IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

"Examine The Impact On Beam Behaviour When Coarse Aggregate Is Substituted With Plastic Aggregate Beneath The Beam's Neutral Axis"

Rakesh Kumar¹, Shivprasad Shingare², Rushikesh Murkute³, Anant Navale⁴,

Assistant Professor APCOER¹, Student of APCOER², Student of APCOE³, Student of APCOER⁴

Department Of Civil Engineering, Pune University, Anantrao Pawar College of Engineering and Research, Pune, India.

ABSTRACT

In a simply supported reinforced concrete beam, tension occurs below the neutral axis while compression occurs above it. On the neutral axis, there is neither tension nor compression. Concrete can only withstand compressive stress, while steel can withstand tensile stress, so adding concrete below the neutral axis is not advisable. The quantity of plastic waste is increasing dramatically, and since it is not biodegradable, finding new uses for old plastic is critical. For this project, we will use recycled plastic aggregate to totally replace coarse aggregate below the beam's neutral axis and perform flexural testing on the RC beam. The country's rapid industrialization and urbanization necessitate the construction of extensive infrastructure. This causes a cascade of problems, including an excess of waste products and an increase in the production of construction materials, among others. Most construction projects utilize M20-grade concrete, which this program intends to enhance by substituting recovered plastic waste for part of the natural coarse aggregate.

Keywords: Recycled Plastic wastes, Plastic concrete, Neutral axis, tensile stress, Compressive strength.

INTRODUCTION

The primary environmental problem of the twenty-first century is the expansion of plastic, which is rapidly spreading across the biosphere. Industries and households mostly produce plastic garbage, with the amount varying by country. Plastic consumption in India exceeds that of several other areas. To overcome this hindrance, we must use it properly and efficiently. This project's primary focus is on using beams made from recovered plastic trash. Reinforced cement concrete is an essential component in the construction of a variety of structures. Sand, aggregate, water, and cement, all of which are important raw resources for concrete manufacturing, are in limited supply. Researchers have conducted numerous studies to explore substitutes for cement, sand, and aggregate in concrete. We make cement from widely accessible components like copper slag, rice husks, and fly ash. The overall state of nature is drastically declining. In this project, recycled plastic is used to completely replace natural coarse aggregate below the beam's neutral axis. While aggregate is an essential component of all structures, concrete is the major material. The building sector is now experiencing a serious lack of raw materials. Tensile stress affects the horizontally supported part of a reinforced concrete beam, while compressive stress affects the vertically supported section. Due to the restricted capacity of

IJCRT24A5527 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org

IJCR

concrete to withstand tension stress, steel reinforcements were used in this position. The concrete transmits stress between the compression and tension areas below the neutral axis. Do a parametric analysis on a flexural component where plastic aggregate is used instead of coarse aggregate below the beam's neutral axis. This will lower the weight and make the strength similar to that of a normal beam.

1. SCOPE OF WORK:

- 1. The test can be carried out for different grades of concrete
- 2. We can take the flexural strength test by replacing natural coarse aggregate by various materials like hollow pipes, brick, expanded polystyrene sheets etc. Expanded polystyrene sheets, terracotta, and hollow blocks etc

2. OBJECTIVES:

- 1. To reduce self-weight of beam.
- 2. To study a breaking stress of beam by replacing coarse aggregate by recycled plastic aggregate below the neutral axis.
- 3. To analyze the ultimate load carrying capacity of the beams after replacing the natural coarse aggregate below neutral axis.

4 METHODOLOGY:

- 1. Collection of material
- 2. Testing of material
- 3. Design calculation
- 4. Casing of specimen
- 5. Testing
- 6. Analysis
- 7. Result
- 8. Conclusion

5 TESTING OF MATERIAL:

1. Cement:

Grade = 53

Type = Ordinary Portland Cement

JPC - C	amary rormana	Comone	
Material	Test	Result	
Cement	Specific Gravity	3.10	
	Initial setting time	160 min.	
	Final setting time	510 min.	
	Consistency test	7mm from bottom	

2. Fine aggregate:

The size of aggregate which is than 4.75 mm is known as fine aggregate or sand.

Type = Natural fine aggregate

Material	Test	Result
Sand	Specific Gravity	2.29
	Water absorption	2.3%
	Fineness modulus	3.539

3. Natural Course Aggregate. :- Size = 12 to 20 mm

Material	Test	Result
Coarse	Specific Gravity	2.76
Aggregate	Fineness modulus	7.54
	Density	1680 kg/m ³
	Impact Valu <mark>e</mark>	19.88%
	Water absorption	1.20%

4. Plastic Coarse Aggregate

For casting the beam, we use M20 grade concrete. The proportion of M20 grade concrete is 1: 1 ½: 3

Materia	l	Test	Result
Plastic a	iggregate	Water absorption	0%
		Fineness modulus	7.25
		Specific Gravity	0.95
		Impact Value	0.81%

5. Steel:

Singly reinforced beam.

Ast =Top bars of 2 nos. 8 mm diameter Bottom bars 2 nos. 10 mm diameter. Main bars Stirrups = 6mm. diameter @ 100 mm. c/c

Concrete Cover = 20mmCasting of specimens

The total number of specimens required for testing

Specimen	Dimension	Total No.
Beam	700mm x150mm	4
	x 150mm	
Cube (made up	150mm x150mm	3
of 100% P. A.)	x 150mm	

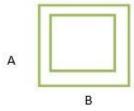
6 DESIGN:

Position of neutral axis

 $Xu/0.0035 = d-Xu/0.87 \\ fy/2x105 + 0.002 \\ Xu/d-Xu = 0.0035/0.87 \\ x415/2x105 + 0.002 \\ Xu/125 - Xu = 0.0035/0.038$

Xu/125-Xu = 0.921

 $Xu = 115.125 \ 0.921 \ Xu Xu + 0.921 \ Xu = 115.125 \ 1.921 \ Xu = 115.125$


Xu = 59.929mm

Xu = 60mm

IV. Numbers of stirrups require

IJCR

$$L=0.7 \text{ m}$$
 $B=0.15 \text{ m}$ $A=0.15 \text{ m}$

$$b = B-2 \times cover$$
 $a = A-2 \times cover$
= 150- 2 x 25 = 100mm = 100mm

$$L = 2(A+B) + 24\emptyset$$

= 2(100+100) + 24 x 6
= 0.554 m = 544mm

Number of stirrups = T.L.
$$-2 \times \frac{\text{cover/Spacing} + 1}{200 - 2 \times 25 / 90 + 1}$$

= $8.66 \approx 9 \text{ nos.}$

7 CONCRETE MIX DESIGN:

Cement (kg/m ³)	394.32
Fine aggregate (kg/m³)	657.612
Coarse aggregate (kg/m³)	1156.771
Water (li/m3)	186
Water cement ratio (kg/m³)	0.5
Mix Ratio	1:1.668:2.934

8 CONSTRUCTION AND WORKING:

Materials required for one beam.

1. Above the neutral axis

Cement = 3.78 kg

Sand = 6.30 kg

Aggregate = 11.09 kg

2. Below the neutral Axis

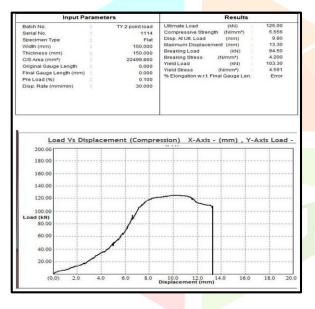
Cement = 5.78 kg

Sand = 9.48 kg

Plastic Aggregate = 16.67kg

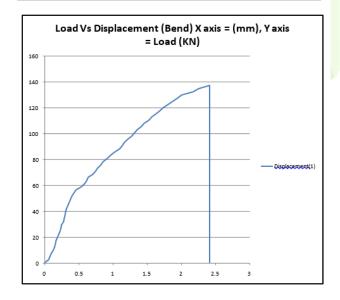
9 TESTING ON PLASTIC CUBE:

Strength should be come:-


Strength should be come.						
Days	Strength should	Strength should	Result in			
	be come in %	be come in	N/mm2			
		N/mm2				
7	65%	13	13.724			
14	90%	18	17.658			
28	100%	20	20			

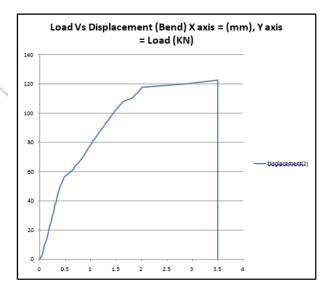
10 TESTING ON CONVENTIAL BEAM:

RESULT OF CONVENTIONAL BEAM


Beam - 1 Beam - 2

11. TEST ON PLASTIC BEAM (PLASTIC BELOW N.A.)

Beam specimen


Input Parameters			Results		
Batch No.	:	TY 2 point load	Ultimate Load (KN)	:	137.340
Serial No.	:	4	Disp. At Ult. Load	:	2.40
Specimen Type	:	Flat	Maximum Displacement(mm)	:	2.42
Width (mm)	:	150.000	Breaking Load (KN)	:	107.910
Thickness (mm)	:	150.000	Breaking Stress (N/mm2)	:	4.798
C/S Area (mm ²)	:	22499.860			
Original Gauge Length	:	0.000			
Final Gauge Length (mm	:	0.000			
Pre Load (%)	:	0.100			
Disp. Rate (mm/min)	:	30.000			

After testing

Input Parameters			Results		
Batch No.	:	TY 2 point load	Ultimate Load (KN)	:	122.625
Serial No.	:	3	Disp. At Ult. Load	:	2.9
Specimen Type	:	Flat	Maximum Displacement(mm)	:	3.5
Width (mm)	:	150.000	Breaking Load (KN)	:	95.647
Thickness (mm)	:	150.000	Breaking Stress (N/mm2)	:	4.251
C/S Area (mm ²)	:	22499.860			
Original Gauge Length	:	0.000			
Final Gauge Length (mm	:	0.000			
Pre Load (%)	:	0.100			
Disp. Rate (mm/min)	:	30.000			

Beam - 1 Beam - 2

12. RESULTS

Objective – 1

Reduce self-weight of beam

Specimen	Weight in Kg		Average Weight in Kg	
Conventional beam	1.	43.065		
	2.	41.785	42.425	
Beam made up of plastic	3.	36.010		
aggregate (below neutral axis)	4.	33.745	34.878	

Consider,

42.425 = 100 %

34.878 = X

 $X \times 42.425 = 34.878 \times 100$

 $X = (34.878 \times 100) / 42.425 \times = 82.21 \%$

Reduced in weight = 100 - 82.21

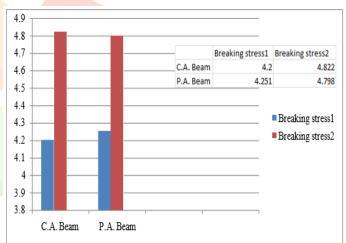
 $= 17.79 \% \approx 18 \%$

Therefore, reduced in weight is 18%

Objective – 2

Ultimate load carrying capacity and Breaking load of conventional and plastic beam

Type of beam		Ulti <mark>mate load</mark> In N	Average Ultimate Load N	
Conventional Beam	Beam-1	125000	126400	
	Beam-2	127800	126400	
Plastic Beam (below	Beam-1	122625	129983	
neutral axis)	Beam-2	137340	129963	


Objective - 3

Breaking load and Breaking stress of conventional and plastic beam

Type of beam		Breaking load	Average	Breaking stress	Average
		in N	Breaking Load	in	Stress in N/
			in N	N/mm ²	mm ²
Conventional Beam	Beam-1	94500		4.200	4.511
	Beam-2	108500	101500	4.822	
Plastic Beam	Beam-1	95647	101779	4.251	4.524
(below neutral axis)					
	Beam-2	107910		4.798	

Breaking load chart Breaking stress chart

C.A. - Course Aggregate

P.A. – Plastic Aggregate

13. CONCLUSION

- 1. As compare to conventional beam the plastic beam (below neutral axis) has 18% less weight
- 2. The conventional beam and plastic beam (below neutral axis) has partially more flexural and breaking strength so that we can use it as a construction material in a structure
- 3. This project is eco-friendly because we use plastic waste as a construction material by recycling it in plastic aggregate, it help to reduce plastic waste and pollution.

IJCR

14. REFRENCES

- 1. Comparative study on partial replacement of concrete below neutral axis of beam using seeding trays and polythene balls Basil tom jose and DivyaSasi
- 2. Experimental Study on Partial Replacement of Concrete in and Below Neutral Axis of Beam

Er.Ima Mathew1, Er.Sneha M.Varghese2

- 3. Experimental and analytical investigation on partial replacement of concrete in the tension zone Soji Soman11, Anima P 2
- 4. Experimental investigation on partial replacement of concrete below neutral axis of beam_

Aswathy S Kumar1, Anup Joy2

IS Codes:-

- 1. IS 456 (2000): Plain and Reinforced Concrete
- 2. IS 2346: 1963, (Part I to Part VIII) Indian standard methods of test for aggregate for concrete
- 3. IS 10262 2009 Recommended guidelines for Concrete Mix Design

Books

- 1. M. S. Shetty, (2004), Concrete Technology, Chand S. And Co Ltd, India
- 2. Niashant A. Upadhye, (2009)

