
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n841

Taskopia - REAL TIME EVENT TRACKING

AND CONTROL
Vasudha Khandagale1, Shivtej Pisal2, Rehan Khan3, Harsh Jagtap4, Vishal More5

1 Professor, Dept. of Computer Engineering, Sinhgad Academy of Engineering, Pune, Maharashtra
2,3,4,5 UG Scholar, Dept. of Computer Engineering, Sinhgad Academy of Engineering, Pune, Maharashtra

Abstract: In an increasingly digitized world where time management is paramount, Taskopia emerges as a

robust solution designed to cater to the diverse needs of task organization and productivity enhancement.

Developed using state-of-the-art technologies including Flutter, Dart, Riverpod, and Sqflite, Taskopia

represents a fusion of innovation and practicality in the realm of mobile task management applications.

Taskopia's primary objective is to provide users with a seamless and intuitive platform for managing tasks

efficiently, regardless of their complexity or frequency. By harnessing the power of Sqflite, Taskopia ensures

data persistence, enabling users to access and modify their task lists even in offline environments, thereby

minimizing disruptions and maximizing productivity. Moreover, Taskopia integrates Firebase for OTP

generation, enhancing the security and authentication protocols for user accounts. This integration not only

fortifies the application against potential threats but also instills confidence in users regarding the

confidentiality and integrity of their personal information. This paper delves into the intricate details of

Taskopia's development journey, elucidating the architectural nuances, technological underpinnings, and key

features that define its functionality. By comprehensively understanding Taskopia's design and

implementation, users can leverage its capabilities to streamline their task management processes

Index Terms - Event detection; cluster analysis; burst detection; Twitter; microblog analysis; social networks;

data stream mining

I. INTRODUCTION

In an era defined by relentless schedules and everincreasing demands on our time, effective task management

has become more than a convenience— it's a necessity. Enter Taskopia, a cutting-edge mobile application

meticulously crafted to address the modern challenges of task organization and productivity enhancement.

Developed using a sophisticated blend of technologies including Flutter, Dart, Riverpod, and Sqllite, Taskopia

represents a paradigm shift in the way individuals and organizations approach their daily tasks. Taskopia is

more than just another task management app; it's a comprehensive solution designed to empower users to take

control of their schedules, prioritize effectively, and achieve optimal productivity levels. Leveraging Sqflite's

robust data persistence capabilities, Taskopia ensures that users can access their task lists seamlessly, whether

they're online or offline, eliminating the frustration of being unable to manage tasks due to connectivity issues.

Furthermore, Taskopia integrates Firebase for OTP (One-Time Password) generation, enhancing the security

and reliability of user authentication. By implementing industry-leading security measures, Taskopia instills

confidence in users, assuring them that their sensitive data is safeguarded against unauthorized access and

breaches. This paper embarks on a journey to unravel the intricacies of Taskopia's development process,

providing insights into its architecture, feature set, and technological foundations. By gaining a deeper

understanding of Taskopia's inner workings, users can harness its full potential to revolutionize their task

management workflows, boost efficiency, and ultimately, reclaim control over their time and productivity.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n842

II. LITERATURE REVIEW

Flutter is a UI toolkit and SDK which you can use to build applications. Flutter is open source and you can use

it to build highly performant mobile and desktop apps. Flutter is Cross-Platform: Software is cross-platform

when it is available for different Operating Systems. You want your product to have such cross-platform ability

so users on any device can use your product comfortably. Having support for desktop, mobile, and web

platforms is tough. For desktop, you will need to write code for macOS (with Swift), Linux (with C), and

Windows (with C++). For mobile, you will need to write code for Android (with Kotlin/Java and XML) and

iOS (with Swift). To make your product accessible as a website, you have to use HTML, CSS, and JavaScript.

Or, use any frontend JavaScript framework like Angular, React, or Vue. Making applications for the various

desktop and mobile operating systems requires separate SDKs and skillsets. In the past, you would've needed

to hire developers who were proficient at each platform to implement your app on each of those platforms.

This is expensive. To add a feature, you would've needed to update the code across all these platforms which

is tedious.

How Flutter is cross-platform: Flutter code can run on desktop, mobile, and web platforms. So, you don't need

to hire developers for each platform. You need to write the code only once in Flutter and you can rest assured

that the app will work across the other platforms. So, Flutter is cheap. Adding features to your app is fast

because you only have to make code updates once in Flutter and that's all.

The Flutter framework gives you APIs for painting and events (through widgets). It also provides APIs for

platform-specific services (through method channels). So Flutter exposes everything to you to build the app

in any way you want it. That's how cross-platform works.

2.1 Flutter Has Great State Management:

State refers to data that your application needs to render its UI at any point in time. It could be user- generated

or from your servers or backend. In general, Flutter has two types of widgets: Stateless Widgets and Stateful

Widgets. Anytime you will need to update the UI based on state, simply use a Stateful Widget ahead of time.

Then to update the UI, call setState() anywhere inside the State class of a Stateful Widget and Flutter will

rebuild the UI tree This setState() mechanism turns out to be the most efficient out there. It is also the React

style of updating UI based on state. UI programming should be declarative and setState() simply advocates

that.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n843

You should call setState() after asynchronous code has been executed (if any). This is because it is part of

the main UI thread and blocking calls can hijack the UI rendering process. If you have processes that are

highly CPU intensive in a Flutter app, consider using Dart Isolates to carry out those processes, then call

setState() with the data you get when processing is complete.

Sometimes, you may need access to state not scoped to a particular widget. At that point, you need a State

Management architecture. There are a good number of them to choose from. These architectures provide state

at an app-wide level without reconfiguring in each widget. Available options include Provider, Riverpod,

Redux, Inherited Widget, Stacked, and many more. Another advantage of these architectures is that a good

number of them permit good separation of concerns and dependency injection (or inversion of control).In

simpler terms, separation of concerns gives you the ability to write UI-specific code separate from logic-

specific code. This way, if you want to debug, or change the packages or APIs you're using, you'll do them

easily from one place (without fear of damaging the codebase). Besides, it promotes clean code too.

Dependency Injection involves the use of services or something similar to obtain what widgets need to work

without the widgets configuring the services themselves. Some architectures like Stacked permit you to

manage app-wide states without the Build Context. This pattern is useful because, in Stateless Widgets, the

BuildContext is available only within the build method and you might need to use stuff outside it. So you

could do other things like BottomSheet, Navigation, Toast, and so on without Build Context.

2.2 Flutter Provides a Great Developer Experience:

There are many reasons the developer experience with Flutter is awesome. Here are a few of them:Flutter

has only one programming language – Dart. Programming on its own is a demanding activity. Frameworks,

libraries, and tools shouldn't make coding tougher. When coding for some platforms you usually write code

in more than one programming language. For example, while coding for frontend web, you will alternate

between HTML, CSS, and JavaScript files to manage a given portion of your webpage. Flutter makes coding

easy because you write in just one programming language: Dart. So most of the time, the logic and UI

properties for a given portion of your Flutter app will be in the same Dart file. Also, Flutter and Dart are

written in plain English. Widget names and their properties reflect what they are. While coding Flutter, you

are less likely to have any headaches understanding a given widget and or its use case(s). Flutter has hot-

reloading. Dart is a modern programming language that comes with an Ahead-Of-Time (AOT) and a Just-

In-Time (JIT) compiler.

The JIT compiler gives the feel that Dart is rather interpreted in runtime. In other words, it makes it possible

for changes to Dart files to reflect immediately without needing to recompile the file, as is the case with

some programming languages like C or Java.

Flutter leverages the JIT for development. Flutter ships a Dart VM to the platform in which the app's code is

hosted. That way, when you launch the flutter run command, pressing r in that terminal ships in the

changes in dart files, without recompiling the whole app. This instantaneous, yet cross-platform change-

reflecting feature of Flutter is called hot-reloading.

Flutter also has hot-restarting. Hot restarting is achieved by pressing R (uppercase instead of lowercase this

time). Hot restarting restarts the app entirely. You need to do a hot-restart instead if you change some important

parts of the Flutter code. For example, changing class declarations or their super classes will need a hot

restart.

http://www.ijcrt.org/
https://dart.dev/guides/language/concurrency#how-isolates-work
https://docs.flutter.dev/development/data-and-backend/state-mgmt/options
https://filledstacks.com/
https://en.m.wikipedia.org/wiki/Separation_of_concerns
https://en.m.wikipedia.org/wiki/Separation_of_concerns
https://en.m.wikipedia.org/wiki/Dependency_injection
https://en.m.wikipedia.org/wiki/Dependency_injection
https://dart.dev/tools/dart-compile
https://dart.dev/tools/dart-compile
https://dart.dev/tools/dart-compile
https://mrale.ph/dartvm

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n844

III. METHODOLOGY

3.1 Project Scope Definition:

• Identify the requirements: The project entails the development of a Flutter-based mobile

application named Taskopia, aimed at facilitating efficient task management for users across various

domains.

• Define scope: Taskopia will offer a comprehensive suite of features to enable users to organize,

prioritize, and track their tasks seamlessly. The application will leverage Sqllite for data persistence,

ensuring that users can access their task lists even in offline mode. Additionally, Taskopia will integrate

Firebase for OTP generation, enhancing security and authentication for user accounts. The primary

focus of Taskopia is to provide an intuitive and user- friendly interface for managing tasks effectively,

thereby improving productivity and goal attainment.

3.2 Data Collection:

• Collection of task-related information: Gather a dataset of task-related data, including task names,

descriptions, deadlines and priority levels. This information will be used to train the task management

algorithms and optimize task organization.

• User interaction data: Capture user interactions within the Taskoopia application, such as task creation,

completion, and modification. This data will provide insights into user behavior and preferences,

allowing for personalized task recommendations and optimizations.

• Firebase authentication data: Collect authentication data generated by Firebase for user account

management and security purposes. This data will include OTP (One- Time Password) logs and user

authentication events, enabling analysis of user authentication patterns and detection of potential

security threats.

• Sqllite for local data storage: Utilize Sqflite to store task-related information locally on the device.

This will enable Taskoopia to provide offline access to task lists and ensure data persistence even when

the device is not connected to the internet. Sqflite's lightweight and efficient SQLite database

implementation make it an ideal choice for storing and retrieving task data on mobile devices.

.

3.3 Tools Used:

• Android Studio: For developing the Android application.

• Flutter SDK and Dart: Utilized for developing the Taskopia application, providing a robust

framework for cross- platform mobile app development.

• Sqllite: Employed for local data storage within the Taskopia app, ensuring seamless access to task-

related information even in offline mode.

• Firebase: Integrated for various functionalities including OTP generation, user authentication, and

secure storage of user data.

• Riverpod: Utilized for state management within the Taskopia application, enabling efficient

management of app-wide data and UI states.

• Git: Version control system for collaborative development.

3.4 EXPERIMENTAL DESIGN:

• Task Management Algorithm Training: Train machine learning models for task management

algorithms using datasets comprising task-related information. Experiment with different algorithms

such as decision trees, random forests, or neural networks to optimize task organization and

prioritization.

• Testing: Conduct extensive testing of the Taskopia application to evaluate its functionality,

performance, and user experience. Test under various scenarios and conditions to identify and rectify

any potential issues or bugs.

• Offline Mode Testing: Evaluate the performance of Taskopia's offline mode functionality, ensuring

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n845

seamless access to task lists and data persistence even without an internet connection.

• Firebase Integration Testing: Test the integration of Firebase services, including OTP generation

and user authentication, to verify their functionality and reliability under different usage scenarios.

• Riverpod State Management Testing: Validate the effectiveness of Riverpod for state management

within the Taskoopia application, ensuring consistent and efficient management of app-wide data and

UI states.

3.5 RELEVANT PROCEDURES:

• Task Management Functionality: Preprocess task-related data: Standardize task names,

descriptions, and deadlines for uniformity. Implement algorithms to prioritize tasks based on user

preferences and deadlines.

• Local Data Storage: Utilize Sqllite to establish a local database within the Taskopia application.

Implement CRUD (Create, Read, Update, Delete) operations to manage task data efficiently.

• Firebase Integration: Integrate Firebase services for user authentication, ensuring secure access to

Taskopia's features. Implement Firebase OTP generation for user account verification and

authentication.

• Riverpod State Management: Utilize Riverpod for state management within the Taskopia

application, facilitating seamless communication between different components and widgets.

IV. IMPLEMENTATION

4.1 Setting up the Development Environment:

 Setting up the development environment involves installing Flutter SDK along with Dart, the

programming language used for Flutter development. Flutter provides tools for building, testing, and

debugging cross- platform mobile applications. Once installed, a new Flutter project is created,

configuring permissions for local data storage, Firebase integration, and networking as required by the

application.

4.2 Integrating Task Management Functionality:

 Task management functionality can be implemented using Flutter packages compatible with Sqllite for

local data storage and Firebase for backend services. These packages offer APIs for CRUD operations on

local databases and interacting with Firebase services. Integration involves adding the package

dependencies to the project, configuring settings, and implementing code to manage tasks, prioritize them,

and ensure synchronization between local and remote data sources.

 4.3 Implementing Firebase Integration:

Utilizing Firebase services allows the application to leverage features such as authentication, data

storage, and cloud functions. A Firebase project is set up and configured with the necessary services

enabled, including Firestore for storing task- related data securely. Integration involves adding the

Firebase SDK to the project, configuring authentication methods such as OTP generation, and

implementing code to authenticate users, store and retrieve task data from Firestore, and handle user

sessions.

4.3 User Interface Development:

Designing and implementing a user-friendly interface is crucial for the application's usability. The UI

should allow users to view, create, update, and delete tasks seamlessly. The interface should be intuitive

and responsive, following Material Design guidelines for consistency across different devices and screen

sizes. Widgets such as List Tile, List View, and Floating Action Button can be utilized to create a

cohesive and visually appealing user experience. Dynamic colors functionality can be integrated to allow

users to customize the app's color scheme according to their preferences.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n846

4.4 Testing and Refinement:

Testing the application extensively on different devices ensures compatibility and reliability across a

wide range of hardware configurations. Unit tests, integration tests, and widget tests are conducted to

verify the functionality of individual components and the overall application. Real-world testing with

beta users helps validate the effectiveness of task management features and gather feedback for

refinement. Iterative updates and bug fixes are implemented based on user feedback and testing results

to improve the application's functionality and user experience.

V. ARCHITECTURE

The architecture of the Taskoopia task management application comprises several key components

designed to facilitate seamless task organization and productivity enhancement for users across various

domains. These components include the Task Manager, User Interface (UI), Data Management, and

Firebase Integration.

5.1 Task Manager:

The Task Manager component forms the core of the application, responsible for managing tasks,

prioritizing them, and ensuring synchronization between local and remote data sources. It encompasses

functionalities such as task creation, modification, deletion, and completion, as well as task prioritization

based on user preferences and deadlines.

5.2 User Interface:

The UI component encompasses various screens and elements designed to provide a user-friendly and

intuitive experience for Taskoopia users. It includes screens for task lists, task details, task creation,

settings, and user profile management. The UI design focuses on clarity, simplicity, and responsiveness,

with minimalist design elements and intuitive navigation to enhance user engagement and productivity.

Fig: MVC Architecture

5.3 Data Management:

The Data Management component handles the storage and retrieval of task-related data within the

Taskoopia application. It utilizes Sqflite for local data storage, ensuring seamless access to task lists even

in offline mode. Additionally, Firebase integration is employed for data synchronization and real-time

updates, enabling users to access their tasks across multiple devices and platforms.

5.4 Firebase Integration:

Firebase integration encompasses various services offered by Firebase, including authentication, cloud

Firestore, and cloud functions. Authentication services are utilized for user account management and security

purposes, ensuring secure access to Taskopia's features. Firestore serves as the backend database for

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n847

storing and retrieving task-related data securely, while cloud functions enable serverless computation for

tasks such as data validation and processing.

Overall, the architecture of Taskopia is designed to provide a robust, scalable, and user-centric solution

for task management, empowering users to organize their tasks effectively and achieve their goals with

ease.

5.5 MATHEMATICAL MODEL:

Let S represent the entire system, where

S=I,P,O.

Given:

 I (Input): The input to the system consists of task-related information such as task names,

descriptions, deadlines, and user preferences.

 P (Procedure): The procedure involves prioritizing tasks based on their deadlines and user-defined

preferences.

 O (Output): The output of the system is the organized task list, with tasks arranged in order of

priority.

 T: Set of tasks

 D: Set of deadlines

 Pi: Priority level assigned to task �i



The Mathematical Model:

 Priority=f(T,D,Pi)

 Where: Priority=1+e−(σdi−μ)1

 max−di=Dmax−TDi−T

 μ=n∑i=1nPi

 σ=n∑i=1n(Pi−μ)2

5.6 CHALLENGES ENCOUNTERED AND ADDRESSED:

 Task Organization and Prioritization:

Managing tasks effectively in a dynamic environment posed challenges, especially when dealing with

a large number of tasks with varying priorities and deadlines. This was addressed by implementing

efficient algorithms for task organization and prioritization, considering factors such as deadlines,

importance, and user preferences.

 Offline Functionality:

Ensuring seamless access to task lists and data persistence in offline mode presented challenges,

particularly in scenarios with limited or no internet connectivity. This was addressed by utilizing

Sqflite for local data storage and synchronization mechanisms to ensure that users can access their

tasks even without an internet connection.

 User Authentication and Security:

Implementing robust authentication mechanisms and ensuring data security were paramount to protect

user privacy and prevent unauthorized access to sensitive information. This was addressed by

integrating Firebase Authentication for secure user authentication and implementing encryption

techniques to safeguard user data both in transit and at rest.

 Learning Curve:

Flutter requires developers to learn Dart programming language and the Flutter framework, which may

have a steeper learning curve for those unfamiliar with them.

 Versioning and Updates:

Keeping up with Flutter updates and managing version compatibility with packages and dependencies

can sometimes

lead to challenges, especially for larger projects with multiple contributors.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n848

VI. RESULTS

6.1 OnBoarding Page:

The OnBoarding widget is the central component of the Taskoopia app, providing users with a streamlined

dashboard to manage tasks efficiently. Here's a brief overview:

 AppBar and Search Bar: 

The app bar displays the title "Dashboard" and an "Add" button for adding new tasks. Below it, a

search bar allows users to find specific tasks quickly.

 Task Tabs: 

Two tabs, "Pending" and "Completed," enable users to switch between pending and completed tasks

easily. The selected tab is highlighted for clarity.

 Task Lists: 

The tab bar view displays tasks corresponding to the selected tab. "Pending" shows tasks to be

completed, while "Completed" lists tasks already finished.

 Tomorrow and Day After Tomorrow Lists: 

Sections at the bottom provide quick previews of tasks scheduled for the next two days.

 UI Elements: 

The UI features a clean, modern design with minimalist elements for a user-friendly experience. Icons

from Flutter Vector Icons guide users, and styled text fields and buttons maintain consistency.

 Functionality:

 Users can perform various actions such as viewing, adding, editing, and deleting tasks seamlessly.

Tabs and scrollable lists facilitate easy navigation between task sections.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n849

Overall, the OnBoarding offers a compact yet effective interface for efficient task management in Taskopia,

ensuring users stay organized and productive.

6.2 Login Page:

 The Login Page widget serves as the entry point for users to authenticate and access the Taskopia app.

 User Authentication: The LoginPage allows users to input their phone number for authentication

purposes.

 Country Selection: Users can select their country using a dropdown menu, which displays the flag

emoji and phone code of the selected country

 UI Elements: The UI features an image at the top, providing visual appeal. Below it, a text prompt

asks users to input their phone number. The phone number input field is accompanied by a country

selection dropdown and styled accordingly for consistency.

 Send Code Button: A button labeled "Send Code" enables users to proceed with authentication.

Upon tapping this button, users are navigated to the OTP verification page (OtpPage).

 Scrollable Content: The content of the LoginPage is contained within a scrollable view, ensuring

compatibility with devices of various screen sizes.

 Validating Logic

The Otp Page includes validation logic to ensure that users enter a complete 6-digit OTP code

before proceeding. Upon entering the complete OTP code, users can proceed with verification.

 Scrollable Content:

Similar to the Login Page, the content of the Otp Page is contained within a scrollable view,

ensuring compatibility with devices of various screen sizes.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n850



6.3 OTP PAGE:

The Otp Page widget is responsible for facilitating OTP (One-Time Password) verification during the

login process in the Taskopia app. Here's a concise summary of its features and functionality:

 OTP Input Field:

The main component of the OtpPage is an OTP input field where users can enter their OTP code. The

input field is designed to accept a 6-digit OTP code.

 UI Elements:

The UI features an image at the top, providing visual appeal and branding consistency. Below it, a text

prompt instructs users to enter their OTP code.

 OTP Input Field:

The OTP input field is implemented using the Pinput package, allowing users to input their OTP code

securely. The field automatically moves the cursor to next digit after each input, providing a seamless

user experience.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n851

Overall, the Otp Page offers a straightforward and user- friendly interface for OTP verification,

facilitating a secure login process for users in Taskopia.

6.4 Home Page:

The Home Page widget serves as the central hub for task management in the Taskopia app. Here's a

concise overview of its features and functionality:

 AppBar:

The app bar displays the title "Dashboard" and an "Add" button for creating new tasks. Tapping the

add button navigates users to the task creation page.

 Search Bar:

Below the app bar, there's a search bar allowing users to search for specific tasks. It enhances task

organization and retrieval.

 Task Tabs:

Two tabs, "Pending" and "Completed," enable users to switch between pending and completed tasks

effortlessly. Each tab displays the respective tasks.

 Task Lists:

The tab bar view presents task lists corresponding to the selected tab. "Pending" displays tasks yet to

be completed, while "Completed" lists tasks already finished.

 UI Elements:

The UI boasts a clean and modern design with minimalist elements, ensuring an intuitive user

experience. Icons from the Flutter Vector Icons package provide visual cues for actions.

 Functionality:

Users can view, add, edit, and delete tasks seamlessly. The HomePage facilitates smooth navigation

between different task sections, enhancing productivity.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n852

6.5 Add Task Page:

The Add Task page allows users to create new tasks with various details such as title, description,

scheduled date, start time,

and finish time. Here's a brief overview of its features and functionality:

 App Bar: 

The app bar is transparent with no elevation, providing a clean interface for task creation.

 Text Fields: 

Users can input the title and description of the task using custom text fields.

 Date and Time Pickers: 

Custom outline buttons allow users to set the scheduled date, start time, and finish time of the task.

Date and time pickers facilitate easy selection of specific dates and times.

 Submit Button: 

Upon filling out all required fields, users can submit the task details by tapping the "Submit" button.

The task is then added to the task list.

 Validation: 

The page validates that all necessary fields are filled out before allowing submission. If any field is

empty, the submission fails, and an error message is printed.

 State Management: 

The page utilizes Riverpod for state management, ensuring efficient updates and changes to task-

related data.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n853

Overall, the Add Task page streamlines the process of creating new tasks, providing users with a

convenient and intuitive interface within the Taskopia app.

VII. DISCUSSION

Analyzing the outcomes of implementing Taskopia- a real-time event tracking and control application - in the

context of our project objectives sheds light on the superiority of Flutter over traditional languages like

Kotlin, Swift, or React Native. Our primary objectives, as outlined in the project introduction, focused on

optimizing task management processes, enhancing performance, and delivering a seamless experience for

users.

First and foremost, Flutter's cross-platform support proved instrumental in streamlining task management

app development effectively. Leveraging Flutter's single codebase approach, we could create a unified user

interface for both Android and iOS platforms, eliminating the need for separate codebases. This unified

development approach significantly reduced development time and effort, enabling us to provide a consistent

user experience across different devices.

 Secondly, Flutter's performance and efficiency allowed us to enhance the responsiveness and reliability of

our task management appWith Flutter's fast rendering engine and native performance, we could implement

complex UI interactions seamlessly, ensuring a smooth and responsive user experience. This native performance

capability surpassed other cross-platform frameworks, resulting in enhanced app performance and user

satisfaction.

 Furthermore, Flutter's extensive widget library and customizable UI components empowered us to deliver

convenient functionalities for Taskoopia users. By utilizing Flutter's built-in widgets, we could design intuitive

and visually appealing interfaces for managing tasks, setting reminders, and organizing lists. Flutter's hot reload

feature accelerated the development process, enabling us to iterate quickly and incorporate user feedback

effectively, thereby improving overall user satisfaction and engagement.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n854

 The implications of these findings underscore Flutter's superiority in mobile app development, particularly

for task management solutions like Taskopia. Flutter's versatility, performance, and productivity

enhancements offer significant advantages over traditional languages like Kotlin, Swift, or React Native. By

adopting Flutter for our project, we not only achieved our objectives efficiently but also positioned ourselves

at the forefront of mobile app development innovation.

 However, it's essential to acknowledge potential challenges associated with Flutter development, such as

plugin compatibility issues or a learning curve for developers transitioning from other frameworks. Despite

these challenges, the overall benefits and advantages offered by Flutter far outweigh any potential drawbacks,

making it the preferred choice for modern mobile app development projects.

By comparing our project results with existing literature and research on mobile app development

frameworks, we can affirm Flutter's superiority and its potential to revolutionize the way mobile apps are built

and deployed. As Flutter continues to evolve and gain traction in the developer community, its impact on the

mobile app development landscape is poised to grow, solidifying its position as the leading choice for cross-

platform development.

VIII. DRAWBACKS

8.1 Larger App Size:

One of the notable downsides of Flutter is the size of the resulting apps. Flutter apps tend to be larger

compared to their native counterparts. This can be a concern for users with limited storage space on

their devices or for apps that need to be downloaded over a mobile network. The inclusion of the

Flutter framework contributes to this larger size.

8.2 Learning Curve:

Developers who are not familiar with Dart, the programming language used by Flutter, may face a

learning curve. For those already proficient in Java/Kotlin for Android or Swift/Objective-C for iOS,

transitioning to Dart can be challenging and time- consuming.

8.3 Platform Updates:

Both Android and iOS receive regular updates, and Flutter must adapt to these changes. Sometimes,

there may be a delay in Flutter’s support for new platform features, potentially causing issues for app

maintenance.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n855

IX. CONCLUSION

Taskopia leverages modern technologies such as Flutter, Dart, Riverpod, SqLlite, and Firebase to

streamline task management workflows and enhance user productivity. The use of Flutter allows for the

creation of a single codebase that can run on multiple platforms, ensuring consistent performance and user

experience across different devices. Additionally, Dart provides a robust and efficient programming

language, while Riverpod facilitates state management, SqLlite enables local database storage, and

Firebase offers real-time data synchronization and authentication services.

By utilizing these technologies, Taskopia offers features such as task creation, organization, and tracking

in real-time, providing users with a comprehensive solution for managing their tasks efficiently. The

implementation of Taskopia demonstrates the potential of technology-driven solutions to address

traditional task management challenges and improve productivity in various contexts.

Moving forward, future iterations of Taskopia may focus on refining existing features, incorporating user

feedback, and expanding functionality to meet the evolving needs of users. Additionally, efforts may be

directed towards optimizing performance, ensuring data security and privacy, and preparing for potential

deployment and publication.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 4 April 2024 | ISSN: 2320-2882

IJCRT24A4601 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org n856

X. REFERENCES

1) AI based Event Management Web Application:

https://ieeexplore.ieee.org/document/9850551/metrics#metrics

2) TaskCO: Android App for Task Management. https://ieeexplore.ieee.org/document/10039511

3) Real-time Student Management Application Using Google Firebase and Android

Studio.https://ieeexplore.ieee.org/document/9498494

4) Hikester - The Event Management Application. https://ieeexplore.ieee.org/document/8418114

5) An Android Application System to Provide Real- time Notification to End Users Using

Firebase.https://ieeexplore.ieee.org/document/10134323

http://www.ijcrt.org/
https://ieeexplore.ieee.org/document/10039511
https://ieeexplore.ieee.org/document/9498494
https://ieeexplore.ieee.org/document/8418114

