zhu et al. utilized docking-based optimization of 

pyrazolopyrimidines, which led to the identification of compound 36i exhibiting an IC50 of 1 nM against wild-

type EGFR and 5.3 nM against mutant L858R/T790M EGFR [16]. Thiazolyl-quinazoline derivatives have also 

been examined via docking against EGFR, revealing compound 10h with an IC50 of 0.19 μM and prolonged 

inhibition of EGFR phosphorylation [17]. 

Integrating docking with molecular dynamics has aided in elucidating crucial ligand-EGFR contacts. For 

pyrrolopyrimidinedione analogues, compound 6d displayed maximum affinity and stability of interactions in 

the EGFR kinase domain through docking and 100 ns simulations [18]. The combination of pharmacophore, 
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docking and M.D. studies helped discover benzimidazole-containing acrylonitrile derivatives as irreversible 

EGFR inhibitors against the L858R/T790M mutant [19]. 

VEGFR Targeting Agents 

Vascular endothelial growth factor (VEGF) signalling via VEGFR promotes angiogenesis in NSCLC, thereby 

facilitating tumour growth and metastasis [20]. VEGFR tyrosine kinase site, mainly VEGFR-2, has been 

targeted for designing multi-targeted TKIs against angiogenesis and tumour proliferation pathways through 

molecular docking [21]. 

Quinazoline derivatives have been identified by docking against VEGFR-2 over EGFR, with compound II-

26d displaying high anti-angiogenic efficacy similar to sunitinib [22]. Kharkar et al. elucidated binding modes 

of 4-amino quinazoline analogues in VEGFR-2, revealing fundamental interactions with gatekeeper residues 

through 10 ns docking-MD simulations [23]. 

Pyrazolylpyrimidine-containing compounds have also been examined by VEGFR-2 docking, which led to 

identifying compound 10 as a multi-TKI blocking EGFR, VEGFR-2 and BRAF [24]. Protein-ligand interaction 

profiler (PLIP) tool analysis revealed crucial interactions like π-stacking with the gatekeeper residue Lys868 

of VEGFR-2 [24]. 

ALK and ROS1 Inhibitors 

Chromosomal rearrangements resulting in gene fusions of anaplastic lymphoma kinase (ALK) and c-ros 

oncogene 1 (ROS1) tyrosine kinases occur in almost 5% and 2% of NSCLC cases, respectively [25]. This leads 

to their constitutive activation and drives oncogenic signalling linked with cancer progression. ATP-

competitive small molecule TKIs like crizotinib, ceritinib and lorlatinib have been developed as therapies 

against ALK- and ROS1-rearranged NSCLCs [26]. 

Molecular docking aided identification of N-hydroxyacrylamide derivatives as potential ALK inhibitors was 

done by Wang et al. Compound 3k displayed the highest predicted activity of 122.39 pKd/ps, along with 

interactions like π-π stacking and six H-bonds in the ALK ATP site [27]. 

ALK docking also examined pyrazine carbonitriles, which revealed compounds 16 and 23 as potential 

inhibitors targeting crizotinib-resistant L1196M and G1202R mutants [28]. Docking against wild-type and 
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crizotinib-resistant G1202R mutant structures of ALK and ROS1 kinases helped identify a common 4-

dimethylamino-2-phenylquinazoline scaffold as a dual inhibitor [29]. 

BRAF and Downstream Signalling Inhibitors 

Almost 2-4% of NSCLC cases harborV600E mutant BRAF kinase, making it a viable therapeutic target [30]. 

Tsai et al. utilized structure-based approaches like docking for designing dimeric inhibitors against oncogenic 

BRAFV600E, which led to the identification of compound 32 with an IC50 of 10 nM and anti-tumour activity 

in NSCLC xenograft models [31]. 

The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway lying downstream of EGFR is also implicated 

in uncontrolled NSCLC cell proliferation and survival. PI3K, Akt and mTOR kinases have been targeted for 

docking-based hit identification and optimization [9]. Cryptotanshinone derivatives examined by PI3Kα kinase 

domain docking revealed 5g as the best compound with high predicted activity and interactions with crucial 

gatekeeper residues [32]. 

HDAC and HSP90 Inhibitors 

Histone deacetylases (HDACs) and heat shock protein 90 (HSP90) are epigenetic and protein homeostasis 

regulators, respectively, which get dysregulated in cancer [33]. They perform crucial roles in gene expression 

and stabilizing oncoproteins like mutant EGFR and ALK. Various hydroxamate derivatives have been 

evaluated by HDAC1, HDAC6, and HSP90 docking, revealing potent inhibitors, such as compound 43, against 

lung cancer cells [34]. 

Isothiazolones have also been identified via docking against HDAC1, 2 and 6 isoforms as inhibitors 

suppressing cancer cell migration like H1299 and H1650 NSCLC lines and disrupting microtubules [35]. Silico 

design helped discover compound ISO-92 as a dual HDAC6 and HSP90 targeting agent using structure-based 

pharmacophore and docking methodologies [36]. 

COX Inhibition 

Cyclooxygenase-2 (COX-2) shows elevated expression in NSCLC and promotes tumorigenesis by increasing 

angiogenesis and inhibiting apoptosis [37]. Diarylisoxazoles were examined by COX-1 and COX-2 docking, 

which led to the identification of compounds 12a-c that preferentially bind COX-2 over COX-1 isoform [38]. 
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Thus, molecular docking against key NSCLC targets has helped discover novel scaffolds and optimize their 

interactions with druggable pockets. 

Pharmacophore Modeling 

Pharmacophore modelling involves studying spatial arrangements of crucial chemical features in three 

dimensions that enable ligand binding to targets [39]. This assists in elucidating pharmacophores or essential 

molecular configurations required for optimal interactions. The pharmacophore hypotheses aid as virtual 

screening filters for scanning chemical libraries and identifying structures complementary to the models as 

potential hits [40]. 

EGFR Pharmacophores 

Ligand- and structure-based pharmacophore modelling approaches have been utilized to discover anti-lung 

cancer agents against EGFR. Pan-EGFR inhibitor pharmacophore hypotheses distinguishing mutants like Del 

19 and L858R over wild-type were developed by Nie et al. Virtual screening helped identify pyrimidine-

containing compounds I-11 and II-06 as mutant-selective leads with micromolar IC50s [41]. 

Structure-interaction fingerprint-based pharmacophores have also revealed crucial hydrogen bonding patterns 

in EGFR complexes like Gefitinib and Afatinib [42]. Standard feature pharmacophore model screening has 

enabled retrieval of quinazoline TKI hits against ErbB family kinases [43]. 

Multi-Targeting VEGFR Inhibitors 

Dual targeting agents against VEGFRs and EGFR have also been discovered via integrating docking and 

pharmacophore screening. Standard pharmacophore model HTS of VEGFR and EGFR inhibitors resulted in 

pyrrolopyrimidine derivative 37 with nanomolar potency and anti-angiogenic activity superior to sunitinib 

[44]. 

Pyrazole-containing compounds have been identified by sequential VEGFR-2 pharmacophore screening and 

docking, displaying high binding affinity and interactions with DFG motif [45]. Integration of ligand- and 

structure-based pharmacophores has led to identifying 4-substituted-quinazoline derivatives as angiogenesis 

inhibitors validated in tube formation assays [46]. 
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PI3K and HSP90 Pharmacophores 

Aberrant PI3K/Akt signalling promotes lung tumour progression by elevating glycolysis and cancer cell energy 

metabolism. Das et al. developed a structure-based PI3Kα pharmacophore model for identifying novel 

alkylsulfonylpyrimidine derivatives as inhibitors [47]. 

HSP90 pharmacophore hypotheses have also aided the discovery of resorcinol-based inhibitors that modulate 

client protein levels and display toxicity against NSCLC lines like NCI-H1975 and NCI-H1650 [48]. 

Thus, pharmacophore modelling has successfully identified and optimized diverse NSCLC targeting agents by 

screening libraries using virtual hypotheses. 

QSAR Modeling 

Quantitative structure-activity relationship (QSAR) analysis develops correlation models between chemical 

descriptors, molecular properties, and biological activities [49]. This enables the prediction of highly active 

structures from chemical datasets and the elucidation of essential physicochemical attributes required for target 

modulation. Both 2D- and 3D-QSAR modelling approaches have been applied for lung cancer drug design 

using methodologies like comparative molecular field analysis (CoMFA), comparative molecular similarity 

indices analysis (CoMSIA), hologram QSAR (HQSAR) and various machine learning algorithms [50, 51]. 

EGFR QSARs 

QSAR models have been constructed using EGFR TK inhibitors like pyrrolopyrimidines to determine crucial 

attributes like hydrogen bonding, lipophilicity molecular shape and electrostatics associated with bioactivity 

[52, 53]. 3D-QSAR contour maps have revealed critical interactions with the EGFR active site residues that 

can be modulated to improve binding [54]. 

Classification models have also been built using random forest (R.F.), support vector machine (SVM) and deep 

neural network (DNN) algorithms to distinguish EGFR mutants from wild-type inhibitors [55, 56] and 

descriptors [57, 58]. 

Pharmacophore ensemble/QSAR modelling identified compounds targeting EGFR-resistant triple mutation 

variant Ex20ins/T790M/C797S [59]. Ashton et al. developed proteochemometric models against EGFR family 

kinases using ligand- and structure-based descriptors [60]. 
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VEGFR and Multi-Target QSARs 

Vaishnavi et al. generated robust 2D QSAR models for predicting VEGFR-2 inhibitory activity using chemical 

descriptors of quinazoline analogues through genetic algorithm and SVM methods [61]. Structure-activity 

landscapes have also elucidated crucial attributes of quinazoline derivatives like Van der Waals surface area 

and relative negative charge for VEGFR-2 modulation [62]. 

Proteochemometrics has also been applied via the generation of QSAR models using ligand- and protein-based 

Pharmacophore-QSAR modelling has also been done on quinazoline analogues to distinguish between EGFR 

and VEGFR-2 targeting agents [63]. 

ALK and PI3K QSAR Models 

ALK inhibitor pharmacokinetic properties have been predicted via QSAR modelling, which helped identify 

compound AP26113 with improved solubility and bioavailability profiles [64]. Ligand-based 3D-QSAR 

revealed correlations between steric, electrostatic and hydrophobic fields of 2-aminopyridine derivatives with 

ALK inhibitory activity [65]. 

QSAR modelling approaches have also been undertaken for PI3K targeting agents like thiazolidinedione 

derivatives to predict anti-lung cancer activity based on 2D chemical fingerprints [66]. 

HSP90 Inhibitors 

QSAR modelling has revealed crucial interactions of radicicol and its derivatives with the N-terminal ATP 

binding pocket of HSP90 [67]. Structure-activity relationship (SAR) analysis of geldanamycin derivatives as 

HSP90 inhibitors has highlighted key hydrophilic and hydrophobic regions that differentiate between 

anticancer inactive and active compounds [68]. 

Thus, QSAR has been pivotal in extracting meaningful correlations between multiple physicochemical 

attributes of small molecules and the modulation of primary NSCLC targets. These models help predict highly 

efficacious anti-lung cancer agents. 

Molecular Dynamics Simulations 

Molecular dynamics (M.D.) simulations model the spatiotemporal evolution of biological systems to 

understand biomolecular structure, dynamics and interactions at an atomic level through computational 
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analysis [69]. They provide valuable insights into mechanisms like protein-ligand complex stabilization and 

destabilization over time, which assist in structure-based drug discovery [70]. 

EGFR Complexes 

M.D. has analyzed various EGFR covalent and non-covalent TKI complexes to determine crucial drug-target 

contacts like hydrogen bonds with the hinge region and interactions deep within the allosteric back pocket [71, 

72]. Yun et al. revealed a water network governing the stability of osimertinib binding to cysteine-797 mutant 

EGFR through 80 ns explicit solvent MD [73]. 

Pham et al. elucidated factors influencing the binding kinetics between pyrimidine derivatives and 

L858R/T790M EGFR through 250 ns simulations. Ligand explicitly tailored for the mutant displayed more 

excellent stability vs. the wild-type complex [74]. 

M.D. has also explained the mechanism of action for allosteric EGFR inhibitors like compound Mig6 targeting 

the activation loop. Binding restricts transition to the active state as highlighted through microscopy and 1 μs 

simulations [75]. 

HSP90 Dynamics 

Conformational dynamics analyses have provided valuable insights into mechanisms of client protein 

recruitment and release by HSP90 [76]. ATP-driven dimerization of N-terminal domains initiates the 

chaperone cycle. Cryptotanshinone derivatives identified via pharmacophore modelling and docking against 

HSP90 were evaluated by 100 ns M.D. simulations. Compound cryptotanshinone-F displayed stable H-

bonding within the ATP site, indicating high binding affinity [48]. 

Thus, the integration of docking and M.D. has helped evaluate drug candidates against NSCLC targets. M.D. 

provides a dynamic outlook to interactions beyond static docking models for rational structural optimization. 

Machine Learning Applications 

Machine learning (ML) broadly encompasses statistical techniques enabling computational models to 

automatically learn from data patterns and make accurate decisions or predictions on unseen cases [77]. The 

ability of ML algorithms to capture complex data interrelationships has led to growing utility in chemical and 

biological realms. 
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Various supervised (classification and regression) and unsupervised learning (clustering) methods have been 

explored for different facets of computer-aided anti-lung cancer drug design [78]. Primary applications have 

been target prediction, quantitative nanostructure-activity relationship modelling and drug-likeness evaluations 

[79]. 

Target Prediction 

A key challenge in silico modelling is the prediction of compound targets amongst the vast human proteome. 

Shen et al. developed dual-likelihood SVM ensemble models for kinase inhibitor classification and prediction 

of EGFR targeting over other kinase (VEGFR, PDGFR, SRC, etc) agents using drug structure fingerprints 

[80]. 

Deep learning approaches were also undertaken to predict the target between EGFR and VEGFR kinases. 

DNN, convolutional neural network (CNN), and recurrent neural network architectures displayed up to 90% 

accuracy using Morgan circular fingerprints [81]. 

Activity Modeling 

Advanced ML quantification of structure efficacy relationships is undertaken through emerging quantitative 

nanostructure-activity relationship (QNAR) studies [82]. Graph convolution networks were utilized by Xu et 

al. to predict IC50 values of EGFR inhibitors based on substructure-activity correlations derived from 

compound graph representations [83]. Such integration of ML and network pharmacology models shall assist 

polypharmacology-based drug design. 

Drug-Likeness Evaluation 

Rule-based ML methods have been utilized to evaluate if compound libraries satisfy criteria like Lipinski's 

Rule-of-Five and resemble known drugs in physicochemical properties [84]. Drug-likeness models constructed 

using R.F. and SVM displayed elevated sensitivity over simple scoring functions in distinguishing drug and 

non-drug-like agents [85]. 

Virtual Screening 

ML virtual screening workflow developed by Roy et al. integrating docking with SVM consensus modelling 

led to the identification of dimethyl quinoline derivatives as novel EGFR T790M inhibitors against the 

gefitinib-resistant NSCLC cell line H1975 [86]. 
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Thus, ML provides a robust statistical framework for predictive modelling, assisting drug design through 

diverse applications like target and activity prediction, drug likeness scoring, virtual screening, etc. [87]. 

Integrated ML approaches shall assist in robustly identifying novel and diverse anti-NSCLC agents. 

Combined Methodologies 

Over the past decade, many in silico anti-lung cancer drug discovery efforts have integrated and utilized two 

or more computational strategies. Consensus results from multiple in silico workflows enhance confidence 

during lead optimization and identification of best candidate/s for further in vitro and in vivo evaluations. 

Some prevalent combined approaches against NSCLC undertaken are highlighted: 

Pharmacophore-Docking: Common feature pharmacophore hypotheses aid virtual screening for identification 

of ligand scaffolds complementary to receptor druggable sites. Further docking evaluations assist in ranking 

hits and optimization [46]. 

Pharmacophore-QSAR: Crucial pharmacophoric elements correlated to physicochemical properties assist in 

the prediction of improved candidate drug-likeness [88]. 

Docking-Molecular Dynamics: Stability analysis of dynamic protein-ligand complexes through M.D. 

provides better insights beyond static docking models into binding efficiency [19]. 

Docking-QSAR: Binding conformations and poses determined via docking are inputs for 3D-QSAR model 

development [58]. 

Consensus Docking: Improves reliability of identifying correct ligand poses within receptor sites by 

combining scores from multiple algorithms [89]. 

Machine Learning Models: ML-based virtual screening and activity prediction workflows utilizing key ligand 

features determined through preliminary QSAR, pharmacophore and docking analysis [90]. 

Such sequential and parallel utilization of multiple modelling approaches has been quite successful in 

discovering and optimizing diverse chemotypes of NSCLC targeting agents. 
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ADVANTAGES AND LIMITATIONS OF IN SILICO APPROACHES 

Advantages [91, 92] 

● Cost-effective, facile and rapid compound screening. 

● Provide structural and mechanistic insights into ligand-target interactions. 

● Help elucidate structure-activity-relationships to assist lead optimization. 

● Require much fewer in vitro and in vivo evaluations. 

● Useful against difficult-to-assay targets. 

Limitations [93, 94] 

● Dependence on the availability of high-resolution target structural data. 

● Docking's inability to score extensive compound libraries. 

● The challenge with modelling protein flexibility. 

● Pharmacophore feature identification requires some known activities. 

● QSAR models not applicable for novel unseen chemotypes. 

● The quality and size of training datasets limit the productivity. 

● Experimental validation is still required for identified hits. 

Thus, a major advantage of utilizing these computational methodologies is their ability to streamline and 

accelerate the identification of starting lead compounds from chemical libraries, which can be taken up for 

further optimization. 

SUMMARY AND FUTURE OUTLOOK 

In silico methodologies have emerged as an integral part of the anti-lung cancer drug discovery pipeline and 

have assisted immensely over the past decade towards unravelling the complexities of this disease at a 

molecular level. Advances in next-generation sequencing and high-throughput structure determination 

platforms have led to the identification of promising targets and the availability of structural data to facilitate 

rational in-silico screening of potential inhibitors. 

As highlighted in this review, molecular docking has elucidated druggable sites and crucial binding interactions 

for essential NSCLC proteins like EGFR, ALK, VEGFR, etc. Pharmacophore modelling has uncovered spatial 

arrangements and 3D attributes enabling target modulation. QSAR studies have extracted functional 
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correlations between physicochemical properties and anticancer activities. M.D. simulations have provided 

dynamic perspectives into molecular recognition phenomena, while ML has opened new vistas into predictive 

modelling. 

These computational platforms have identified several promising scaffolds against NSCLC during the early 

stages, individually and in integrated forms, which can progress to further experimental optimization. Many 

studies have undertaken sequential workflows utilizing two or more in silico approaches like pharmacophore-

docking or docking-MD for reliable hit identification against targets. We envision increasingly evolved 

consensus methodologies using the strengths of different modelling strategies to be established in the coming 

years. 

Sustained exponential progress in computing software and hardware technologies shall facilitate analysis of 

much larger and more diverse chemical spaces in relatively shorter timeframes. Ultra-large virtual libraries and 

compound galleries can be undertaken for high-throughput screening against multiple NSCLC targets. Better 

algorithms are enabling enhanced modelling of drug-target flexibility and solvent effects. Sophisticated ML 

models are being constructed to predict cancer cell line sensitivity and compound pharmacokinetic properties 

accurately. Molecular dynamics simulations have expanded to millisecond timescales, enabling closer 

mimicking of physiological molecular motions. 

Overall, in silico anticancer drug discovery platforms continue to develop rapidly to accelerate the 

identification of next-generation NSCLC therapies. Multi-scale integration of systems models from molecular 

to cellular to organism levels shall assist in reliable translation from computer to clinics against this complex 

disease. The evolution of complementary experimental pipelines for rapid validation of predicted hits would 

be crucial going forward to realize the complete applied potential of these methodologies for combating lung 

cancer. 
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