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Abstract: In this paper, a new kind of sets called F-generalized closed (briefly Fg-closed) sets are introduced, 

which is a generalization of F-closed as well as g-closed sets and also studied some basic properties of Fg-

closed sets in topological spaces. Further by utilizing Fg-closed sets, we obtained a characterization of normal 
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spaces and investigated some properties of F-normal spaces in the terms of Fg-open sets. 
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1. Introduction 

The concept of closedness is fundamental with respect to study of topological spaces. Generalized closed sets 

play a very important role in topology and generalized closed sets are research topics of many topologists. In 

1923, Tietze [6] first defined the notion of normal spaces and studied their properties. In 1937, M. Stone [5] 

introduced the notion of regular open sets. In 1970, Levine [3] introduced the notion of generalized closed sets 

and studied the properties of g-closed sets in topological spaces. In 1971, Crossley and Hildebrand [2] defined 

the concept of semi open sets and investigated their properties. In 2000, A. Pushpalatha [4] studied the 

concept of w-closed sets in topological spaces and obtained some basic properties of w-closed sets. In 2023, 

Mesfer H. Alqahtani [1] introduced the concept of F-open and F-closed sets in topological spaces. They 

studied the main properties of these sets and examine the relationships between F-open and F-closed sets with 

other kinds of closed and open sets such as regular open, regular closed, π-open, π-closed and open sets etc. 

 

2. Preliminaries 

In what follows, spaces always mean topological spaces on which no separation axioms are assumed unless 

explicitly stated and f : (X, )  (Y, σ) (or simply f : X  Y) denotes a function f of a space (X, ) into a 

space (Y, σ). Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) and 

int(A), respectively. 
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2.1 Definition: A subset A of a topological space (X, ) is said to be  

(i) regular open [5]  if A int(cl(A)). 

(ii) semi open [2]  if (A)  cl(int(A)).  

(iii) g-closed [3] if cl(A)  U whenever A  U and U ∈ . 

(iv) w-closed [4] if cl(A)  U whenever A  U and U is semi-open. 

 

The collection of all semi open (resp. g-closed, w-closed) sets is denoted by S-O(X) (resp. g-C(X), w-C(X)). 

 

2.2 Definition: An open subset A of the topological space (X, ) is said to be F-open [1] set if cl(A)  A is 

finite set. The complement of the F-open set is called F-closed. The collection of all F-open (resp. F-closed) 

sets is denoted by F-O(X) (resp. F-C(X)). 

 

3. Fg-closed set 

 

3.1 Definition: A subset A of a topological space (X, ) is said to be Fg-closed if cl(A)  U whenever A  U 

and U is F-open. The complement of the Fg-closed set is called Fg-open set. The collection of all Fg-open 

(resp. Fg-closed) sets is denoted by Fg-O(X) (resp. Fg-C(X)). 

 

The intersection of all Fg-closed sets containing A, is called the Fg-closure of A and is denoted by Fg-cl(A). 

The Fg-interior of A, denoted by Fg-int(A) is defined to be the union of all Fg-open sets contained in A. 

3.2 Remark. We summarize the fundamental relationships between several types of generalized closed sets in 

the following diagram.  

 

              F-closed                          closed                    semi closed 

 

                                                                                                 

             w-closed                          g-closed                   Fg-closed 

 

Where none of the implications is reversible can be seen from the following examples 

 

3.3 Example. Let X = {a, b, c} and  = {, X, {a}, {a, b}}. Then 

C(X) = F-C(X) = w-C(X) = {, X, {c}, {b, c}} 

s-O(X) = {, X, {a}, {a, b}, {a, c}} 

s-C(X) = {, X, {b}, {c}, {b, c}} 

g-C(X) = Fg-C(X) = {, X, {c}, {a, c}, {b, c}} 

Here {b} is semi closed set but not closed set, Fg-closed and g-closed also, the set {a, c} is Fg-closed and g-

closed set but not semi closed set and closed. Hence it is clear that neither semi closed imply Fg-closed nor 

Fg-closed imply semi closed sets. 

3.4 Example. Let X = {a, b, c, d} and  = {, X, {a}, {a, b}, {a, c}, {a, b, c}}. Then  

C(X) = F-C(X) = w-C(X) = {, X, {d}, {b, d}, {c, d}, {b, c, d}} 

S-O(X) = {, X, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}} 

S-C(X) = {, X, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d} } 

g-C(X) = Fg-C(X) = {, X, {d}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d} {b, c, d}} 

Here {a, d} is g-closed set but not w-closed set. 
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3.5 Example. Let X = {a, b} and  = {, X} Then A = {a} is w-closed set but not closed. 

3.6 Example. Let (ℝ, U) be the usual topological space. The set of natural numbers ℕ is a closed set but not 

F-closed set of ℝ  with respect to usual topology U, as ℕ  int(ℕ) = ℕ   = ℕ which is an infinite set. 

3.7 Example. Let (ℝ, U) be the usual topological space, An = (n, n+1)  n  ℤ be the open sets of set of real 

numbers ℝ in U. Now cl(An)  An = [n, n+1] – (n, n+1) = {n, n+1} which is a finite set, i.e. An is a F-open 

subset of ℝ. Now define A = ∪nℤ  An = ℝ  ℤ which is an open set as it is countable union of open set. Also 

cl(A) – A = cl(ℝ  ℤ) – (ℝ  ℤ) = ℝ – (ℝ  ℤ) = ℤ which is an infinite set hence A is not F-open set in (ℝ, U).  

Now for A, ℝ is the smallest F-open set containing A, also cl(A) = ℝ  ℝ whenever A  ℝ and ℝ is F-open 

set, hence A is Fg-closed set. But A is not g-closed set as A  A and A is open set but cl(A) = ℝ is not subset 

of A. 

 

3.8 Theorem: Union of two Fg-closed set is Fg-closed set. 

Proof: Let A and B be two Fg-closed sets. Now A is Fg-closed set if cl(A)  U1 whenever A  U1 and U1 is 

F-open set, also B is Fg-closed set if cl(B)  U2 whenever B  U2 and U2 is F-open set. Now U1  U2 is F-

open set as U1 and U2 are F-open sets, and A  B  U1  U2 as A  U1 and B  U2. Now cl(A)  U1 and 

cl(B)  U2  cl(A)  cl(B)  U1  U2  cl(A  B)  U1  U2 because by using the result cl(A  B) = 

cl(A)  cl(B). Hence cl(A  B)  U1  U2 whenever A  B  U1  U2 and U1  U2 is F-open set. Hence A 

 B is Fg-closed set. 

 

In general finite union of Fg-closed sets is Fg-closed set. 

 

3.9 Theorem: Intersection of two Fg-closed set is Fg-closed set. 

Proof: Let A and B be two Fg-closed set. Now A is Fg-closed set if cl(A)  U1 whenever A  U1 and U1 is F-

open set, also B is Fg-closed set if cl(B)  U2 whenever B  U2 and U2 is F-open set. Now U1 ∩ U2 is F-open 

set as U1 and U2 are F-open sets, and A  B  U1  U2 as A  U1 and B  U2. Now cl(A)  U1 and cl(B)  

U2  cl(A)  cl(B)  U1  U2  cl(A  B)  U1 ∩ U2 because by using the result cl(A  B)  cl(A)  

cl(B). Hence cl(A  B)  U1  U2 whenever A  B  U1  U2 and U1  U2 is F-open set. Hence A  B is 

Fg-closed set. 

 

In general finite intersection of Fg-closed sets is Fg-closed set. 

 

3.10 Theorem: Union of two Fg-open sets is Fg-open set. 

Proof: Let A and B be two Fg-open subset of a topological space (X, ). Then X  A and X  B be two 

closed Fg-subset of X. Hence (X  A)  (X  B) is Fg-closed subset of X by Theorem 3.9. Now (X  A)  

(X  B) = X   (A  B) be Fg-closed set  A  B is Fg-open set. Hence union of two Fg-open sets is Fg-

open set. 

 

In general finite union of Fg-open sets is Fg-open set. 

 

3.11 Theorem: Intersection of two Fg-open sets is Fg-open set. 

Proof: Let A and B be two Fg-open subset of a topological space (X, ). Then X  A and X  B be two Fg-

closed subsets of X. Hence (X  A)  (X  B) be the Fg-closed subset of X by Theorem 3.8. Now (X  A)  
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(X  B) = X   (A  B) be Fg-closed set  A  B is Fg-open set. Hence intersection of two Fg-open sets is 

Fg-open set. 

 

In general finite intersection of Fg-open sets is Fg-open set. 

 

3.12 Remark: Arbitrary union of Fg-closed sets is may not be Fg-closed set. 

 

3.13 Example: Let An = [1/n, n/n+1]   n  {2, 3, 4…..} be the closed set, hence Fg-closed subsets in the 

usual topological space (ℝ, U). Now let A be the countable union of An, i.e. A = A2  A3  A4  ….  = (0, 1) 

which is not Fg-closed set as A  (0, 1) and (0, 1) is F-open set but cl(A)= [0, 1] is not subset of (0, 1). 

Hence arbitrary union of Fg-closed sets is may not be Fg-closed set. 

 

3.14 Remark: Arbitrary intersection of Fg-open sets is may not be Fg-open set. 

 

3.15 Example: Let An = (-1/n, 1/n)  n  ℕ be the open set, hence Fg-open sets in the usual topological space 

(ℝ, U). Now let A be the countable intersection of An , i. e. A =  nℕ An = A1  A2  A3  A4  … .= {0} 

which is not a Fg-open set as ℝ  {0} is not Fg-closed set because ℝ  {0}  ℝ  {0} and ℝ   {0} is a F-

open set but cl(ℝ  {0})= ℝ is not subset of ℝ  {0}. Hence arbitrary intersection of Fg-open sets is may 

not be Fg-open set. 

 

4. F-NORMAL SPACES 

 

4.1 Definition: A space X is said to be F-normal (resp. normal [10]) if for every pair of disjoint F-closed 

(resp. closed) sets A and B in X, there exist disjoint open sets U and V such that A  U and B  V.   

 

4.2 Remark: Every normal space is F-normal but not conversely.  

 

4.3 Theorem: For a topological space X, the following properties are equivalent: 

(1) X is F-normal; 

(2) for any disjoint H, K  F-C(X), there exist disjoint Fg-open sets U, V such that H   U and K   V; 

(3) for any H  F-C(X) and any V  F-O(X) containing H, there exists a Fg-open set U of X such that H  U 

 Fg-cl(U)  V; 

(4) for any H  F-C(X) and any V  F-O(X) containing H, there exists an open set U of X such that H  U  

cl(U)  V; 

(5) for any disjoint H, K  F-C(X), there exist disjoint regular open sets U, V such that H  U and K  V. 

Proof: (1)  (2): Since every open set is Fg-open, the proof is obvious.  

 

(2)  (3): Let H  F-C(X) and V be any F-open set containing H. Then H, X – V  F-C(X) and H  (X – V) 

=  . By (2), there exist Fg-open sets U, G such that H  U, X – V  G and U  G = . Therefore, we have H 

 U  (X – G)  V. Since U is Fg-open and X – G is Fg-closed, we obtain H  U  Fg-cl(U)  (X – G)  V.  

 

(3)  (4): Let H  F-C(X) and H  V  F-O(X). By (3), there exists a Fg-open set U0 of X such that H  U0 

 Fg-cl(U0)  V. Since Fg-cl(U0) is Fg-closed and V  F-O(X), cl(Fg-cl(U0))  V. Put int(U0) = U, then U is 

open and H  U  cl(U)  V.  
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(4)  (5): Let H, K be disjoint F-closed sets of X. Then H  (X – K)  FO(X) and by (4) there exists an open 

set U0 such that H  U0  cl(U0)  (X – K). Therefore, V0 = (X – cl(U0)) is an open set such that H  U0, K 

 V0 and U0  V0 =  . Moreover, put U = int(cl(U0)) and V = int (cl(V0)), then U, V are regular open sets 

such that H  U, K  V and U  V =  .  

 

(5)  (1): This is obvious.  

 

By using Fg-open sets, we obtain a characterization of normal spaces. 

 

4.4 Theorem: For a topological space X, the following properties are equivalent:  

(1) X is normal;  

(2) for any disjoint closed sets A and B, there exist disjoint Fg-open sets U and V such that A  U and B  V;  

(3) for any closed set A and any open set V containing A, there exists a Fg-open set U of X such that A  U  

cl(U)  V.  

Proof: (1)  (2): This is obvious since every open set is Fg-open.  

 

(2)  (3): Let A be a closed set and V be any open set containing A. Then A and (X – V) are disjoint closed 

sets. There exist disjoint Fg-open sets U and W such that A  U and (X – V)  W. Since X – V is closed, we 

have (X – V)  int(W) and U  int(W) =  . Therefore, we obtain cl(U)  int(W) =  and hence A  U  

cl(U)  (X – int(W))  V.  

 

(3)  (1): Let A, B be disjoint closed sets of X. Then A  (X – B) and (X – B) is open. By (3), there exists a 

Fg-open set G of X such that A  G  cl(G)  (X – B). Since A is closed, we have A  int(G). Put U = int(G) 

and V = (X – cl(G)). Then U and V are disjoint open sets of X such that A  U and B  V. Therefore, X is 

normal.  

 

4.5 Theorem: Let X be a F-normal space. Then a semi-regular subspace Y of X is also F-normal.  

Proof: Let X be a F-normal space and Y be a semi-regular subspace of X. Let A  F-C(Y) and B  F-O(Y) 

containing A. Since Y is semi regular, so A  F-C(X) and B  F-O(X). Hence by Theorem 4.3(4), there 

exists an open set U in X such that A  U  clX(U)  B. This gives A  (U ∩ Y)  clY(U ∩Y)  B, where U 

 Y is open in Y and hence Y is F-normal.  

 

5. FUNCTIONS AND F-NORMAL SPACES 

5.1 Definition: A function f : X  Y  is said to be:  

(1) almost Fg-continuous if for any regular open set V of Y,  f −1(V)  Fg-O(X);  

(2) almost Fg-closed if for any regular closed set F of X, f F  Fg-C(Y).  

 

5.2 Definition: A function f : X Y  is said to be:  

(1) F-irresolute (resp. F-continuous) if for any F-open (resp. open) set V of Y, f −1( V) is F-open in X;  

(2) pre-F-closed (resp. F-closed [1]) if for any F-closed (resp. closed) set F of X, f(F) is F-closed in Y.  
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5.3 Theorem: A function f : X  Y  is an almost Fg-closed surjection if and only if for each subset S of Y 

and each regular open set U containing f −1(S), there exists a Fg-open set V such that S  V and f −1(V)  U .  

Proof: Necessity. Suppose that f is almost Fg-closed. Let S be a subset of Y and U be a regular open set of X 

containing f −1(S). Put V = Y – f(X – U), then V is a Fg-open set of Y such that S  V and f −1(V)  U.  

Sufficiency: Let F be any regular closed set of X. Then f −1(Y  f(F))  (X – F) and X  F is regular open. 

There exists a Fg-open set V of Y such that (Y  f(F))  V and f −1(V)  (X – F). Therefore, we have f(F)  

(Y – V) and F  f −1(Y – V). Hence, we obtain f(F) = Y  V and f(F) is Fg-closed in Y. This shows that f is 

almost Fg-closed.  

5.4 Theorem: If f : X  Y  is an almost Fg-closed F-irresolute (resp. F-continuous) surjection and X is F-

normal, then Y is F-normal (resp. normal).  

Proof: Let A and B be any disjoint F-closed (resp. closed) sets of Y. Then f −1(A) and f −1(B) are disjoint F-

closed sets of X. Since X is F-normal, there exist disjoint open sets U and V of X such that f −1(A)  U and f 
−1(B)  V. Put G = int(cl(U)) and H = int(cl(V)), then G and H are disjoint regular open sets of X such that f 
−1(A)  G and f −1(B)  H. By Theorem 5.3, there exist Fg-open sets K and L of Y such that A  K, B  L. f 
−1(K)  G and f −1(L)  H. Since G and H are disjoint, so K and L are also disjoint. It follows from Theorem 

4.3 (resp. Theorem 4.4) that Y is F- normal (resp. normal).  

 

5.5 Theorem: If f : X  Y is a continuous almost Fg-closed surjection and X is a normal space, then Y is 

normal.  

Proof: The proof is similar to that of Theorem 5.4.  

 

5.6 Theorem: If f : X  Y is an almost Fg-continuous pre-F-closed (resp. F-closed) injection and Y is F-

normal, then X is F-normal (resp. normal).  

Proof: Let H and K be disjoint F-closed (resp. closed) sets of X. Since f is a pre-F-closed (resp. F-closed) 

injection, f(H) and f(K) are disjoint F-closed sets of Y. Since Y is F-normal, there exist disjoint open sets P 

and Q such that f(H)  P and f(K)  Q. Now, put U = int(cl(P)) and V = int(cl(Q)), then U and V are disjoint 

regular open sets such that f(H)  U and f(K)  V. Since f is almost Fg-continuous, f −1(U) and f −1(V) are 

disjoint Fg-open sets such that H  f −1(U) and K  f −1(V). It follows from Theorem 4.3 (resp. Theorem 

4.4) that X is F-normal (resp. normal).  
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