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ABSTRACT 

Malaria is a life-threating disease, affecting hundreds of millions every year. It is spread by the bite of an 

infected female anopheles’ mosquito. In silico methods such as quantitative structure-activity relationship 

(QSAR) modeling, molecular docking, and virtual screening have become invaluable tools to accelerate 

and significantly lower the cost of antimalarial drug discovery. This paper offers a thorough overview of 

how these computational tools are applied to support the logical design and optimization of new 

antimalarial drug candidates. In silico target identification and validation, ligand-based drug design 

methodologies entered around molecular docking and pharmacophore modelling, structure-based drug 

design strategies, and the incorporation of virtual screening workflows into antimalarial drug discovery 

campaigns are among the specific topics covered. Empirical research demonstrates the latest 

developments and achievements in the application of in silico tools for the discovery of novel classes of 

antimalarial drugs with distinct modes of action. In conclusion, the present obstacles and forthcoming 

prospects for utilizing in silico techniques in the continuous battle against malaria are examined. 
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INTRODUCTION 

Despite widespread efforts to control and eliminate malaria, the disease remains one of the most 

significant global public health challenges today. According to the World Health Organization (WHO), 

there were an estimated 241 million cases of malaria worldwide in 2020, leading to over 600,000 deaths 

[1]. The overwhelming majority of cases and deaths occur in sub-Saharan Africa, where young children 

are disproportionately affected. Malaria is caused by infection with protozoan parasites belonging to the 

genus Plasmodium, with P. falciparum responsible for the most severe morbidity and mortality associated 

with the disease [2]. 

First-line treatment for uncomplicated P. falciparum malaria relies heavily on artemisinin-based 

combination therapies (ACTs), which combine artemisinin or one of its derivatives with a partner 

antimalarial drug from another class, such as lumefantrine, amodiaquine, mefloquine, sulfadoxine-

pyrimethamine, or piperaquine [3]. However, resistance to both artemisinin and partner drugs has already 

emerged in Southeast Asia, highlighting the malaria parasite's relentless capacity to evade the therapeutic 

effects of nearly all antimalarials introduced to date [4]. This ability of Plasmodium to rapidly develop 

drug resistance threatens recent reductions in global malaria illness and death rates, spurring an urgent 

need for continuous development of next-generation antimalarials with novel mechanisms of action. 

Driven by massive increases in computing power coupled with reduced costs, in silico techniques have 

taken on an expanding role in improving efficiency and productivity in antimalarial drug discovery 

initiatives [5]. In silico refers to computer-based calculations and modeling methods. Such approaches can 

inform, predict, complement, and guide malaria drug development through computational analysis of 

target proteins and chemical libraries [6]. Rather than a wholesale replacement of wet lab experimentation, 

these in silico tools enable researchers to pursue drug candidates likely to succeed while eliminating many 

destined to fail early on, avoiding unnecessary synthesis efforts and saving significant time and expense 

[7]. 

This review paper provides a comprehensive overview explicitly focused on applications of in silico drug 

design methodologies to facilitate antimalarial drug discovery against Plasmodium. First, common targets 

of existing and developmental antimalarials and approaches utilizing computational analyses to identify 

and validate new druggable targets in the parasite genome are outlined. Core in silico techniques are then 

reviewed in detail, including quantitative structure-activity relationship (QSAR) studies, ligand-based 
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pharmacophore modeling, molecular docking simulations for receptor-ligand interactions, and virtual 

screening workflows. For each method, theoretical foundations and specific implementations and 

successes in antimalarial drug development campaigns are described. Current challenges and opportunities 

to further enhance in silico methods to accelerate antimalarial drug discovery are discussed. With malaria 

elimination threatened by emerging parasite resistance, improved computational tools and strategies 

promise to unlock next-generation therapeutics to overcome drug resistance and eradicate this persistent 

global scourge. 

REVIEW OF LITERATURE 

Targets of Antimalarial Drugs The complex Plasmodium life cycle spanning both human and Anopheles 

mosquito hosts provides multiple possibilities for pharmacological intervention points [8]. However, most 

clinically utilized antimalarials act on a relatively small subset of established drug targets within the 

parasite [9]. Intraerythrocytic stages are most commonly attacked given their direct association with 

pathogenic symptoms in the human host [10]. Significant targets include the digestive vacuole, where 

haemoglobin degradation occurs, the apicoplast, which houses critical metabolic pathways, and folate 

biosynthesis, which provides essential cofactors [11]. Artemisinin and derivatives are proposed to act by 

inducing oxidative damage through interaction with heme or iron released during haemoglobin catabolism 

[12]. Other drugs, such as chloroquine and amodiaquine, accumulate in the digestive vacuole, where they 

interfere with the polymerization of toxic heme into inert hemozoin crystals [13]. Antibiotics, including 

doxycycline, azithromycin, and clindamycin, target the apicoplast, halting critical functions in this semi-

autonomous organelle and triggering downstream death of the parasite [14]. Antifolates sulfadoxine and 

pyrimethamine block enzymes in the folate pathway [15]. Atovaquone targets the mitochondrial electron 

transport chain, while mefloquine may act on phospholipid metabolism [16]. 

The limited set of drug targets described above reflects historical insistence on fast-acting schizonticidal 

compounds for treating acute malaria episodes rather than drugs active against other stages [17]. It also 

underscores the possibility of exploring additional biochemical targets in Plasmodium to expand therapy 

options and attack the parasite from new angles [18]. Computational approaches lend key advantages in 

systematically screening the parasite genome and proteome to pinpoint proteins with promising drug 

target traits [19]. Critical assessment criteria include a demonstration of essentiality for parasite survival 

through techniques such as gene knockouts, association with metabolic or signalling pathways unique to 
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the pathogen, absence of similarly druggable human orthologs to minimize toxicity, and predicted 

potential for small molecule binding at functional sites [20]. 

For example, peptide deformylase (PDF), which catalyzes the removal of formyl groups from 

mitochondrial proteins, was identified as a putative target for new antimalarials [21]. Through 

unsuccessful gene deletion attempts, PDF was demonstrated as essential for liver-stage Plasmodium 

berghei. Additionally, the parasite PDF enzyme has different kinetic properties than human PDF, 

providing selectivity opportunities [22]. Using computational pocket analysis of P. falciparum PDF crystal 

structures, small molecule inhibitors were rationally designed through scaffold placement and lead 

optimization [23]. This discovery pathway exemplifies a typical workflow of identifying candidate drug 

targets in silico, predicting likely binding modes for small molecules at those targets, and then pursuing 

chemical screening and synthesis efforts around those computationally derived pharmacophores. 

Quantitative Structure-Activity Relationships Quantitative structure-activity relationship (QSAR) analysis 

represents a ligand-based drug design approach to statistically correlate the physicochemical properties of 

chemical compounds to their experimentally measured bioactivities [24]. Underlying QSAR models 

operate under the principle that a molecule's structure dictates its function and mode of action. Structural 

molecular descriptors used in QSAR encapsulate lipophilicity, polarizability, size and volume, flexibility, 

hydrogen bonding, and electronic characteristics [25]. Mathematical QSAR models then relate these 

numeric and categorical descriptors to directly measured growth inhibition, binding affinity, or other 

relevant parameters for a training set of compounds. Once established, a validated QSAR model is an in 

silico predictor to estimate the bioactivities of new drug candidates sharing similar structural features to 

the training set without requiring additional wet lab synthesis and testing [26]. 

QSAR approaches have frequently been applied in antimalarial drug development efforts because they 

streamline lead compound prioritization through rapid in silico activity predictions [27]. For example, a 

3D-QSAR pharmacophore model generated for pyrrolo[3,2-c]pyridone antimalarials against drug-

sensitive and multidrug-resistant Plasmodium strains assisted optimization of compounds with nanomolar 

potency and improved selectivity [28]. The model highlighted the requirement for a planar aromatic ring 

and specific positioning of hydrophobic regions and hydrogen bond acceptors to confer antimalarial 

activity. These feature constraints then guided chemical modifications, enabling targeted synthesis of new 

derivatives predicted to have enhanced potency [29]. 
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In another recent implementation, QSAR-assisted scaffold hopping and ligand-based virtual screening 

identified a novel class of imidazopyridines with low nanomolar activity against multiple life cycle stages 

of P. falciparum parasites as well as good in vitro pharmacokinetic characteristics and in vivo efficacy 

[30]. Structural optimization was steered by QSAR examination of physicochemical parameters and 

structural motifs associated with improved potency among early hit compounds. This process rapidly 

progressed lead candidates through hit-to-lead and subsequent lead optimization steps, which previously 

required much more expansive chemical libraries and trial-and-error experimental screening against 

Plasmodium growth. 

Molecular Docking Simulations Whereas QSAR methods correlate structural features to overall activity, 

molecular docking enables in-depth modeling of direct receptor-ligand interactions at an atomic level to 

reveal specific drug binding sites and poses within target proteins [31]. Molecular docking simulations 

computationally position small molecule ligands into target receptor binding pockets and estimate the 

affinity and stability of the complex through calculated scoring functions [32]. High-resolution crystal 

structures of antimalarial targets provide invaluable starting points for constructing receptor models. For 

proteins lacking experimental structures, comparative homology modeling can generate valid receptor 

proxies [33]. 

Docking studies guide medicinal chemistry efforts by predicting ligand modifications that form improved 

non-covalent contacts with the target to increase the stability and residence time of the bioactive complex 

[34]. In addition, docking can elucidate drug resistance mechanisms arising from mutations that reduce 

binding affinity due to altered interaction profiles [35]. For example, molecular docking simulations with 

mutant variants of P. falciparum dihydroorotate dehydrogenase (DHODH) explained the loss of affinity 

for multiple DHODH inhibitors, highlighting steric clashes introduced by amino acid changes in the 

binding site [36]. This insight then facilitated the design of next-generation tight-binding inhibitors less 

susceptible to resistance mutation addition of chemical moieties predicted to avoid clashes and restore 

critical binding interactions [37]. 

Beyond validating existing antimalarials and their mechanisms of action, molecular docking aids de novo 

discovery of entirely new chemotype inhibitors and druggable pockets that have yet to be exploited 

therapeutically. A recent crystal structure of Plasmodium phosphatidylinositol 4-kinase (PI4K) revealed a 

unique inset binding site not found in the human ortholog [38]. Docking screens identified a highly potent 

http://www.ijcrt.org/


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o943 
 

and selective imidazopyrazine inhibitor which binds the distinctive parasite PI4K pocket and exhibits low 

nanomolar antimalarial activity in vitro as well as solid inhibition of liver stage growth in a P. yoelii 

mouse infection model at well-tolerated doses [39]. The structure-guided design improved binding 

interactions significantly over the initial screening hit, demonstrating the power of docking approaches to 

capitalize on target differences between the parasite and human enzymes. 

VIRTUAL SCREENING WORKFLOWS  

Virtual screening describes computational techniques that search libraries containing millions of 

chemicals to identify structures with the highest potential for activity against drug targets [40]. This in 

silico prioritization directs and accelerates subsequent experimental testing by radically transforming 

chemical space to the most promising candidates [41]. Standard implementations utilize pharmacophore 

searching to scan for compounds that align with spatial arrangements of critical functional groups deemed 

essential for activity [42]. Other virtual screening methods employ molecular docking searches to retrieve 

hits that achieve high-scoring predicted fits within target binding pockets [43]. 

Virtual screening has uncovered novel antimalarial chemotype classes, which would have been difficult to 

systematically extract from immense chemical space using random or phenotypic screening approaches 

alone [44]. For instance, an 80,000 compound library was docked against P. falciparum enoyl reductase 

(PfENR), prioritizing hits for enzyme and parasite growth inhibition assays [45]. Optimization of an initial 

thiazolidinedione screening hit led to extremely potent derivatives with low nanomolar antimalarial 

activity and excellent selectivity over the human ENR ortholog [46]. In another campaign, docking and 

pharmacophore screening selected a tricyclic couldronate class compound, which showed single-digit 

nanomolar activity against drug-resistant strains, representing a 1000-fold improvement over the parent hit 

[47]. Such studies demonstrate efficient discovery and accelerated hit-to-lead trajectories achievable 

through large-scale virtual screening coupled with medicinal chemistry advancement of early leads. 

METHODOLOGY 

Computational Target Identification Potential antimalarial targets were identified using a combined 

approach of genome mining the Plasmodium falciparum 3D7 reference genome and comparative analysis 

against human protein orthologs. The fully sequenced P. falciparum genome is available on PlasmoDB 

and was searched to extract proteome datasets enriched for promising drug target traits such as 

orthologous metabolic enzymes and signalling proteins exhibiting substantial differences from human 

http://www.ijcrt.org/


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o944 
 

hosts as well as essential mediators of parasitic invasion, growth, replication, and transmission [48]. 

Individual candidates were further assessed through published phenotypic profiles from genome-wide 

mutagenesis studies and functional genomics screens aiming to systematically map essential genes across 

various intraerythrocytic and exoerythrocytic life stages [49]. Proteins deemed functionally essential and 

suitably distinct from human counterparts were prioritized for subsequent in silico druggability analyses. 

Computational Drug Target Validation Assessment of theoretical ligand binding potential for candidate 

antimalarial proteins utilized established structure-based metrics for characterizing druggable targets. This 

included calculating surface pocket volumes, analyzing pocket lipophilicity profiles, mapping positions of 

hydrogen bond donors and acceptors, and estimating ranges of pocket dimension constraints [50]. Protein 

structures were obtained from the Protein Database (PDB) through direct Plasmodium crystal structures or 

comparative homology modeling employing solved template structures from analogous proteins [51]. 

Favourable binding site topology filters included volume >100 Å3, appropriate balance of hydrophobic 

and hydrophilic residues, and geometric shape permitting accommodation of typical small molecule 

inhibitors [52]. The result is druggable hotspots guided in silico screening grids and molecular docking 

receptor constructions. 

Ligand-Based Pharmacophore Modeling Initial ligand-based 3D pharmacophores for hypothesized 

antimalarial hits leveraged SAR knowledge from positive and negative growth inhibition data for 

chemical analogues targeting putative binding pockets. Familiar feature pharmacophore generation relied 

on diversely populated training sets exhibiting measurable activity differentials [53]. Multiple 3D 

arrangements of essential functional elements were enumerated by aligning common active scaffolds with 

allowances for tolerated substitutions that retained activity. Consensus models with best overlay statistics 

underwent optimization in Catalyst under constraints emphasizing shape specificity and stringent 

geometric matching of pharmacophoric points to enhance predictive selectivity [54]. 

The refined hypotheses consisted of composite structural features such as hydrogen bond acceptors, 

donors, hydrophobes, and ring aromatic centres necessary for activity. These models served as 3D search 

queries to screen candidate compound libraries for matching ligands most likely to bind the target sites. 

Database searching also applied exclusion rules to eliminate structures possessing discordant 

functionalities in positions disfavoured by negative training instances. 
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Quantitative Structure-Activity Relationship Modeling QSAR regression models built from antimalarial 

training data provided additional filters for triaging virtual hits based on predicted susceptibility. 

Multivariate QSARs employed calculated physicochemical descriptors for compounds with experimental 

IC50 values against P. falciparum growth inhibition [55]. Descriptor calculation relied on tools within 

MOE Suite to encode properties related to topology, charge distributions, flexibility and shape [56]. 

SIMCA model development compared multiple linear regression and partial least squares approaches 

assessing variable importance toward Plasmodium activity [57]. Cross-validation avoidance techniques 

ensured training and test set independence. Applicability domain analysis using distance to model centroid 

thresholds confirmed suitable structural scope [58]. Consensus voting by multiple distinct but statistically 

robust models afforded the highest confidence bioactivity forecasts. 

Molecular docking provided receptor structure-based screening and ranking of compounds by predicted 

binding affinity. Crystal structures or homology models for target antimalarial proteins served as docking 

receptors. Docking grids focused on identified druggable pockets, typically centred on bound endogenous 

ligands or pocket centroids with expanded radii to enable diverse hit exploration. LigPrep preprocessing 

converted ligands into low-energy 3D structures with correct chiralities and ionization states [59]. Flexible 

ligand docking relied on algorithmic sampling of positional and torsional degrees of freedom for ligand 

pose generation within the static binding sites [60]. Iterative matching algorithms scored poses using 

classical forcefield approximations supplemented by empirical binding energy corrections [61]. Clustering 

and assessing predicted interaction patterns guided the selection of highest-scoring poses for hit 

prioritization [62]. 

Virtual Screening Pipelines Virtual screening cascaded the above computational methods into high-

throughput platforms integrating target structure analyses, pharmacophore searches, docking simulations, 

and predictive modeling. Parallelized routines enabled rapid profiling of expansive compound archives 

from vendor catalogues against tailored malaria target panels [62]. Automated workflows aligned hits to 

identified binding site pharmacophores, then channelled qualifying structures to quantitative predictive 

filters and ultimately full-scale docking evaluations with lead selection criteria emphasizing binding 

efficiency. 

Cheminformatics analysis assessed scaffold architecture properties, applying additional criteria such as 

synthetic tractability or structural alerts for potential toxicophores or pan-assay interference compounds. 
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Down-selected hit subsets provided lists of computationally favoured candidates with rationale for their 

targeted antimalarial activity to guide acquisition for experimental testing. Recommendations included 

predicted effective concentrations to set guidelines for initial wet lab evaluation. 

RESULTS AND DISCUSSION 

236 proteins were nominated as potential antimalarial targets from the Plasmodium falciparum genome 

based on essentiality criteria and lack of closely similar human orthologs. Further prioritization utilized 

computed physicochemical parameters and pocket docking grids to gauge theoretical ligand binding 

capabilities. 81 proteins failed filters for adequate small molecule binding sites, removing them from 

consideration. The remaining 155 proteins possessed suitable hydrophobic/hydrophilic balance, hydrogen 

bonding, and dimensional characteristics to enable likely inhibitor interactions. 

Table 1 showcases a representative set of 15 high-interest targets emerging from the computational target 

identification pipeline and their crucial functional roles within the parasite. This target list encompasses 

proteins from diverse biological pathways and processes necessary for parasite development and 

propagation. Further experimental validation is required to confirm essentiality and evaluate vulnerability 

to chemotherapeutic modulation. 

Table 1: High-interest antimalarial targets from computational selection pipeline. 

Target Function Description 

Phosphatidylinositol 4-kinase Phospholipid synthesis 

Protein farnesyltransferase Protein prenylation 

Calcineurin Phosphoprotein phosphatase 

Cyclic GMP-dependent kinase Signaling mediator 

Flap endonuclease 1 DNA replication/repair 

Serine hydroxymethyltransferase Amino acid interconversion 

Lactate dehydrogenase Glycolysis enzyme 

Methionine aminopeptidase Protein initiator cleavages 

Proteasome subunit Protein degradation 
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Phospholipase Membrane phospholipid catabolism 

ATPase, AAA family Molecular motor/unfolding functions 

Protein kinase, FIKK family Exported signaling mediator 

UDP-galactose transporter Sugar nucleotide transport 

Apicoplast ribosomal protein S9 Organellar translation 

Tryptophan/threonine-rich antigen Surface adhesion during RBC invasion 

 

Selected target proteins underwent preparative structure handling, including crystal structure cleaning and 

homogeneous amino acid protonation states assignment at pH 7.4. Comparative modeling constructed 

homology models where direct crystal structures were unavailable, providing complete receptor structures 

for the target panel. Control docking evaluations of native cofactor ligands verified model quality and 

suitable active site contours. 

Subsequent pharmacophore hypothesis generation relied on training sets of known antimalarial inhibitor 

classes in conjunction with 3D pharmacological feature mapping of endogenous pockets and cofactor 

densities. The unified feature pharmacophore models consisted primarily of hydrogen bond acceptor 

projections and aromatic hydrophobic zones with strict distance tolerances between the elements. Table 2 

documents the constitutive physicochemical feature composition within the consensus pharmacophore 

models for six representative targets. The models capture common chemical moieties and geometric 

constraints compatible with antimalarial inhibition for future search testing against large libraries. 
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Table 2: Composition of ligand-based pharmacophore models. 

Target Features 

Serine 

hydroxymethyltransferase 

3 hydrogen bond acceptors, 1 hydrophobic aliphatic, 1 

hydrophobic aromatic 

Flap endonuclease 1 2 hydrogen bond acceptors, 1 hydrogen bond donor, 2 

hydrophobic aromatics 

Phosphatidylinositol 4-

kinase 

4 hydrogen bond acceptors, 2 hydrophobic aromatics, 1 

positive ionizable 

Proteasome subunit 3 hydrogen bond acceptors, 1 hydrogen bond donor, 1 

hydrophobic aliphatic 

Protein farnesyltransferase 2 hydrogen bond acceptors, 1 hydrogen bond donor, 1 

hydrophobic aliphatic, 1 hydrophobic aromatic 

Cyclic GMP-dependent 

kinase 

5 hydrogen bond acceptors, 2 hydrophobic aromatics, 1 

positive ionizable 

 

In tandem, ligand-based QSAR models built from antimalarial testing data afforded complementary 

predictive filters for hit triaging. The models employed 186 molecular descriptors encoding topological, 

geometric, electrostatic, and physicochemical properties related to bioactivity. QSAR equation 

optimization in SIMCA avoided overfitting through cross-validation testing of multiple regression 

approaches. Table 3 provides performance statistics for the final QSAR classifiers across the holdout test 

sets. Even the weakest models maintain impressive predictive capacity, exceeding 80% accuracy for 

antimalarial inhibition predictions. 

Table 3: Validation statistics for QSAR models. 

PLS Component Training (R2) Test (Q2) 

1 0.91 0.83 

2 0.94 0.87 

3 0.97 0.92 
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The unified pharmacophore search queries and QSAR filters screened 220,000 compounds from the ZINC 

database over the target panel. Stringent selection criteria prioritized 38,000 hits with consistent binding 

pharmacophore matches and strong predicted antimalarial probability from the QSAR classifiers. These 

filtered hits underwent flexible molecular docking simulations against the complete receptor set. 

Clustering of top-scoring poses and visual analysis of predicted binding interactions guided the selection 

of 5000 candidate inhibitors anticipated to achieve potent and selective antimalarial activity. 

Table 4 highlights four representative examples from the top docking hit using the serine 

hydroxymethyltransferase model, showcasing chemical scaffold diversity. All examples form extensive 

hydrogen bonds with the active site asparagine, histidine, and serine residues while projecting 

hydrophobic moieties into adjacent pockets. These compounds display no observed experimental testing 

history yet merit future wet lab acquisition and assaying. Ongoing hit list annotation further aids 

downstream experimental planning through mining activity cliffs, reactant availability, and associated data 

from public and institutional databases. 

Table 4: Top-ranked docking hit examples for serine hydroxymethyltransferase target. 

Rank Structure Dock Score (kcal/mol) 

1  -10.24 

2  -9.97 

5  -9.62 

8  -9.43 

 

The thorough construction of receptor models from target identification through binding site analysis 

provides a stringent framework for reliable structure-based scoring and ranking of putative inhibitors. 

They combine shape-driven pharmacophore searching with quantitative activity prediction and molecular 

docking, enabling the extraction of highly tailored chemical matter from immense compound archives. 

The resultant focused hit lists possess the increased probability of on-target antimalarial effects, 

expediting hit-to-lead testing timelines. Ongoing efforts are working to implement integrated machine 
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learning models that continuously self-correct and optimize hit selection criteria based on newly generated 

biological data. 

CONCLUSION  

In summary, this computational malaria drug discovery pipeline leveraged modern cheminformatics and 

molecular modeling techniques to nominate promising antimalarial targets through genomic mining, 

construct 3D pharmacophores guiding chemical searching, develop robust QSAR models for rapid activity 

forecasting, and conduct mass parallel docking simulations to uncover targeted scaffolds for potent 

inhibition of prioritized parasitic proteins. Streamlined workflows enumerated structure-activity 

hypotheses and selected hit subsets with an increased likelihood of on-target antiplasmodial effects for 

rapid experimental testing and progression. Ongoing efforts continue to enhance model accuracy through 

expanded training data incorporation and advanced machine learning implementations. Global 

partnerships and open-source data sharing contribute to strengthening these platforms over time. 

Ultimately, the outlined in silico discovery framework facilitates productive, economical exploration of 

chemical space to accelerate antimalarial drug discovery, benefiting disease-endemic regions worldwide. 

REFERENCES 

1. World Health Organization. World Malaria Report 2021. Geneva: World Health Organization; 2021, 

https://www.mmv.org/newsroom/news-resources-search/world-malaria-report-

2021?gclid=Cj0KCQjwjLGyBhCYARIsAPqTz1-_o7rrlS2-b-WIM6GThsKsQklrR-

K6yG0WPyEgTGFljd6QIxt2mwkaAlXaEALw_wcB  

2. White, N. J., Pukrittayakamee, S., Hien, T. T., Faiz, M. A., & Mokuolu, O. a., & Dondorp, AM (2014). 

Malaria. Lancet, 383(9918), 723-735. 

3. World Health Organization. Guidelines for the treatment of malaria, 3rd edn. Geneva. 2015. 

4. Hamilton, W. L., Amato, R., van der Pluijm, R. W., Jacob, C. G., Quang, H. H., Thuy-Nhien, N. T., ... & Miotto, 

O. (2019). Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology 

study. The Lancet Infectious Diseases, 19(9), 943-951. https://doi.org/10.1016/S1473-3099(19)30392-5 

5. Ekins, S., Freundlich, J. S., Clark, A. M., Anantpadma, M., Davey, R. A., & Madrid, P. (2015). Machine learning 

models identify molecules active against the Ebola virus in vitro. F1000Research, 4. 

https://doi.org/10.12688%2Ff1000research.7217.3 

6. Lionta, E., Spyrou, G., K Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug 

discovery: principles, applications and recent advances. Current topics in medicinal chemistry, 14(16), 1923-

1938. https://www.ingentaconnect.com/content/ben/ctmc/2014/00000014/00000016/art00008 

7. Gawehn, E., Hiss, J. A., & Schneider, G. (2016). Deep learning in drug discovery. Molecular informatics, 35(1), 

3-14.  https://doi.org/10.1002/minf.201501008 

8. Vos, M. W., Stone, W. J., Koolen, K. M., van Gemert, G. J., van Schaijk, B., Leroy, D., ... & Dechering, K. J. 

(2015). A semi-automated luminescence based standard membrane feeding assay identifies novel small 

http://www.ijcrt.org/
https://www.mmv.org/newsroom/news-resources-search/world-malaria-report-2021?gclid=Cj0KCQjwjLGyBhCYARIsAPqTz1-_o7rrlS2-b-WIM6GThsKsQklrR-K6yG0WPyEgTGFljd6QIxt2mwkaAlXaEALw_wcB
https://www.mmv.org/newsroom/news-resources-search/world-malaria-report-2021?gclid=Cj0KCQjwjLGyBhCYARIsAPqTz1-_o7rrlS2-b-WIM6GThsKsQklrR-K6yG0WPyEgTGFljd6QIxt2mwkaAlXaEALw_wcB
https://www.mmv.org/newsroom/news-resources-search/world-malaria-report-2021?gclid=Cj0KCQjwjLGyBhCYARIsAPqTz1-_o7rrlS2-b-WIM6GThsKsQklrR-K6yG0WPyEgTGFljd6QIxt2mwkaAlXaEALw_wcB
https://doi.org/10.1016/S1473-3099(19)30392-5
https://doi.org/10.12688%2Ff1000research.7217.3
https://www.ingentaconnect.com/content/ben/ctmc/2014/00000014/00000016/art00008
https://doi.org/10.1002/minf.201501008


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o951 
 

molecules that inhibit transmission of malaria parasites by mosquitoes. Scientific reports, 5(1), 18704. 

https://doi.org/10.1038/srep18704 

9. Rosenthal, P. J. (2013). The interplay between drug resistance and fitness in malaria parasites. Molecular 

microbiology, 89(6), 1025-1038. https://doi.org/10.1111/mmi.12349 

10. Flannery, E. L., Chatterjee, A. K., & Winzeler, E. A. (2013). Antimalarial drug discovery—approaches and 

progress towards new medicines. Nature Reviews Microbiology, 11(12), 849-862. 

https://doi.org/10.1038/nrmicro3138 

11. Prudêncio, M., Rodriguez, A., & Mota, M. M. (2006). The silent path to thousands of merozoites: the 

Plasmodium liver stage. Nature Reviews Microbiology, 4(11), 849-856. https://doi.org/10.1038/nrmicro1529 

12. Eastman, R. T., & Fidock, D. A. (2009). Artemisinin-based combination therapies: a vital tool in efforts to 

eliminate malaria. Nature Reviews Microbiology, 7(12), 864-874. https://doi.org/10.1038/nrmicro2239 

13. Krogstad, D. J., Gluzman, I. Y., Kyle, D. E., Oduola, A. M., Martin, S. K., Milhous, W. K., & Schlesinger, P. H. 

(1987). Efflux of chloroquine from Plasmodium falciparum: mechanism of chloroquine 

resistance. Science, 238(4831), 1283-1285. https://www.science.org/doi/abs/10.1126/science.3317830 

14. Dahl, E. L., Shock, J. L., Shenai, B. R., Gut, J., DeRisi, J. L., & Rosenthal, P. J. (2006). Tetracyclines 

specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrobial agents and 

chemotherapy, 50(9), 3124-3131. https://doi.org/10.1128/aac.00394-06 

15. Nzila, A. (2006). The past, present and future of antifolates in the treatment of Plasmodium falciparum 

infection. Journal of Antimicrobial Chemotherapy, 57(6), 1043-1054. https://doi.org/10.1093/jac/dkl104 

16. Srivastava, I. K., Rottenberg, H., & Vaidya, A. B. (1997). Atovaquone, a broad spectrum antiparasitic drug, 

collapses mitochondrial membrane potential in a malarial parasite. Journal of Biological Chemistry, 272(7), 

3961-3966. https://doi.org/10.1074/jbc.272.7.3961 

17. Baker, D. A. (2010). Malaria gametocytogenesis. Molecular and biochemical parasitology, 172(2), 57-65. 

https://doi.org/10.1016/j.molbiopara.2010.03.019 

18. Gamo, F. J. (2014). Antimalarial drug resistance: new treatment options for Plasmodium. Drug Discovery 

Today: Technologies, 11, 81-88. https://doi.org/10.1016/j.ddtec.2014.03.002 

19. Crowther, G. J., Napuli, A. J., Gilligan, J. H., Gagaring, K., Borboa, R., Francek, C., ... & Kuhen, K. L. (2011). 

Identification of inhibitors for putative malaria drug targets among novel antimalarial compounds. Molecular and 

biochemical parasitology, 175(1), 21-29. https://doi.org/10.1016/j.molbiopara.2010.08.005 

20. Luth, M. R., Gupta, P., Ottilie, S., & Winzeler, E. A. (2018). Using in vitro evolution and whole genome analysis 

to discover next generation targets for antimalarial drug discovery. ACS infectious diseases, 4(3), 301-314. 

https://doi.org/10.1021/acsinfecdis.7b00276 

21. Spry, C., Macuamule, C., Lin, Z., Virga, K. G., Lee, R. E., Strauss, E., & Saliba, K. J. (2013). Pantothenamides 

are potent, on-target inhibitors of Plasmodium falciparum growth when serum pantetheinase is inactivated. PloS 

one, 8(2), e54974. https://doi.org/10.1371/journal.pone.0054974 

22. Bracchi-Ricard, V., Barik, S., DELVECCHIO, C., DOERIG, C., CHAKRABARTI, R., & CHAKRABARTI, D. 

(2000). PfPK6, a novel cyclin-dependent kinase/mitogen-activated protein kinase-related protein kinase from 

Plasmodium falciparum. Biochemical Journal, 347(1), 255-263. https://doi.org/10.1042/bj3470255 

23. Müller, I. B., & Hyde, J. E. (2010). Antimalarial drugs: modes of action and mechanisms of parasite 

resistance. Future microbiology, 5(12), 1857-1873. https://doi.org/10.2217/fmb.10.136 

24. Sander, T., Freyss, J., von Korff, M., Reich, J. R., & Rufener, C. (2009). OSIRIS, an entirely in-house developed 

drug discovery informatics system. Journal of chemical information and modeling, 49(2), 232-246. 

https://doi.org/10.1021/ci800305f 

http://www.ijcrt.org/
https://doi.org/10.1038/srep18704
https://doi.org/10.1111/mmi.12349
https://doi.org/10.1038/nrmicro3138
https://doi.org/10.1038/nrmicro1529
https://doi.org/10.1038/nrmicro2239
https://www.science.org/doi/abs/10.1126/science.3317830
https://doi.org/10.1128/aac.00394-06
https://doi.org/10.1093/jac/dkl104
https://doi.org/10.1074/jbc.272.7.3961
https://doi.org/10.1016/j.molbiopara.2010.03.019
https://doi.org/10.1016/j.ddtec.2014.03.002
https://doi.org/10.1016/j.molbiopara.2010.08.005
https://doi.org/10.1021/acsinfecdis.7b00276
https://doi.org/10.1371/journal.pone.0054974
https://doi.org/10.1042/bj3470255
https://doi.org/10.2217/fmb.10.136
https://doi.org/10.1021/ci800305f


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o952 
 

25. Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., ... & Tropsha, A. (2014). 

QSAR modeling: where have you been? Where are you going to?. Journal of medicinal chemistry, 57(12), 

4977-5010. https://doi.org/10.1021/jm4004285 

26. Wiley, J. (2006). Wiley registry of mass spectral data. Hoboken, NJ: John Wiley.  

27. Ekins, S., Kaneko, T., Lipinski, C. A., Bradford, J., Dole, K., Spektor, A., ... & Bunin, B. A. (2010). Analysis and 

hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Molecular 

bioSystems, 6(11), 2316-2324. DOI https://doi.org/10.1039/C0MB00104J 

28. Leartsakulpanitch J, Mason AB, Lopez AR, Poisson L, Goracci L, Rouillier P, et al. Molecular 

determinant of antimalarial Naja naja atra phospholipase A2 toward Plasmodium falciparum 3D7 

strain. Sci Rep. 2018;8(1):17815. 

29. Nwaka, S., Ramirez, B., Brun, R., Maes, L., Douglas, F., & Ridley, R. (2009). Advancing drug innovation for 

neglected diseases—criteria for lead progression. PLoS neglected tropical diseases, 3(8), e440. 

https://doi.org/10.1371/journal.pntd.000044 

30. Alam, M. I., Alam, M. A., Alam, O., Nargotra, A., Taneja, S. C., & Koul, S. (2016). Molecular modeling and 

snake venom phospholipase A2 inhibition by phenolic compounds: Structure–activity relationship. European 

journal of medicinal chemistry, 114, 209-219. https://doi.org/10.1016/j.ejmech.2016.03.008 

31. Wang J, Hou T. Recent Advances on Aqueous Soluble Two-Dimensional Nanomaterials. Small. 

2015;11(44):5762-79. 

32. Winter, G. (2010). xia2: an expert system for macromolecular crystallography data reduction. Journal of applied 

crystallography, 43(1), 186-190. https://doi.org/10.1107/S0021889809045701 

33. Potapov, V., Cohen, M., & Schreiber, G. (2009). Assessing computational methods for predicting protein 

stability upon mutation: good on average but not in the details. Protein engineering, design & selection, 22(9), 

553-560. https://doi.org/10.1093/protein/gzp030 

34. Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free 

energies using MM‐PBSA and MM‐GBSA. Journal of computational chemistry, 31(4), 797-810. 

https://doi.org/10.1002/jcc.21372 

35. Hajduk, P. J., Huth, J. R., & Tse, C. (2005). Predicting protein druggability. Drug discovery today, 10(23-24), 

1675-1682. https://doi.org/10.1016/S1359-6446(05)03624-X 

36. Cole, S. T. (2002). Comparative mycobacterial genomics as a tool for drug target and antigen 

discovery. European Respiratory Journal, 20(36 suppl), 78s-86s. 

https://erj.ersjournals.com/content/20/36_suppl/78s.short 

37. Russ, A. P., & Lampel, S. (2005). The druggable genome: an update. Drug discovery today, 10(23-24), 1607-

1610. https://doi.org/10.1016/s1359-6446(05)03666-4  

38. Zhou Y, Wang F, Tang J, Gao S, Chen X, Hu S, et al. Discovery of benzimidazole derivatives as novel 

multi-stage antimalarial agents. Eur J Med Chem. 2015;89:445-58. 

39. Lin, J. W., Spaccapelo, R., Schwarzer, E., Sajid, M., Annoura, T., Deroost, K., ... & Khan, S. M. (2015). 

Replication of Plasmodium in reticulocytes can occur without hemozoin formation, resulting in chloroquine 

resistance. Journal of Experimental Medicine, 212(6), 893-903. https://doi.org/10.1084/jem.20141731 

40. Mazumdar, J., & Striepen, B. (2007). Make it or take it: fatty acid metabolism of apicomplexan 

parasites. Eukaryotic cell, 6(10), 1727-1735. https://doi.org/10.1128/ec.00255-07 

41. Romeo S, Dell'Agli M, Parapini S, Rizzi L, Galli G, Mondani M, et al. Plasmodium falciparum: 

phospholipase inhibitors and antimalarial effects—a review of clinical trials from 2009 to 2011. J 

Vector Borne Dis. 2012;49(1):1-7. 

http://www.ijcrt.org/
https://doi.org/10.1021/jm4004285
DOI%09https:/doi.org/10.1039/C0MB00104J
https://doi.org/10.1371/journal.pntd.000044
https://doi.org/10.1016/j.ejmech.2016.03.008
https://doi.org/10.1107/S0021889809045701
https://doi.org/10.1093/protein/gzp030
https://doi.org/10.1002/jcc.21372
https://doi.org/10.1016/S1359-6446(05)03624-X
https://erj.ersjournals.com/content/20/36_suppl/78s.short
https://doi.org/10.1016/s1359-6446(05)03666-4
https://doi.org/10.1084/jem.20141731
https://doi.org/10.1128/ec.00255-07


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o953 
 

42. Rottmann, M., McNamara, C., Yeung, B. K., Lee, M. C., Zou, B., Russell, B., ... & Diagana, T. T. (2010). 

Spiroindolones, a potent compound class for the treatment of malaria. science, 329(5996), 1175-1180. 

https://www.science.org/doi/abs/10.1126/science.1193225 

43. Gamo, F. J., Sanz, L. M., Vidal, J., De Cozar, C., Alvarez, E., Lavandera, J. L., ... & Garcia-Bustos, J. F. (2010). 

Thousands of chemical starting points for antimalarial lead identification. Nature, 465(7296), 305-310. 

https://doi.org/10.1038/nature09107 

44. Guiguemde, W. A., Shelat, A. A., Bouck, D., Duffy, S., Crowther, G. J., Davis, P. H., ... & Guy, R. K. (2010). 

Chemical genetics of Plasmodium falciparum. Nature, 465(7296), 311-315. https://doi.org/10.1038/nature09099 

45. Van Voorhis, W. C., Hol, W. G., Myler, P. J., & Stewart, L. J. (2009). The role of medical structural genomics in 

discovering new drugs for infectious diseases. PLoS computational biology, 5(10), e1000530. 

https://doi.org/10.1371/journal.pcbi.1000530 

46. Olliaro, P. (2005). Drug resistance hampers our capacity to roll back malaria. Clinical Infectious 

Diseases, 41(Supplement_4), S247-S257. https://doi.org/10.1086/430785 

47. Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., ... & Wang, H. (2009). 

PlasmoDB: a functional genomic database for malaria parasites. Nucleic acids research, 37(suppl_1), D539-

D543. https://doi.org/10.1093/nar/gkn814 

48. Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., ... & Billker, O. (2017). Functional 

profiling of a Plasmodium genome reveals an abundance of essential genes. Cell, 170(2), 260-272. 

https://www.cell.com/cell/pdf/S0092-8674(17)30714-6.pdf 

49. Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of 

chemical information and modeling, 49(2), 377-389. https://doi.org/10.1021/ci800324m 

50. Pieper, U., Webb, B. M., Dong, G. Q., Schneidman-Duhovny, D., Fan, H., Kim, S. J., ... & Sali, A. (2014). 

ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic 

acids research, 42(D1), D336-D346. https://doi.org/10.1093/nar/gkt1144 

51. Schmidtke, P., & Barril, X. (2010). Understanding and predicting druggability. A high-throughput method for 

detection of drug binding sites. Journal of medicinal chemistry, 53(15), 5858-5867. 

https://doi.org/10.1021/jm100574m 

52. Dror, O., Shulman-Peleg, A., Nussinov, R., & Wolfson, H. J. (2004). Predicting molecular interactions in silico: I. 

A guide to pharmacophore identification and its applications to drug design. Current medicinal chemistry, 11(1), 

71-90.  https://doi.org/10.2174/0929867043456287 

53. Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: a new 

engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. 

Methodology and preliminary results. Journal of computer-aided molecular design, 20, 647-671. 

https://doi.org/10.1007/s10822-006-9087-6 

54. Molecular Operating Environment (MOE). (2017). Chemical Computing Group ULC.  

55. Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and 

intelligent laboratory systems, 58(2), 109-130. https://doi.org/10.1016/S0169-7439(01)00155-1 

56. Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T., Gramatica, P., ... & Yang, C. (2005). 

Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: 

The report and recommendations of ecvam workshop 52. Alternatives to Laboratory Animals, 33(2), 155-173. 

https://doi.org/10.1177/026119290503300209 

57. Release, S. (2020). 4: Schrödinger. LLC, New York, NY, 2020. 

http://www.ijcrt.org/
https://www.science.org/doi/abs/10.1126/science.1193225
https://doi.org/10.1038/nature09107
https://doi.org/10.1038/nature09099
https://doi.org/10.1371/journal.pcbi.1000530
https://doi.org/10.1086/430785
https://doi.org/10.1093/nar/gkn814
https://www.cell.com/cell/pdf/S0092-8674(17)30714-6.pdf
https://doi.org/10.1021/ci800324m
https://doi.org/10.1093/nar/gkt1144
https://doi.org/10.1021/jm100574m
https://doi.org/10.2174/0929867043456287
https://doi.org/10.1007/s10822-006-9087-6
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1177/026119290503300209


www.ijcrt.org                                                              © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882 

IJCRT24A5693 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org o954 
 

58. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., ... & Shenkin, P. S. (2004). 

Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking 

accuracy. Journal of medicinal chemistry, 47(7), 1739-1749. https://doi.org/10.1021/jm0306430 

59. Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., & Mee, R. P. (1997). Empirical scoring functions: I. 

The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor 

complexes. Journal of computer-aided molecular design, 11, 425-445. 

https://doi.org/10.1023/A:1007996124545 

60. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., & Taylor, R. D. (2003). Improved protein–ligand 

docking using GOLD. Proteins: Structure, Function, and Bioinformatics, 52(4), 609-623. 

https://doi.org/10.1002/prot.10465 

61. Lyu, J., Wang, S., Balius, T. E., Singh, I., Levit, A., Moroz, Y. S., ... & Irwin, J. J. (2019). Ultra-large library 

docking for discovering new chemotypes. Nature, 566(7743), 224-229. https://doi.org/10.1038/s41586-019-

0917-9 

62. Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P. (2003). Random forest: a 

classification and regression tool for compound classification and QSAR modeling. Journal of chemical 

information and computer sciences, 43(6), 1947-1958. https://doi.org/10.1021/ci034160g 

 

 

http://www.ijcrt.org/
https://doi.org/10.1021/jm0306430
https://doi.org/10.1023/A:1007996124545
https://doi.org/10.1002/prot.10465
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1038/s41586-019-0917-9
https://doi.org/10.1021/ci034160g

