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Abstract: Federated Learning (FL) is a novel machine learning approach enabling decentralized model
training while safeguarding data privacy. Unlike traditional centralized methods, FL mitigates privacy risks
by retaining data on local devices, addressing challenges such as data security, regulatory compliance, and
data heterogeneity. This study highlights FL’s principles, privacy-enhancing techniques, and applications
across sectors, emphasizing its alignment with the General Data Protection Regulation (GDPR). Case studies
and data visualization tools like Orange illustrate the opportunities and challenges in developing privacy-
preserving FL systems.
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Compliance, Data Privacy, Privacy Attacks Mitigation, Distributed Machine Learning

|. INTRODUCTION

In today’s data-driven world, applications powered by artificial intelligence (Al) and machine learning
(ML) play a critical role in industries such as healthcare, finance, and autonomous systems. These applications
rely on large-scale data collection and processing, often conducted through centralized ML models that
aggregate raw data into centralized servers for training. However, this approach poses significant challenges,
including risks of data breaches, compliance issues with stringent regulations such as the EU General Data
Protection Regulation (GDPR), and the erosion of user trust due to limited transparency in data handling.
Federated Learning (FL), introduced by Google researchers in 2016, presents a transformative paradigm for
addressing these challenges. By enabling collaborative training across decentralized devices, FL eliminates
the need to transfer raw data to central servers. Instead, model training occurs locally on user devices, and
only model updates are shared with a central server or a peer-to-peer network for aggregation. This
decentralized approach inherently enhances data privacy, reduces security risks, and offers a path toward
GDPR compliance by keeping personal data on local devices. FL has opened new opportunities for service
providers to deploy privacy-preserving ML algorithms without directly accessing users’ sensitive data.
Despite its potential, FL is not immune to privacy risks. Research has shown that adversaries can exploit
exchanged model parameters to infer sensitive information, posing challenges for strict compliance with data
protection regulations. Privacy-preserving techniques, including cryptographic methods and differential
privacy, have been developed to mitigate such risks and strengthen the security of FL systems. However,
implementing fully GDPR-compliant FL systems remains a complex and evolving task.

This paper aims to provide a comprehensive exploration of FL from a privacy-preservation perspective,
particularly concerning GDPR compliance. It discusses the limitations of traditional centralized ML
approaches, evaluates state-of-the-art privacy-preserving techniques in FL, and examines how these
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techniques can address data security challenges. Additionally, the study highlights unresolved issues and
potential future directions to align FL systems with regulatory frameworks, ultimately contributing to the
development of secure and trustworthy ML applications.

1l. EASE OF USE

Understanding Federated learning and Privacy Preservation in Machine learning

Federated Learning (FL) represents a paradigm shift in machine learning by enabling decentralized
training of models. It allows multiple clients, such as mobile devices or edge systems, to collaboratively train
a global model without sharing their raw data. This approach not only improves data privacy but also supports
regulatory compliance and enhances scalability.

Federated Learning: Principles and Benefits

Federated Learning operates by transmitting model updates instead of raw data to a central server. The
process involves the following steps:
e Local Training: Each participating device performs training on its local dataset.

o Update Sharing: Only model parameters (gradients) are shared with the central server, ensuring data
privacy.

o Model Aggregation: The server aggregates these updates to create an improved global model.

Key benefits of FL include:
o Privacy Preservation: Data remains on local devices, minimizing the risk of data breaches.

e Regulatory Compliance: By keeping sensitive data local, FL supports compliance with data
protection laws like GDPR.

e Reduced Latency: Local training can reduce communication delays and improve user experiences.
o Scalability: FL is well-suited for large-scale distributed systems and heterogeneous devices.

Optimization Techniques in Federated Learning

The core optimization algorithm in FL is often a variant of gradient descent. The effectiveness of training
depends on efficiently updating the model parameters. Gradient descent methods in FL include:
o Batch Gradient Descent: Utilizes the entire dataset for parameter updates in each iteration. It is
accurate but computationally expensive.

« Stochastic Gradient Descent (SGD): Uses a single data point per iteration for updates, which is faster
but less stable.

« Mini-Batch Gradient Descent: Balances efficiency and stability by using small batches of data for
updates.

In distributed learning scenarios, parallelism plays a significant role:
o Data Parallelism: Divides the dataset into shards for distributed training.

e Model Parallelism: Splits the model across multiple compute nodes to reduce individual workload.
e Hybrid Parallelism: Combines data and model parallelism to maximize scalability and efficiency.

Gradient descent-based optimization in FL is supported by advanced optimizers such as Adam, RMSprop,
and Momentum, which adjust learning rates dynamically to enhance convergence.
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Privacy preservation Techniques in Federated Learning
To ensure data security and privacy in FL, several advanced techniques are employed:
o Data Anonymization: Removes or obscures personally identifiable information (PII) to prevent re-
identification. Methods like k-anonymity and I-diversity improve data utility while maintaining
privacy but are susceptible to linkage attacks.

« Differential Privacy: Adds controlled random noise to the model updates, ensuring that the inclusion
or exclusion of any individual’s data does not significantly affect the model. This method balances
privacy with utility.

e Secure Multi-Party Computation (SMC): Allows multiple parties to collaboratively compute a
function over their data without revealing individual datasets. Techniques like secret sharing and
garbled circuits ensure secure model training but may introduce computational overhead.

FL also employs encryption techniques such as homomorphic encryption to protect data during computation.
These privacy-preserving mechanisms collectively address the dual objectives of safeguarding user data and
enabling effective model training across distributed systems.

By combining decentralized learning with robust privacy techniques, Federated Learning is transforming the
landscape of machine learning, making it more secure, scalable, and compliant with evolving data regulations.
Privacy-Preserving Techniques in Machine Learning: As the demand for privacy-conscious machine learning
(ML) systems grows, several advanced techniques have emerged to address data protection challenges.
Homomorphic encryption and federated learning stand out as promising solutions to ensure privacy in
centralized and decentralized ML architectures, respectively. These approaches not only comply with
stringent regulations like the General Data Protection Regulation (GDPR) but also attempt to balance the
trade-off between privacy and system performance.

I111. HOMOMORPHIC ENCRYPTION: A PRIVACY-CENTRIC COMPUTATION TECHNIQUE

Homomorphic encryption enables computations to be performed directly on encrypted data without
requiring decryption, thus preserving privacy throughout the computational process. Initially proposed by
Gentry (2010), this technique ensures that the results obtained from encrypted computations are identical to
those that would have been achieved with unencrypted data. Only the requester possessing the secret key can
decrypt the computed results, safeguarding sensitive information from exposure during processing.
Homomorphic encryption techniques are categorized into three types based. on their computational
capabilities:

1. Partial Homomorphic Encryption (PHE): Supports limited operations, such as either addition or

multiplication.

2. Somewhat Homomorphic Encryption (SWHE): Allows a broader range of operations but still has
restrictions on the number of operations.

3. Fully Homomorphic Encryption (FHE): Facilitates arbitrary computations on encrypted data,
offering the highest level of flexibility and functionality.

While FHE has revolutionized privacy-preserving computations, its high computational overhead makes it
challenging to implement in large-scale applications (Gilad-Bachrach et al., 2016). Thus, its adoption remains
limited to niche scenarios where privacy concerns outweigh performance constraints.

A Decentralized Approach to Privacy

Federated Learning (FL) is a decentralized machine learning paradigm that trains models collaboratively
while retaining raw data on user devices. This minimizes privacy risks associated with centralized data storage
and ensures compliance with regulations like GDPR by sharing model parameters instead of raw data. Unlike
traditional distributed learning, which assumes independent and identically distributed (11D) datasets, FL is
designed for heterogeneous and non-11D data of varying sizes and distributions. This makes it ideal for large-
scale, real-world applications involving diverse devices with limited connectivity and bandwidth. By reducing
data transfers and central storage, FL supports GDPR principles, such as purpose limitation and data
minimization. However, challenges remain, including communication efficiency, edge-device computational
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demands, and model aggregation in non-1ID scenarios. Homomorphic encryption and FL represent key
advancements in privacy-preserving machine learning. While homomorphic encryption secures centralized
computations, FL’s decentralized design further reduces privacy risks. Both approaches face scalability and
efficiency challenges, underscoring the need for ongoing research to improve practical implementation.

IV. TENSORFLOW FEDERATED(TFF): A FRAMEWORK FOR DECENTRALIZED MACHINE LEARNING

TensorFlow Federated (TFF) is an open-source framework designed for machine learning and computations
on decentralized data. It supports Federated Learning (FL), a technique where a shared global model is trained
across multiple clients while keeping their data local. For instance, FL has been used to train mobile keyboard
prediction models without uploading sensitive typing data to servers.

TFF provides tools for simulating federated learning algorithms, experimenting with new algorithms, and
performing federated analytics. Its architecture is divided into two main APIs:

The architecture of Main APIs:

1. Federated Learning (FL) API: Offers high-level interfaces for applying federated training and
evaluation to existing TensorFlow models.

2. Federated Core (FC) API: Provides lower-level interfaces for developing custom federated
algorithms using TensorFlow and distributed communication operators in a functional programming
environment.

TFF allows declarative expression of federated computations for deployment across various runtime
environments. It includes a performant multi-machine simulation runtime for experimentation, enabling both
researchers and developers to explore federated learning use cases.

import collections
import tensorflow as t©tf
import tensorflow_federated as tff

# Load simulation data.
sSource , _ = tff.simulation.datasets.emnist.load_data()
def client_data(n) :
return source . create_tf_dataset_for_client(source.client_ids[n]l) . .mapl(
lambda e : (tf.reshape(el "pixels"]. [—11). el "label" ])
)} .repeatct(18) .batch{(zZa)

# Pick a subset of client devices to participate in training.
train_data = [client_data(n) for n in range{3)1

# Wrap a Keras model for use with TFF.

keras_model = tf._keras.models . Sequentialll
tf.keras. lavers .Dense(
18, tf.nn.softmax, input_shape=(784.,), kermnel_initializer='zeros")
1>
tFfFf_model = tff.learning. models. functional_model_ from_keras/(

keras_model ,
loss_fn=tf.keras.losses.SparseCategoricalCrossentropy( ).
dnput_spec=train_data[8] .element_spec,
metrics_constructor=collections . OrderedDict(

accuracy=tf . keras.metrics.SparseCategoricalAccuracy) )}

# Simulate a few rounds of training with the selected client dewvices.
trainer = tff.learning.algorithms.build_weighted_fed_awg/(

tFfFf_model,

client_optimizer_fn=tff.learming.ocptimizers.build_sgdm(learning_rate=8.1))
state = trajiner . _ dinitialize()
for _ inm range(5):

result = trainer.next{state, train_data)

state = result.state

metrics = result.metrics

print{(metrics[ "client_work®" ]J["train’']["'accuracy'])
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V. GDPR- COMPLIANCE IN CENTRALIZED FEDERATED LEARNING SYSTEMS

Federated Learning (FL) offers a privacy-preserving approach to machine learning by enabling model
training on decentralized data. However, achieving compliance with the General Data Protection Regulation
(GDPR) in centralized FL systems requires careful consideration of various roles, principles, and obligations

outlined in the GDPR framework. Below is a detailed exploration of GDPR compliance aspects for centralized
FL systems.

The GDPR defines three primary roles:

Role Description Obligations
Data Subject | The individual whose personal data is Has rights to access, rectify,
processed. erase, and restrict the processing
of their data.
Data The entity that determines the Responsible for ensuring GDPR
Controller purposes and means of data compliance, obtaining valid
processing. consent, and safeguarding data.
Data The entity that processes data on Must adhere to the instructions
Processor behalf of the Data Controller. of the Data Controller and
implement security measures.

In centralized FL systems, the FL orchestrator typically acts as the Data Controller, while participating
clients (e.g., devices or nodes) act as Data Processors.

GDPR Principles and Compliance in Federated Learning

Personal information shall be processed
lawfully, fairly, and in a transparent manner

=4

Personal information | Personal information

shall be processed in Cﬂ‘_\ é @ shall be collected forf

an appropriate manner 4 / \ ), specified, explicit and|

to maintain security zé* i legitimate purposes
K Principles

Personal information - /‘5'\ /é’\ 5 Personal information|
shall be adequate, E @ E shall be adequate,
retained only for as long =

relevant, and limited|
as necessary g to what is necessary|

Personal information shall be accurate
and, where necessary, kept up to date

Rights of Data Subjects
GDPR grants data subjects the following rights, which must be respected by centralized FL systems:
1. Access: Users can request access to their data. For example, FL systems could allow users to view the
types of updates being sent from their devices.

2. Rectification: Users can correct inaccuracies in their data. This could involve enabling users to update
incorrect labels or local data before training.

3. Erasure (Right to be Forgotten): Users can request their data be erased. FL systems must ensure
user contributions can be removed from future model updates.

4. Restriction of Processing: Users can limit the scope of data processing. For instance, users could opt
out of certain model features while remaining part of the system.
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GDPR Compliance Investigation and Demonstration

Centralized FL systems must actively demonstrate compliance by:
1. Conducting Regular Audits:

o Reviewing data processing practices to ensure alignment with GDPR principles.
o Evaluating the security of model updates and aggregation methods.
2. Maintaining Records:
o Documenting user consent.
o Keeping logs of model training activities and updates.
3. Data Protection Impact Assessments (DPIAS):

o ldentifying potential risks to user privacy and implementing mitigation strategies. For
example, assessing privacy risks in a predictive text FL system.

V1. DATASET-I: CITYSCAPES

Cityscapes is a comprehensive dataset designed for the semantic understanding of urban street scenes. It
includes semantic, instance-level, and dense pixel annotations for 30 distinct classes, organized into 8
categories: flat surfaces, humans, vehicles, constructions, objects, nature, sky, and void. The dataset comprises
approximately 5,000 finely annotated images and 20,000 coarsely annotated ones. The data was collected
across 50 cities over several months, during daytime and under favorable weather conditions. Originally
captured as video footage, specific frames were carefully selected to ensure diverse features such as a high
number of dynamic objects, varying scene layouts, and diverse backgrounds.

A. Semantic Segmentation on Cityscapes test

InverseForm H53-Fuse Intermimage-H VLTSe
SSMA MREFMicoarse)
ResMet=38

MEAN 10U (CLASS)

Other models Models with highest Mean lol) (class)

B. Panoptic segmentation on Cityscapes

rrmer (ConvNeXt-1, single-scale, 51231024, Mapllary Vistas-pretrained)
Axial-Deeplab-XL (Mapillary Vistas, multi=scale)

Panoptic=Ceeplab (7 1)

Adaptis (ReshleXr-100)

Other models Maodels with highest PQ
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C. Real-Time Semantic Segmentation on Cityscapes test
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VII. DATASET-11: SPEECH COMMANDS

Speech Commands is an audio dataset of spoken words designed to help train and evaluate keyword-
spotting systems. The Speech Commands dataset consists of labeled audio clips for simple speech commands
(e.g., "yes," "no," "stop," "go"), making it a great testbed for:

o Training federated speech recognition models.
o Evaluating the impact of non-11D data in FL.
o Investigating privacy-preserving mechanisms for sensitive audio data.

A.Keyword Spotting on Google Speech Commands
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B.Audio Classification on Speech Commands

99
EAT
AST-S
98

97

ACCURACY

96
95
94

2020 2022 2024

Other models Models with highest Accuracy

C.Time Series Analysis on Speech Commands
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VIII. USING ORANGE FOR DEVELOPING AND ANALYZING MACHINE LEARNING MODELS IN FEDERATED
LEARNING

IX. Orange is a powerful data visualization and analysis tool that offers an intuitive graphical interface for
creating and deploying machine learning models. In the context of Federated Learning (FL), Orange can be
used to simulate the training and evaluation of models while integrating privacy-preserving techniques that
comply with GDPR principles. This involves analysing data distributions, optimizing models, and ensuring
secure and efficient collaboration across decentralized devices. Here are some experimental proofs:
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Improving Model Accuracy in Federated Learning

Federated Averaging Optimization: Aggregate weights from individual devices using federated
averaging algorithms in the "Python Script” widget. Minimize model drift by balancing updates from
diverse devices.

Bias Mitigation: Address non-11D data challenges by using Orange's "Feature Scoring" to normalize
features or rebalance datasets before training.

Feature Selection and Engineering: Use the "Feature Selection" widget to identify the most important
features across datasets then create derived features -using "Edit Domain" for better model
representation.

Ensemble Models: Combine multiple models (e.g., Random Forest, Gradient Boosting) using Orange's
"Stack" feature to improve generalization and accuracy.

Cross-Validation: Validate models using the "Cross-Validation" widget to ensure performance
consistency across decentralized devices.

Analysis of Machine Learning Models

Example Workflow in Orange:
Step 1: Preprocess data from decentralized devices with the "Data Preprocessing™ widget.

Step 2: Train a Logistic Regression model on one device and a Random Forest model on another.
Step 3: Aggregate updates securely using a "Python Script” that implements federated averaging.

Step 4: Evaluate models on a central test dataset using "Confusion Matrix" and "ROC Analysis."
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X. CONCLUSION

Federated Learning (FL) is revolutionizing machine learning by enabling decentralized model training while
preserving data privacy and security. This study demonstrated FL's ability to mitigate data breaches, maintain
regulatory compliance, and enhance model accuracy through decentralized techniques. Real-world
applications, such as urban management and autonomous driving, highlight FL's practicality in handling
privacy-sensitive scenarios. Despite its potential, FL faces challenges like data heterogeneity, complex model
aggregation, and communication overhead. Addressing these issues through further research is critical to
optimizing FL for diverse data distributions and efficient communication protocols. As industries increasingly
embrace data-driven innovations, FL emerges as a pivotal technology for secure, privacy-preserving Al
solutions across sectors like healthcare, finance, and transportation. By adhering to privacy regulations and
fostering collaboration, FL paves the way for transformative advancements in artificial intelligence, making
it integral to the evolution of intelligent systems.
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