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Abstract: 

Non-coding RNAs (ncRNAs) constitute a diverse family of RNA molecules that regulate various cellular 

processes, with implications spanning from basic molecular biology to clinical applications. This review explores 

the multifaceted roles of ncRNAs in gene regulation, focusing on their involvement in cancer biology and 

potential applications as diagnostic and therapeutic targets. NcRNAs encompass a wide array of molecules, 

including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and others, each exerting regulatory 

effects on gene expression through various mechanisms. MiRNAs, for instance, regulate mRNA transcripts via 

sequence-specific interactions, while lncRNAs modulate gene expression at transcriptional and post-

transcriptional levels. In cancer, dysregulated expression of ncRNAs contributes to tumorigenesis, metastasis, 

and drug resistance, highlighting their potential as biomarkers for diagnosis and prognosis. Liquid biopsies, 

utilizing circulating tumor-derived ncRNAs, offer less invasive alternatives to traditional tissue biopsies for 

cancer detection and monitoring. Additionally, advancements in RNA sequencing technologies enable 

comprehensive profiling of ncRNAs, aiding in the identification of cancer-specific signatures. Therapeutically, 

ncRNAs hold promise as targets for innovative treatments, such as RNA-based gene silencing therapies. Clinical 

trials investigating ncRNA-targeted therapies have shown encouraging results in diverse cancer types, although 

challenges remain in ensuring efficacy and safety. Overall, the burgeoning field of ncRNA research offers 

insights into the complex regulatory networks governing cancer biology and presents opportunities for the 

development of novel diagnostic tools and therapeutic interventions. 
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Introduction to non-coding RNAs 

"Frontiers in Non-Coding RNA: Regulation and Therapy" 

Non-coding RNAs (ncRNAs) are a family of RNA molecules that play a critical or regulatory role in the process 

of protein synthesis, in contrast to messenger RNAs, which function as templates for the process. ncRNAs are 

essential for translation since they are the building blocks of ribosomes (rRNA) or transfer amino acids (tRNA) 

to the formed peptide. It was just discovered thirty years ago that additional non-coding RNAs (ncRNAs) regulate 

the expression of proteins or other metabolic processes. [1]. These later ones, which are commonly known as the 

regulatory ncRNA, attracted attention right away and continue to do so now as fresh information demonstrating 

their participation in processes like cell proliferation, apoptosis, and differentiation is being shown practically 

daily. [2]. Cytoplasmic regulatory non-coding RNAs (ncRNAs) are classified into two types based on their 

nucleotide count: microRNAs (miRNA) and long non-coding RNAs (lncRNAs)[3]. Through the identification 

of complementary sites at the UTR region of the mRNA, miRNAs interact with mRNA transcripts in a sequence-

specific manner that results in transcriptional suppression or the destruction of the mRNA. [4]. LncRNAs are 

RNA molecules that have a length of more than 200 nucleotides. The primary way that these particles control 

expression is through their interactions with transcriptional regulatory elements. By competing with the enhancer 

or creating chromatin loops with target genes, lncRNAs can either positively or adversely impact enhancer 

activity. Furthermore, it has been demonstrated that lncRNAs interact with the transcript and prevent splicing.[3]. 

It's interesting to note that lncRNAs have the ability to draw in and bind miRNAs, thereby decreasing their 

activity. These layered relationships between various RNA types show how intricately these regulatory ncRNAs 

interact. [3]. ncRNAs influence gene expression, which has a myriad of impacts on different biological 

mechanisms.[5]. Many diseases in humans, including cancer, metabolic syndrome, heart disease, autoimmune 

disorders, and infectious diseases, can be brought on by dysregulated expression of non-coding RNAs. Many 

diseases in humans, including cancer, metabolic syndrome, heart disease, autoimmune disorders, and infectious 

diseases, can be brought on by dysregulated expression of non-coding RNAs. [6–9]. Because non-coding 

regulatory transcripts are highly stable and resistant to enzymatic degradation, they can be released into the 

extracellular space and bloodstream within exosomes. Consequently, ncRNAs can function as prognostic or 

diagnostic biomarkers.[10]. Lastly, regulatory non-coding RNAs are thought to be therapeutic agents for the 

management of several illnesses.[11]. A new class of medicines has been developed as a result of ncRNA-based 

gene silencing, which targets and inhibits genes linked to particular diseases, including cancer. Some of these 

therapies have received FDA approval. [12]. To create the best possible diagnostic techniques and therapeutic 

approaches, it is essential to comprehend the mechanisms behind the interactions between regulatory ncRNAs 

and their targets. Because non-coding RNA is involved in the pathophysiology of many different human diseases, 

such as inflammatory diseases, genetic abnormalities, and malignancies, it has become the focus of translational 

research. Because of its special ability to be produced quickly and energetically, RNA is an attractive target for 

therapeutic development. Based on the length of the transcript, non-coding RNAs (ncRNAs) are classified into 

two main classes in addition to the traditional functional subtypes such ribosomal RNA (rRNA), small nuclear 

RNA, small nucleolar RNA, and tRNA. MicroRNA (miRNA), small interfering RNA (siRNA), and PIWI-

interacting RNA are examples of tiny ncRNAs (≤200 nucleotides), whereas RNAs longer than 200 nucleotides 

are referred to as long ncRNAs (lncRNAs). [13-14] 

 

Clinical Advances in Short Non-Coding RNAs 

Unconjugated sncRNAs  

1. Age-related macular degeneration and diabetic macular edema 

Age-Related Macular Degeneration with Diabetic Macular Edema The first human clinical trials using siRNA 

targeting vascular endothelial growth factor (VEGF) were retinal degeneration patients. [16]. The most common 

cause of significant vision impairment in Americans over 65 is exudative, or "wet," age-related macular 

degeneration (AMD). [15]. Dry AMD causes drusen to build up on the retina. The pressure this puts on the 

retinal pigment epithelium triggers an inflammatory reaction that increases VEGF, which in turn causes 

choroidal neovascularization. [15] The most common cause of blindness in people between the ages of 20 and 

74 is diabetic macular edema (DME), which can develop when elevated VEGF increases blood-retinal barrier 

permeability, causing an excess of fluid to accumulate in the eye and edema. [17] Previous clinical trials have 
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demonstrated that VEGF is a useful target for treatments, most often antibodies, to reduce AMD or DME-related 

visual loss. Anti-VEGF antibodies, such ranibizumab, are the standard of care; however, because they must be 

administered intravitreally every 4 to 6 weeks, there is a risk of lens damage, intravitreal hemorrhage, 

endophthalmitis, and retinal tears. [15] A siRNA that targets VEGF mRNA is called bevasiranib (also called 

Cand5) [17]. The overexpression of VEGF is caused by mRNA stability rather than enhanced translation, which 

makes siRNA-based therapies superior to antibody-based therapies. Additionally, the use of siRNA theoretically 

permits downregulation rather than inhibiting the activity. [15] Because the VEGF mRNA that is already there 

is not completely destroyed, bevasiranib does exhibit a clear anti-angiogenic impact, which takes around 6 weeks 

to develop from the commencement of treatment. In this instance, anti-VEGF antibody combo therapy may be 

the most beneficial course of action. [15] NCT00557791 was a phase 3 clinical trial that was intended to 

investigate the advantages of this combination medication, however it was never initiated. Numerous 

investigations have revealed that bevasiranib primarily acts on the cell surface toll-like receptor 3 (TLR3) 

through RNA-mediated activation, which decreases CNV through intracellular signaling, rather than by inducing 

an RNAi response. [16] Since these siRNAs were not created with cell penetration in mind, it's possible that 

fewer of them than expected reach their intended target.[16] A phase 3 clinical trial for bevasiranib was stopped 

in 2009 due to early results indicating a very low chance of achieving the primary aim (NCT00499590).  

Respiratory Syncytial Infection  

The primary cause of hospitalization for infants in the United States is respiratory syncytial virus (RSV), in part 

due to the lack of a vaccination and the scarcity of treatment options for this infection.[18]. The most frequent 

community-acquired respiratory virus in lung transplant patients is RSV infection, which is linked to 

bronchiolitis obliterans syndrome, a major barrier to patient and graft survival [42]. Alnylam Pharmaceuticals 

created the siRNA ALN-RSV01, which targets the mRNA encoding the nucleocapsid protein, which is essential 

for RSV replication [18,43]. Delivery without a carrier is effective, as it can be given directly to the mucosa and 

destroyed by the nucleases if it enters the systemic circulation, as is the case with lung-targeted siRNAs. [21] 

Intranasal injection of 150 mg dosages given once or five times per day was shown to be safe and well-tolerated 

in safety and tolerability studies involving 101 healthy people [20]. Following an experimental RSV challenge 

in 88 healthy adults, 71.4% of the placebo group and 44.2% of the ALN-RSV01 group contracted the virus [18]. 

In Phase 2a trials, ALN-RSV01 was demonstrated to lower the risk of new or progressive bronchiolitis obliterans 

syndrome (BOS) when combined with standard of care in transplant patients who were naturally infected with 

RSV. It did not, however, advance to a phase 3 study and did not reach the primary goal of reduced day 180 

BOS [19].  

Pachyonychia Congenita  

The dominant hereditary disorder known as pachyonychia congenita (PC) is characterized by thicker nails, 

keratoderma, leukokeratosis, and excruciating blisters that are mostly on the soles of the feet [42]. Without the 

assistance of an ambulatory device, more than 50% of patients are unable to walk [22]. Oral retinoids, topical 

keratolytics, and mechanical callus removal are the only effective symptom control options available for PC at 

this time [22]. Mutations in keratins K6a, K6b, K16, or K17 cause this syndrome. The most frequently altered 

gene, K6a mRNA, is the target of the siRNA treatment TD101 [42, 22]. The efficacy of TD101 intradermal 

injection in suppressing mutant K6a expression was confirmed by measuring in vivo mRNA levels using 

quantitative reverse transcription PCR (qRT-PCR). The same levels of mutant and wild-type K6a were expressed 

by PC-10 cells and patient callus samples that were obtained. Nevertheless, the administration of TD101 resulted 

in a 98% reduction in the expression of mutant K6a [42]. 

Hepatitis C  

The most prevalent hepatic miRNA, miR-122, facilitates the spread of the hepatitis C virus (HCV). miR-122 

binds to the 50 end of HCV RNA, shielding it from nuclease assault and hiding an RNA motif that could trigger 

an innate immune reaction [23]. Cirrhosis and ultimately hepatocellular cancer can result with chronic HCV 

[24]. Currently undergoing clinical trials is miravirsen, an anti-miR-122 ASO made of locked nucleic acid (LNA) 

ribonucleotides that hybridize to mature miR-122 and prevent its association with HCV RNA [28]. The second 
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oxygen molecule in LNAs is connected to the ribonucleotide's 40 carbons. This alteration can raise target affinity 

while shielding the oligonucleotide from nuclease degradation [24, 25]. 

Clinical investigations have shown that treatment with miravirsen reduces the viral load in individuals with 

chronic HCV in a dose-dependent manner while having no discernible impact on other miRNAs' plasma levels 

[23]. One week after the first dose in the experimental group, a placebo-controlled study of five weekly doses of 

miravirsen decreased plasma levels of miR-122 from 3.9 × 103/4 to 3.1 × 101/4 µL. In the highest-dose group, 

these values were sustained for the duration of the study. [23] By contrast, after one week of treatment, the mean 

plasma levels in the placebo group were 1.1 × 104/4 µL, compared to 1.3 × 104/4 µL at baseline. Following 

treatment, all dosed patients showed improvement, and some even had undetectable levels of miR-122. The HCV 

viral load did not correlate with the drop in miR-122 plasma levels, despite the fact that the viral load did in 

dosed patients. It is believed that a C3U nucleotide alteration in the 50 UTR region of the HCV RNA makes this 

process miR-122-independent and hence resistant to miravirsen in a large number of patients who experienced 

virological recurrence after taking the medication [26,27]. It has been suggested that miR-122 may also function 

as a tumor suppressor [35], which has sparked worries that receiving anti-miR-122 therapy may elevate the risk 

of hepatocellular carcinoma. In preclinical research, mice given miravirsen for five weeks did not grow tumors, 

nevertheless. Even yet, considering that hepatocellular carcinoma does arise in mir-122-knockout animal models 

[26, 35], this worry calls for additional safety research to assess the danger [28]. 

5. Acute Kidney Injury  

The complex illness known as acute kidney injury (AKI) is marked by an abrupt drop in glomerular filtration 

rate, which is then followed by an increase in blood creatinine concentration or oliguria. AKI typically happens 

in the context of a recent or ongoing medical condition. About 20% of hospitalized patients are affected by it. 

The pooled incidence rate of AKI in clinical trials was 21.6%, and 10% of patients needed kidney replacement 

therapy [29, 30]. A p53-targeting siRNA called QPI-1002 (Teprasiran, Quark Pharmaceuticals) is used to prevent 

AKI and post-kidney replacement delayed graft function [31]. 10 mg/kg of QPI-1002 decreased the incidence, 

severity, and length of AKI following heart surgery in high-risk patients in a phase 2 clinical trial [31]. 

Nevertheless, a phase 3 clinical trial (NCT03510897) was abruptly stopped since the patients' results did not 

reach the efficacy objectives at day 90.  

 

6. Alport’s Disease  

A multifaceted miRNA, miR-21 is involved in inflammation, fibrosis, immunological response, and 

carcinogenesis [41,35,32,33]. Mutations in the genes encoding several α chains of collagen 4 result in the 

hereditary condition known as Alport syndrome. The kidney's and other organs' capillary membranes are 

jeopardized by altered collagen 4 function. Alport syndrome patients and genetic mice models exhibit elevated 

expression of miR-21 [34,36]. Subcutaneous administration of 25 mg/kg antimiR-21 ASO twice a week 

increased animal survival by 46% in the Col4a3−/− mouse model [34]. The development of glomerular crescents, 

periglomerular fibrosis, and glomerulosclerosis—all linked to the advancement of Alport syndrome—were 

markedly postponed by the anti-miR-21 ASO treatment. [34] Mechanistically, anti-miR-21 ASO therapy 

prolongs kidney function by preventing TGF-β-induced fibrosis and inflammation and by safeguarding 

PPARα/retinoid X receptor (PPARα/RXR)-dependent mitochondrial activity. Anti-miR-21 ASO (RG-021, now 

known as lademirsen) was administered subcutaneously to individuals with Alport syndrome in phase 1 clinical 

trials at a dose of 1.5 mg/kg, either as a single dose or as four doses spaced 14 days apart (NCT03373786). 

Following a well-tolerated course of treatment, individuals with Alport syndrome are currently being actively 

recruited for a phase 2 clinical trial to assess the therapeutic efficacy of lademirsen in maintaining kidney function 

(NCT02855268). 

7. cardiovascular disease  

Targeting miR-92a-3p, MRG-110 is an LNA-modified ASO that is used to treat wound healing and 

cardiovascular disease [25]. Inhibiting miR-920 has been shown to improve wound healing, circulation following 

hind limb ischemia, and vascularization following heart attacks. It also mitigates the negative effects of miR-

920's antiangiogenic effects on wound healing, which are partly due to the downregulation of pro-angiogenic 
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integrin alpha 5 [25, 37]. Whole blood miR-92a-3p is reduced in a dose-dependent manner by MRG-110 therapy. 

In experimental models of acute and chronic excision wounds in pigs and db/db mice, it also enhances the 

development of granulation tissue and stimulates angiogenesis [37]. Significant clinical potential was indicated 

by the fact that these effects were higher in the MRG-110 group compared to the positive control groups treated 

with rhVEGF-165 and rhPDGF-BB. There were no noteworthy safety issues. In human trials, the treatment's 

considerable effectiveness was observed at half-maximum dosages of 0.27 to 0.31 mg/kg [25]. After 24-72 hours 

of therapy, there was over 95% inhibition in the high dose groups, and this inhibition persisted for two weeks.  

 

8. Leukemias and Lymphomas  

As a treatment for many hematologic malignancies, such as cutaneous T-cell lymphoma (CTCL), diffuse large 

B-cell lymphoma (DLBCL), and chronic lymphocytic leukemia (CLL), MRG-106 (cobomarsen), an LNA-

modified ASO, targets miR-155. Mycosis fungoides (MF), the most prevalent subtype of CTCL, has a significant 

etiology, which is supported by functional investigations and clinical data [38]. Cobomarsen's formulation 

promoted CD4+ T-cell and MF cell uptake [38]. Treatment with cobomarsen increased the expression of 

BACH1, PICALM, and JARID2, which are direct targets of miR-1550, and disrupted the pro-survival function 

of miR-155. [38] JARID2 (jumonji and AT-rich interaction domain containing 2) is a negative regulator of 

leukemia cell proliferation, PICALM (phosphatidylinositol binding clathrin assembly protein) is an endocytosis 

adaptor, and BACH1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a mediator of 

the oxidative stress response.[38] In patients with hematological malignancies, a phase 1 clinical trial 

(NCT02580552) showed that cobomarsen was safe and had minimal toxicity. In order to compare the safety and 

effectiveness of cobomarsen medication to vorinostat, a histone deacetylase (HDAC) inhibitor, in patients with 

CTCL of the MF subtype, a phase 2 clinical trial (NCT03713320) was started in 2018. One of the attractive 

things about cobomarsen treatment is that it can be given once a week instead of vorinostat's daily dosage; 

nevertheless, cobomarsen is given intravenously, whereas vorinostat is taken orally. Despite recruiting 37 

patients, this research trial was stopped for business reasons without any particular concerns about the efficacy 

of cobomarsen. [39] Because there were few eligible participants, an expected crossover phase 2 clinical trial 

(NCT03837457) had to be canceled. The further clinical evaluation of cobomarsen is supported by genetic 

investigations in Mir-155-knockout mice models, successful treatment with anti-miR-155 ASO or comparable 

inhibitors in in vivo animal models. [41], and an unusual response in a single patient diagnosed with an 

aggressive subtype of DLBCL [40]. 

Non-Coding RNAs: Cancer Biomarkers and Diagnosis 

Because of their distinct expression profiles, high relative stability, and ease of PCR characterisation, non-coding 

RNAs (ncRNAs) are a great class of prospective biomarkers [43]. Thus, in the last ten years, a number of clinical 

trials have been carried out to find ncRNA biomarkers in cancer patients in order to create screening instruments. 

Since this may affect patient cohort composition and specimen selection, it is crucial that the intended application 

of the proposed biomarker(s) be clearly specified as predictive, prognostic, or diagnostic. [44,45] 

Early studies of identifying tumor ncRNAs implemented the strategy of comparative profiling between both 

healthy and malignant tissues [46]. Tissue biopsies have a long history of clinical use and are a useful tool, but 

they are invasive and impractical for patients who are fragile or have inaccessible malignancies [47, 48]. 

Moreover, tissue biopsies yield information that is reliant on both space and time, which means that it may give 

an erroneous picture of tumor heterogeneity and ongoing tumor processes such drug resistance [47–50]. 

Specialized signals of non-coding ncRNAs produced from cancer have been detected in bodily fluids such as 

blood, saliva, and urine [51–53], prompting investigators to investigate the feasibility of liquid biopsies [48]. 

Liquid biopsies are less invasive than tissue biopsies, making them ideal for therapy monitoring [202] and 

screening [54]. Nevertheless, the frequency of circulating tumor cells (CTCs) is comparatively low, and while 

free-traveling ncRNAs are vulnerable to destruction by circulating RNAses, ncRNAs can travel through 

physiological fluids without the assistance of cells [45,49]. Examining ncRNAs contained in extracellular 

vesicles (EVs), which are secreted by tumor cells, is an other strategy.[55] Studies have revealed that tumor cells 

secrete more vesicles than normal cells do, which may contribute to the development of pre-metastatic niches 

and the advancement of cancer. [45] It is imperative to ascertain if the observed changes in ncRNA levels are 
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obscured by variations in vesicle concentrations between individuals with cancer and healthy individuals. The 

whole genome expression profiles of patient and control samples can be compared to identify dysregulated non-

coding RNAs (ncRNAs) since high-throughput sequencing technologies, such as next-generation sequencing, 

have been available [58,44]. Notably, the heterogeneity of human malignancies and the widespread expression 

of most ncRNAs make it unlikely that a single biomarker will be adequate for disease characterisation [56,57]. 

Instead, in order to achieve high sensitivity and specificity, bio classifier systems made up of a panel of 

biomarkers might be required. [56] Large-scale ncRNA expression profiles have previously shown promise in 

the classification of poorly differentiated tumors, and they may also add to our knowledge of the dynamics 

underlying cancers [59, 45]. Making sure these bio classifiers are repeatable, however, is a significant hurdle. 

As a result, standardizing bioinformatic analyses, normalization techniques, and protocols for RNA extraction 

and sample processing is crucial [44,53,57]. PCA3 is the only ncRNA to date to be approved as a biomarker by 

the FDA, despite the identification of many potential ncRNA biomarker candidates [68]. Prostate cancer has a 

distinct upregulation of the lncRNA PCA3 [50]. The upregulation of PCA3 in prostate cancer patient urine has 

been reported by Hessels et al. [61], which has led to the development of non-invasive PCA3 urine tests for the 

clinical identification of early prostate cancer [62]. Currently, this test is utilized in combination with other 

recognized assays (e.g., TMPRSS2:ERG urine test, PSA blood test) [68,63,64]. 

ncRNAs as Lung Cancer Biomarkers  

Lung cancer has one of the lowest five-year survival rates of any malignancy (19%) [69]. There are few curative 

treatments available for the more than half of patients who arrive with advanced-stage disease [65,66]. As a 

result, a significant percentage of these patients receive no treatment [67]. Crucially, screening for lung cancer 

can raise high-risk individuals' survival rates. Eighty percent of lung cancers detected in the early stages are 

detected by screening programs; in the absence of screening, a staggering seventy percent of patients receive a 

late-stage diagnosis [70]. A low-dose CT scan is currently the gold standard for screening for lung cancer [71].  

ncRNAs: Cancer Biology 

Calin and Croce's seminal study [22,72] from 2002 revealed a connection between dysregulated miR-15a and 

miR-16-1 and chronic lymphocytic leukemia (CLL). Since then, numerous ncRNAs have been connected to 

well-known cancer pathways [79, 80]. Even if there aren't many well-studied ncRNAs included, it's important 

to remember that focusing on a single biomolecule or route in isolation oversimplifies the biological reality of 

multiple cancer pathways interacting with one another [76]. Additionally, a single ncRNA can interact with a 

wide range of proteins, mRNAs, DNA, and other ncRNAs [76,82,83] and be involved in the regulation of several 

biological processes [81].  

Overview of ncRNAs in Cancer  

The transcriptome of cancer cells and tissues may be examined thanks to developments in RNA sequencing 

(RNA-seq) technologies [74]. This approach makes it possible to determine the frequency and sequences of 

dysregulated non-coding RNAs in malignancies [74, 75]. miRNAs have been explored the most in relation to 

the roles played by ncRNAs in human cancers [84, 85]. Numerous in vitro and in vivo research employ tactics 

of over- and under-expressing the miRNA(s) of interest in order to unveil the roles of miRNAs related to cancer. 

Examining the generated biological activity using a variety of functional tests comes next [73,78]. The function 

of miRNAs can also be ascertained by elucidating their mRNA targets using high-throughput sequencing or in 

silico methods (e.g., Targets can, miRanda) [73,86]. Remarkably, recent research has demonstrated that secreted 

miRNAs can function as ligands to initiate premetastatic inflammatory responses in the tumor microenvironment 

in addition to causing RNAi [87,88]. Less is known about piRNAs' roles in cancer. Although more recent 

research has looked at the PIWI/piRNA relationship in malignancies, the majority of studies to date have focused 

on the PIWI clade of Argonaut proteins independently of piRNAs [89, 90]. These complexes are generally 

overexpressed in malignancies, and this overexpression has been connected to aggressive cancer 

characteristics.[77] Numerous well-established lncRNAs (e.g., HOTAIR, H19, MEG3, MALAT1) have been 

associated with malignancies. They play a variety of roles in the development of malignancies, particularly in 

the areas of drug response, angiogenesis, metastasis, cell proliferation, and post-transcriptional gene regulation. 

The effect of non-coding RNAs (ncRNAs) can be broadly classified as either tumorigenic or tumor suppressive 
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based on the understanding gained from functional investigations. However, certain ncRNAs may exhibit both 

activities depending on the context [91,92]. 

Diverse Functions of ncRNAs 

Non-translated or non-coding RNA (ncRNA) molecules are transcripts of genomic sequences that are not 

intended for translation. [93] The human genome encodes a large number of non-coding RNAs. The majority of 

these non-coding RNAs have been extensively linked to the regulation of cellular homeostasis. [94] Certain 

ncRNAs have a direct bearing on modifications and/or alterations in cells' epigenetic makeup. As shown in 

Figure 1, total cellular RNAs are categorized according to their functions. Long non-coding RNAs (lncRNAs) 

and small nuclear RNAs (snoRNAs), microRNAs, small interfering RNAs (siRNAs), PIWI-interacting RNAs 

(piRNAs), transfer RNA (tRNA), ribosomal RNA (rRNA), and other functionally significant RNAs are produced 

from a subset of ncRNAs. X inactivation specific transcript (exist) and HOX antisense intergenic RNA 

(HOTAIR) are two extensively researched long noncoding RNAs. [103] Although the entire number of non-

coding RNAs (ncRNAs) encoded in the human genome is unknown, thousands of ncRNAs with potential 

functions may exist, according to recent transcriptomic and bioinformatic research. It's probable that a large 

number of the recently discovered ncRNAs are non-functional because their functions haven't been confirmed. 

Examples of ncRNAs' roles and functions are still being discovered, though. ncRNAs are classified as either 

long non-coding RNA (lncRNAs > 200 nt) or short non-coding RNA (sncRNAs < 30 nt), depending on the 

length of RNA generated post-transcriptionally. Longer than 200 nt, non-protein coding transcripts are referred 

to as lncRNAs. Practical factors, such as the separation of RNAs in standard experimental methods, are the 

reason for this limit. Furthermore, Table 1 shows that this cutoff separates lncRNAs from small regulatory RNAs 

including siRNAs, piRNAs, miRNAs, and snoRNAs. Short noncoding RNAs, or miRNAs, range in length from 

18 to 24 nt and play a role in skin fibrosis.[95] LncRNAs have a wide range of functions, including roles in 

telomere biology, higher order chromosomal dynamics, and subcellular structural organization.[96,97] T-UCR, 

a novel subclass of ncRNAs, is produced from an ultra-conserved region.[98] T-UCRs are a subset of DNA 

segments larger than 200 bp that are fully conserved across species (genomes of rats, mice, and humans).[100, 

99] Furthermore, the type of the genes involved in oncogenesis and/or tumour suppression determines 

subsequent divisions of ncRNAs. Steroid receptor RNA activator (SRA), for instance, is an oncogenic non-

coding RNA that, in response to insulin, increases adipogenesis and suppresses the expression of inflammatory 

genes linked to adipocytes.[100] Maternally expressed gene 3 (MEG3) is a ncRNA encoding gene that is found 

on human chromosome 14q32.3 on the DLK1-MEG3 locus. When this gene is inactivated, the brain develops 

micro vessels and genes that promote angiogenesis are expressed.[101] By competing with the DNA-

glucocorticoid response element (DNA-GRE) at the glucocorticoid receptor's DNA binding domain, GAS5 

ncRNA functions as a ruse and modifies growth arrest under hunger. [102] 
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NON-CODING RNAS: POWER AND PROMISES 

 

 

 

 

 

 

 

 

 

 

 

Feature Prospective  

It provides an in-depth exploration of the multifaceted roles of non-coding RNAs (ncRNAs) in gene regulation, 

with a focus on their involvement in cancer biology and potential applications as diagnostic and therapeutic 

targets. It discusses how ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), 

exert regulatory effects on gene expression through various mechanisms. In cancer, dysregulated expression of 

ncRNAs contributes to tumorigenesis, metastasis, and drug resistance, making them potential biomarkers for 

diagnosis and prognosis. Liquid biopsies, which utilize circulating tumor-derived ncRNAs, offer less invasive 

alternatives for cancer detection and monitoring. Additionally, advancements in RNA sequencing technologies 

enable comprehensive profiling of ncRNAs, aiding in the identification of cancer-specific signatures. 

Therapeutically, ncRNAs hold promise as targets for innovative treatments, such as RNA-based gene silencing 

therapies, with clinical trials showing encouraging results across diverse cancer types. However, challenges 

remain in ensuring efficacy and safety in ncRNA-targeted therapies. Overall, the burgeoning field of ncRNA 

research offers insights into the complex regulatory networks governing cancer biology and presents 

opportunities for the development of novel diagnostic tools and therapeutic interventions. 

Conclusion 

 Non-coding RNAs (ncRNAs) represent a burgeoning field of research with profound implications for cancer 

biology and clinical practice. These molecules, including microRNAs (miRNAs) and long non-coding RNAs 

(lncRNAs), exert intricate regulatory effects on gene expression, influencing key processes involved in 

tumorigenesis and cancer progression. Their dysregulation in cancer underscores their potential as diagnostic 

biomarkers and therapeutic targets. Advancements in RNA sequencing technologies have facilitated the 

identification of cancer-specific ncRNA signatures, offering promise for improved cancer diagnosis and 

prognosis. Liquid biopsies, harnessing circulating tumor-derived ncRNAs, provide less invasive alternatives to 

traditional tissue biopsies for monitoring disease progression and treatment response. Moreover, therapeutic 

targeting of dysregulated ncRNAs holds great potential for innovative cancer treatments. RNA-based gene 

silencing therapies, including those targeting miRNAs and lncRNAs, have shown encouraging results in 

preclinical and clinical studies, highlighting their promise for personalized medicine approaches. Overall, the 

study of ncRNAs in cancer represents a frontier in cancer research, offering insights into the complex molecular 

mechanisms driving malignancy and paving the way for the development of novel diagnostic tools and 

therapeutic interventions aimed at improving patient outcomes in the fight against cancer. 
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