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Abstract: In this paper, we introduced a new class of sets called C-generalized closed (briefly Cg-closed) set 

which is a simultaneous generalization of C-closed and g-closed sets. First we investigated basic some 

properties of Cg-closed sets and then we obtained the relationship of Cg-closed sets with some other existing 

generalized closed sets. Moreover, we introduced the notion of C-Normal space by using C-closed sets, also 

we obtained some basic characterizations, properties and preservation theorems of C-normal spaces. Further, 

we also introduced some function related to Cg-open sets and investigated their properties with C-normal 

spaces. 
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1. Introduction 

Closed sets play a major role in the study of topological spaces. Generalized closed sets are a very useful 

research topic in topological spaces for many Topologists. In 1923, Tietze [8] first introduced the concept of 

normal spaces and studied their properties. In 1937, M. Stone [7] introduced the notion of regular open sets. 

In 1963, N. Levine [4] defined the concept of semi open sets and investigated their properties. In 1970, N. 

Levine [5] introduced the notion of generalized closed sets and studied the properties of g-closed sets in 

topological spaces. In 2002, K. Chandrasekhara Rao and K. Joseph [6] introduced the concept of s*g-closed 

sets in topological spaces. In 2023, Mesfer H. Alqahtani [1] introduced the concept of F-open and F-closed 

sets in topological spaces. In 2023, Mesfer H. Alqahtani [2] introduced the concept of C-open sets in 

topological spaces. In 2024, Hamant Kumar, B. S. Sharma and Anuj Kumar [3] introduced the concept of Fg-

closed set which is the generalization of F-closed sets. They studied basic properties of these sets and examine 

the relationships between Fg-open and Fg-closed sets with other kinds of closed and open sets such as semi 

open, semi closed, w-open, w closed and g-open and g-closed sets etc. 
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2. Preliminaries 

Throughout in this paper, spaces (X, ), (Y, σ), and (Z, γ) (or simply X, Y and Z) always mean topological 

spaces on which no separation axioms are assumed unless explicitly stated. Let f: X→Y (or simply f) always 

denote a mapping from space X to space Y. Let B be a subset of a space X. The closure of B, interior of B and 

complement of B is denoted by cl(B), int(B) and Bc (or X – B) respectively. 

Definition 2.1: A subset B of a topological space (X, ) is said to be:  

(i) regular open [7]  if B = int(cl(B)). 

(ii) semi open [4]  if B  cl(int(B)). 

(iii) F-open [1] if cl(B) – B is finite set and B is open in X. 

(iv)  C-open [2] if cl(B) – B is countable set and B is open in X. 

The complement of a regular open (resp. semi open, F-open and C-open set) set is called regular closed (resp. 

semi closed, F-closed and C-closed) set. 

 

The intersection of all regular closed (resp. semi closed, F-closed and C-closed) sets containing B, is called 

regular closure (resp. semi closure, F-closure and C-closure) of B, and is denoted by r-cl(B) (resp. s-cl(B), 

F-cl(B) and C-cl(B)). The union of all regular open (resp. semi open, F-open and C-open) sets contained in B, 

is called regular interior (resp. semi interior, F-interior and C-interior) of B, and is denoted by r-int(B) 

(resp. s-int(B), F-int(B) and C-int(B)).  

The collection of all regular open (resp. semi open, F-open and C-open) sets in X is denoted by r-O(X) (resp. 

s-O(X), F-O(X) and C-O(X)). The collection of all regular closed (resp. semi closed, F-closed and C-closed) 

sets in X is denoted by r-C(X) (resp. s-C(X), F-C(X) and C-C(X)).  

 

Remark 2.2 From the above definitions the relationship among C-open sets and some other existing weaker 

and stronger forms of open sets are given as: 

 

                      F-open             C-open               open                  semi open    

 

Where none of the implications is reversible can be seen from the following examples: 

 

Example 2.3 Let X = {a, b, c} and  = {, {a}, X}. Then {a, b} is semi open set in X but not open set in X. 

 

Example 2.4 Let (ℝ, U) be the usual topological space then interval [2, 5) is semi open in ℝ as [2, 5)  

cl(int([2, 5))) but not open in ℝ . 

 

Example 2.5 Let X = ℝ and  is the collection of all those subsets of ℝ which do not contain any irrational 

numbers together with ℝ then (ℝ, ) be a topological space. Now the set of rational number ℚ be an open set 

in (ℝ, )  but not a C-open set in (ℝ, )  as: cl(ℚ) – ℚ = ℝ – ℚ = ℚC (set of irrational numbers) which is an 

uncountable set. 

 

Example 2.6 Let X = ℝ and  is the collection of all those subsets of ℝ which contains a particular point 0 

together with empty set  then (ℝ, ) be a topological space. Now the set of integer ℤ be an open set in (ℝ, )  

but not C-open set in (ℝ, ) as: cl(ℤ) – ℤ = ℝ – ℤ which is not a countable set. 

 

Example 2.7 The set of natural numbers ℕ is a closed set of usual topological spaces (ℝ, U) then ℝ – ℕ is 

open set in ℝ, also C-open set in ℝ but not F-open set in ℝ as: cl(ℝ – ℕ) – (ℝ – ℕ) = ℝ – (ℝ – ℕ) = ℕ which 

is countable set but not finite set. 
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Definition 2.8 A subset B of a topological space (X, ) is said to be: 

(i) g-closed [5] if cl(B)  U whenever A  U and U ∈ . 

(ii) s*g-closed [6] if cl(B)  U whenever A  U and U is semi-open. 

(iii)Fg-closed [3] if cl(B)  U whenever A  U and U is F-open. 

 

3. Cg-closed sets 

 

Definition 3.1 A subset B of a topological space (X, ) is said to be Cg-closed if cl(B)  U whenever B  U 

and U is C-open. The complement of the Cg-closed set is called Cg-open set. The collection of all Cg-open 

(resp. Cg-closed) sets is denoted by Cg-O(X) (resp. Cg-C(X)). 

 

The intersection of all Cg-closed sets containing B, is called the Cg-closure of B and is denoted by Cg-cl(B). 

The Cg-interior of B, denoted by Cg-int(B) is defined to be the union of all Cg-open sets contained in B. 

 

Theorem 3.2 Every s*g-closed set is Cg-closed set. 

Proof: Let B be an s*g-closed set in X and let B  U where U is C-open in X. Now every C-open set is semi 

open set and B is s*g-closed, so by the definition of s*g-closed set, cl(B)  U, hence B is Cg-closed set in X. 

 

Theorem 3.3 Every g-closed set is Cg-closed set. 

Proof: Let B be a g-closed set in X and let B  U where U is C-open in X. Now every C-open set is open set 

and B is g-closed, so by the definition of g-closed set, cl(B)  U, hence B is Cg-closed set in X. 

 

 Theorem 3.4 Every Cg-closed set is Fg-closed set. 

Proof: Let B be a Cg-closed set in X and let B  U where U is F-open in X. Now every F-open set is C-open 

set and B is Cg-closed, so by the definition of Cg-closed set, cl(B)  U, hence it is clear that B is Fg-closed 

set in X. 

 

Remark 3.5 We summarize the fundamental relationships between several types of generalized closed sets by 

the following implications: 

closed        s*g-closed             g-closed            Cg-closed            Fg-closed 

The converse of the above implication may not be true as can be seen from the following examples: 

 

Example 3.6 Let for the set of real numbers ℝ, the collection of open sets  = {, ℚ, ℚC, ℝ} then (ℝ, ) be a 

topological space. The set of integer ℤ is not closed in (ℝ, ) as cl(ℤ) = ℚ, but ℤ is an s*g-closed set as ℚ is 

the smallest semi open set which contains ℤ and cl(ℤ) = ℚ  ℚ.   

 

Example 3.7 For the set of real numbers ℝ, let the collection of open sets  = {, ℕ, ℝ} (where ℕ is the set of 

natural number) then (ℝ, ) be a topological space. Now the set of integer ℤ is a g-closed in (ℝ, ) as: ℝ is 

the smallest open set which contains ℤ (because ℤ is not open) and cl(ℤ) = ℝ also contained in ℝ. But ℤ is not 

s*g-closed set in (ℝ, ) as: ℤ be a semi open in  (ℝ, ) (because ℤ  cl(int(ℤ)) = cl(ℕ) = ℝ) and ℤ  ℤ but 

cl(ℤ) = ℝ is not subset of ℤ.   

 

Example 3.8  By example 2.5 the set of rational numbers ℚ is a Cg-closed set in (ℝ, ) as set of real 

numbers ℝ is the smallest C-open set containing ℚ (because ℚ is not C-open set in (ℝ, )) and cl(ℚ) = ℝ  

ℝ. But ℚ is not a g-closed set in (ℝ, ) as ℚ is open in (ℝ, ) also ℚ  ℚ but cl(ℚ) = ℝ is not a subset of ℚ. 
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Example 3.9 For topological spaces (ℝ, ), where  = {, ℕ, ℝ}. Now the set of natural numbers ℕ is a Cg-

closed set in (ℝ, ) as the set of real numbers ℝ is the smallest C-open set containing ℕ (because ℕ is not C-

open set in (ℝ, ) as ℕ is open and cl(ℕ) – ℕ = ℝ – ℕ which is an uncountable set) and cl(ℕ) = ℝ  ℝ. But 

ℕ is not a g-closed set in (ℝ, ) as ℕ is an open set in (ℝ, ) also ℕ  ℕ but cl(ℕ) = ℝ is not a subset of ℕ. 

 

Example 3.10 For the topological space (ℝ, ) where ℝ is the set of real numbers and  be the collection of 

open sets and  = {, ℚC, ℝ}, the set of irrational number ℚC is a C-open set in (ℝ, ) as ℚC is open set in 

(ℝ, ) and cl(ℚC) – ℚC = ℝ – ℚC = ℚ which is a countable set. Now ℚC is not a Cg-closed set in (ℝ, ) as ℚC  

is C-open set and ℚC  ℚC  but cl(ℚC) = ℝ is not a subset of ℚC, but ℚC is an Fg-closed set in (ℝ, ) as ℝ is 

the smallest F-open set which contains ℚC (because ℚC is not F-open in (ℝ, )) and cl(ℚC) = ℝ  ℝ. 

 

4. Properties of Cg-closed sets 

 

Theorem 4.1: Union of two Cg-closed set is Cg-closed set. 

Proof: Let J and K be two Cg-closed sets. Let U be a C-open set containing J  K.  Now J is Cg-closed set 

then cl(J)  U as J  U and U is C-open set, also K is Cg-closed set then cl(K)  U as K  U and U is C-open 

set. Now cl(J)  U and cl(K)  U  cl(J)  cl(K)  U  cl(J  K)  U (because cl(J  K) = cl(J)  cl(K)). 

Hence cl(J  K)  U whenever J  K  U and U is C-open set. Hence J  K is Cg-closed set. 

 

In general finite union of Cg-closed sets is Cg-closed set. 

 

Theorem 4.2: Intersection of two Cg-closed set is Cg-closed set. 

Proof: Let J and K be two Cg-closed set. Now J is Cg-closed set if cl(J)  U1 whenever J  U1 and U1 is C-

open set, also K is Cg-closed set if cl(K)  U2 whenever K  U2 and U2 is C-open set. Now U1  U2 is C-

open set as U1 and U2 are C-open sets, and J  K  U1  U2 as J  U1 and K  U2. Now cl(J)  U1 and cl(K) 

 U2  cl(J)  cl(K)  U1  U2  cl(J  K)  U1 ∩ U2 (because cl(J  K)  cl(J)  cl(K)). Hence cl(J  

K)  U1  U2 whenever J  K  U1  U2 and U1  U2 is C-open set. Hence J  K is Cg-closed set. 

 

In general finite intersection of Cg-closed sets is Cg-closed set. 

 

Theorem 4.3: Union of two Cg-open sets is Cg-open set. 

Proof: Let G and H be two Cg-open subset of a topological space (X, ). Then X  G and X  H be two 

closed Cg-subset of X. Hence (X  G)  (X  H) is Cg-closed subset of X by Theorem 4.2 Now (X  G)  

(X  H) = X   (G  H) be Cg-closed set  G  H is Cg-open set. Hence union of two Cg-open sets is Cg-

open set. 

 

In general finite union of Cg-open sets is Cg-open set. 

 

Theorem 4.4: Intersection of two Cg-open sets is Cg-open set. 

Proof: Let G and H be two Cg-open subset of a topological space (X, ). Then X  G and X  H be two Cg-

closed subsets of X. Hence (X  G)  (X  H) be the Cg-closed subset of X by Theorem 4.1. Now (X  G)  

(X  H) = X   (G  H) be Cg-closed set  G  H is Cg-open set. Hence intersection of two Cg-open sets is 

Cg-open set. 

 

In general finite intersection of Cg-open sets is Cg-open set. 
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Remark 4.5: Arbitrary union of Cg-closed sets is may not be Cg-closed set. 

 

Example 4.6: For the set of natural number ℕ,  be the collection of all those subset of ℕ whose complement 

is finite together with the empty set, then  is cofinite topology for ℕ. Let An = {n+1}   n  {1, 2, 3, 4…..} 

be the closed sets, hence Cg-closed subsets in the ℕ. Now let A be the countable union of An, i.e. A = A1  A2 

 A3  A4  ….  = {2, 3, 4, 5…} = ℕ  {1} which is not Cg-closed set as A  ℕ  {1} and ℕ  {1} is C-

open set  (as ℕ  {1} is open set in ℕ, and cl(ℕ  {1})  (ℕ  {1}) = ℕ  (ℕ  {1}) = singleton set {1} which 

is countable) but cl(A)= ℕ which is not subset of ℕ  {1}. Hence arbitrary union of Cg-closed sets is may not 

be Cg-closed set. 

 

Remark 4.7: Arbitrary intersection of Cg-open sets is may not be Cg-open set. 

 

Example 4.8: By example 4.6, Bn = ℕ  {n+1}  n  ℕ be the open set, hence Cg-open sets in ℕ. Now let B 

be the countable intersection of Bn , i. e. B  = B1  B2  B3  B4 …..= (ℕ  {2})   (ℕ  {3})   (ℕ  {4})   

(ℕ  {5})….. = ℕ  ({2}   {3}   {4}   {5}….) = ℕ  {2, 3, 4, 5…} = {1} which is not a Cg-open set as ℕ 

 {1} is not Cg-closed set by Example 4.6. Hence arbitrary intersection of Cg-open sets is may not be Cg-

open set. 

 

Definition 4.9: The intersection of all C-open subsets of a space X containing a set B is called the C-kernel of 

B and is denoted by C-ker(B). 

 

Lemma 4.10: A subset B of a space X is Cg-closed iff cl(B)  C-ker(B). 

Proof: Let B is a Cg-closed set in X. Then cl(B)  U whenever B  U and U is C-open in X. This implies 

cl(B)  {U: B  U and U is C-open in X} i. e. cl(B)  C-ker(B).  

Conversely, let cl(B)  C-ker(B). This implies cl(B)  {U: B  U and U is C-open in X} i. e. cl(B)  U 

whenever B  U and U is C-open in X. This proves that B is Cg-closed. 

 

5. C-NORMAL SPACES 

 

Definition 5.1: A space X is said to be C-normal (resp. normal [8]) if for every pair of disjoint C-closed 

(resp. closed) sets J and K in X, there exist disjoint open sets G and H such that J  G and K  H.   

 

Remark 5.2: Every normal space is C-normal but not conversely.  

 

Theorem 5.3 : For a topological space X, the following properties are equivalent: 

(1) X is C-normal; 

(2) for any disjoint J, K  C-C(X), there exist disjoint Cg-open sets G, H such that J   G and K   H; 

(3) for any J  C-C(X) and any H  C-O(X) containing J, there exists a Cg-open set G of X such that J  

G  Cg-cl(G)  H; 

(4) for any J  C-C(X) and any H  C-O(X) containing J, there exists an open set G of X such that J  G 

 cl(G)  H; 

(5) for any disjoint J, K  C-C(X), there exist disjoint regular open sets G, H such that J  G and K  H. 

Proof: (1)  (2): Since every open set is Cg-open, the proof is obvious.  
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(2)  (3): Let J  C-C(X) and H be any C-open set containing J. Then J, X – H  C-C(X) and J  (X – H) = 

 . By (2), there exist Cg-open sets G, F such that J  G , X – H  F and G  F = . Therefore, we have J  G 

 (X – F)  H. Since G is Cg-open and X – F is Cg-closed, we obtain J  G  Cg-cl(G)  (X – F)  H.  

 

(3)  (4): Let J  C-C(X) and J  H  C-O(X). By (3), there exists a Cg-open set G0 of X such that J  G0  

Cg-cl(G0)  H. Since Cg-cl(G0) is Cg-closed and H  C-O(X), cl(Cg-cl(G0))  H. Put int(G0) = G, then G is 

open and J  G  cl(G)  H.  

 

(4)  (5): Let J, K be disjoint C-closed sets of X. Then J  (X – K)  C-O(X) and by (4) there exists an open 

set G0 such that J  G0  cl(G0)  (X – K). Therefore, H0 = (X – cl(G0)) is an open set such that J  G0, K  

H0 and G0  H0 =  . Moreover, put G = int(cl(G0)) and H = int (cl(H0)), then G, H are regular open sets such 

that J  G, K  H and G  H =  .  

 

(5)  (1): This is obvious.  

 

We get a characterization of normal spaces by using Cg-open sets. 

 

Theorem 5.4: For a topological space X, the following properties are equivalent:  

(1) X is normal;  

(2) for any disjoint closed sets J and K, there exist disjoint Cg-open sets G and H such that J  G and K  

H;  

(3) for any closed set J and any open set H containing J, there exists a Cg-open set G of X such that J  G 

 cl(G)  H.  

Proof: (1)  (2): This is obvious since every open set is Cg-open.  

 

(2)  (3): Let J be a closed set and H be any open set containing J. Then J and (X – H) are disjoint closed 

sets. There exist disjoint Cg-open sets G and F such that J  G and (X – H)  F. Since X – H is closed, we 

have (X – H)  int(F) and G  int(F) =  . Therefore, we obtain cl(G)  int(F) =  and hence J  G  cl(G) 

 (X – int(F))  H.  

 

(3)  (1): Let J, K be disjoint closed sets of X. Then J  (X – K) and (X – K) is open. By (3), there exists a 

Cg-open set F of X such that J  F  cl(F)  (X – K). Since J is closed, we have J  int(F). Put G = int(F) and 

H = (X – cl(F)). Then G and H are disjoint open sets of X such that J  G and K  H. Hence, X is normal.  

 

Lemma 5.5: A subset G of a space X is Cg-open if and only if F  int(G) whenever F  G and F is C-closed 

Proof: let G be a Cg-open set then X  G is Cg-closed set. Since X  G is Cg-closed iff cl(X  G)  X  F 

whenever X  G  X  F and X  F is Cg-open, this implies that X  int(G)  X  F whenever F  G and F is 

Cg-closed (because cl(X  G) = X  int(G)), i. e. F  int(G) whenever  F  G and F is Cg-closed. 

 

Theorem 5.6: For a space topological X, the following are equivalent: 

(1) X is C-normal. 

(2) For any disjoint C-closed sets J and K, there exist disjoint g-open sets G and H such that  J  G and K 

 H.  
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(3) For any disjoint C-closed sets J and K, there exist disjoint Cg-open sets G and H such that J  G and K 

 H. 

(4) For any C-closed set J and any C-open set H containing J, there exists a g-open set G     of X such that 

J  G  cl(G)  H. 

(5) For any C-closed set J and any C-open set H containing J, there exists a Cg- open set G     of X such 

that J  G  cl(G)  H. 

Proof:  (1)  (2): Let X be C-normal space. Let J, K be disjoint C-closed sets of X. By assumption, there 

exist disjoint open sets G, H such that J  G and K  H. Since every open set is g-open, so G and H are g-

open sets such that J  G and K  H. 

 

(2)  (3): Let J and K be two disjoint C-closed sets. By assumption, there exist disjoint g-open sets G and H 

such that J  G and K  H. Since every g-open set is Cg-open, G and H are Cg-open sets such that J  G and 

K  H. 

 

(3)  (4): Let J be any C-closed set and H be any C-open set containing J. By assumption, there exist disjoint 

Cg-open sets G and H1 such that J  G and X – H  H1. By Lemma 5.5, we get X – H  int(H1) and cl(G)  

int(H1) = . Hence J  G  cl(G)  X – int(H1)  H. 

 

(4)  (5): Let J be any C-closed set and H be any C-open set containing J. By assumption, there exist g-open 

set G of X such that J  G  cl(G)  H. Since, every g-open set is Cg-open, there exists Cg-open sets G of X 

such that J  G  cl(G)  H. 

 

(5)  (1): Let J, K be any two disjoint C-closed sets of X. Then J  X – K and X – K is C-open. By 

assumption, there exists Cg-open set G1 of X such that J  G1  cl(G1)  X – K.  Put G = int(G1), H = X - 

cl(G1). Then G and H are disjoint open sets of X such that J  G  and K  H. 

 

Theorem 5.6: Let X be a C-normal space. Then a semi-regular subspace Y of X is also C-normal.  

Proof: Let X be a C-normal space and Y be a semi-regular subspace of X. Let J  C-C(Y) and H  C-O(Y) 

containing J. Since Y is semi regular, so J  C-C(X) and H  C-O(X). Hence by Theorem 5.3(4), there exists 

an open set G in X such that J  G  clX(G)  H. This gives J  (G ∩ Y)  clY(G ∩Y)  H, where G  Y is 

open in Y and hence Y is C-normal.  

 

6. FUNCTIONS AND C-NORMAL SPACES 

 

Definition 6.1: A function f : X  Y  is said to be:  

(1) almost Cg-continuous if for any regular open set U of Y,  f −1(U)  Cg-O(X);  

(2) almost Cg-closed if for any regular closed set J of X, f J  Cg-C(Y).  

 

Definition 6.2: A function f : X  Y  is said to be:  

(1) C-irresolute (resp. C-continuous [2]) if for any C-open (resp. open) set U of Y, f −1( U) is C-open in 

X;  

(2) pre-C-closed (resp. C-closed [2]) if for any C-closed (resp. closed) set J of X, f(J) is C-closed in Y.  
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Theorem 6.3: A function f : X  Y  is an almost Cg-closed surjection iff for each subset P of Y and each 

regular open set G containing f −1(P), there exists a Cg-open set H such that P  H and f −1(H)  G .  

Proof: Necessity. Suppose that f is almost Cg-closed. Let P be a subset of Y and G be a regular open set of X 

containing f −1(P). Put H = Y – f(X – G), then H is a Cg-open set of Y such that P  H and f −1(H)  G.  

Sufficiency: Let J be any regular closed set of X. Then f −1(Y  f(J))  (X – J) and X  J is regular open. 

There exists a Cg-open set H of Y such that (Y  f(J))  H and f −1(H)  (X – J). Therefore, we have f(J)  (Y 

– H) and J  f −1(Y – H). Hence, we obtain f(J) = Y  H and f(J) is Cg-closed in Y. Therefore f is almost Cg-

closed.  

 

Theorem 6.4: If f : X  Y  is an almost Cg-closed C-irresolute (resp. C-continuous) surjection and X is C-

normal, then Y is C-normal (resp. normal).  

Proof: Let J and K be any disjoint C-closed (resp. closed) sets of Y. Then f −1(J) and f −1(K) are disjoint C-

closed sets of X. Since X is C-normal, there exist disjoint open sets G and H of X such that f −1(J)  G and f 
−1(K)  H. Put G1 = int(cl(G)) and H1 = int(cl(H)), then G1 and H1 are disjoint regular open sets of X such that 

f −1(J)  G1 and f −1(K)  H1. By Theorem 6.3, there exist Cg-open sets L and M of Y such that J  L, K  

M. f −1(L)  G1 and f −1(M)  H1. Since G1 and H1 are disjoint, so L and M are also disjoint. It follows from 

Theorem 5.3 (resp. Theorem 5.4) that Y is C- normal (resp. normal).  

 

Theorem 6.5: If f : X  Y is a continuous almost Cg-closed surjection and X is a normal space, then Y is 

normal.  

Proof: The proof is similar to that of Theorem 6.4.  

 

Theorem 6.6: If f : X  Y is an almost Cg-continuous pre-C-closed (resp. C-closed) injection and Y is C-

normal, then X is C-normal (resp. normal).  

Proof: Let J and K be disjoint C-closed (resp. closed) sets of X. Since f is a pre-C-closed (resp. C-closed) 

injection, f(J) and f(K) are disjoint C-closed sets of Y. Since Y is C-normal, there exist disjoint open sets G 

and H such that f(J)  G and f(K)  H. Now, put G1 = int(cl(G)) and H1 = int(cl(H)), then G1 and H1 are 

disjoint regular open sets such that f(J)  G1 and f(K)  H1. Since f is almost Cg-continuous, f −1(G1) and f 
−1(H1) are disjoint Cg-open sets such that J  f −1(G1) and K  f −1(H1). It follows from Theorem 5.3 (resp. 

Theorem 5.4) that X is C-normal (resp. normal).  
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