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Abstract:  Federated Learning (FL) is a novel machine learning approach enabling decentralized model 

training while safeguarding data privacy. Unlike traditional centralized methods, FL mitigates privacy risks 

by retaining data on local devices, addressing challenges such as data security, regulatory compliance, and 

data heterogeneity. This study highlights FL’s principles, privacy-enhancing techniques, and applications 

across sectors, emphasizing its alignment with the General Data Protection Regulation (GDPR). Case studies 

and data visualization tools like Orange illustrate the opportunities and challenges in developing privacy-

preserving FL systems. 
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I. INTRODUCTION 

 

      In today’s data-driven world, applications powered by artificial intelligence (AI) and machine learning 

(ML) play a critical role in industries such as healthcare, finance, and autonomous systems. These applications 

rely on large-scale data collection and processing, often conducted through centralized ML models that 

aggregate raw data into centralized servers for training. However, this approach poses significant challenges, 

including risks of data breaches, compliance issues with stringent regulations such as the EU General Data 

Protection Regulation (GDPR), and the erosion of user trust due to limited transparency in data handling. 

Federated Learning (FL), introduced by Google researchers in 2016, presents a transformative paradigm for 

addressing these challenges. By enabling collaborative training across decentralized devices, FL eliminates 

the need to transfer raw data to central servers. Instead, model training occurs locally on user devices, and 

only model updates are shared with a central server or a peer-to-peer network for aggregation. This 

decentralized approach inherently enhances data privacy, reduces security risks, and offers a path toward 

GDPR compliance by keeping personal data on local devices. FL has opened new opportunities for service 

providers to deploy privacy-preserving ML algorithms without directly accessing users’ sensitive data. 

Despite its potential, FL is not immune to privacy risks. Research has shown that adversaries can exploit 

exchanged model parameters to infer sensitive information, posing challenges for strict compliance with data 

protection regulations. Privacy-preserving techniques, including cryptographic methods and differential 

privacy, have been developed to mitigate such risks and strengthen the security of FL systems. However, 

implementing fully GDPR-compliant FL systems remains a complex and evolving task. 

This paper aims to provide a comprehensive exploration of FL from a privacy-preservation perspective, 

particularly concerning GDPR compliance. It discusses the limitations of traditional centralized ML 

approaches, evaluates state-of-the-art privacy-preserving techniques in FL, and examines how these 
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techniques can address data security challenges. Additionally, the study highlights unresolved issues and 

potential future directions to align FL systems with regulatory frameworks, ultimately contributing to the 

development of secure and trustworthy ML applications. 

 

II. EASE OF USE 

Understanding Federated learning and Privacy Preservation in Machine learning 

      Federated Learning (FL) represents a paradigm shift in machine learning by enabling decentralized 

training of models. It allows multiple clients, such as mobile devices or edge systems, to collaboratively train 

a global model without sharing their raw data. This approach not only improves data privacy but also supports 

regulatory compliance and enhances scalability. 

 

Federated Learning: Principles and Benefits 

       Federated Learning operates by transmitting model updates instead of raw data to a central server. The 

process involves the following steps: 

 Local Training: Each participating device performs training on its local dataset. 

 Update Sharing: Only model parameters (gradients) are shared with the central server, ensuring data 

privacy. 

 Model Aggregation: The server aggregates these updates to create an improved global model. 

Key benefits of FL include: 

 Privacy Preservation: Data remains on local devices, minimizing the risk of data breaches. 

 Regulatory Compliance: By keeping sensitive data local, FL supports compliance with data 

protection laws like GDPR. 

 Reduced Latency: Local training can reduce communication delays and improve user experiences. 

 Scalability: FL is well-suited for large-scale distributed systems and heterogeneous devices. 

Optimization Techniques in Federated Learning 

        The core optimization algorithm in FL is often a variant of gradient descent. The effectiveness of training 

depends on efficiently updating the model parameters. Gradient descent methods in FL include: 

 Batch Gradient Descent: Utilizes the entire dataset for parameter updates in each iteration. It is 

accurate but computationally expensive. 

 Stochastic Gradient Descent (SGD): Uses a single data point per iteration for updates, which is faster 

but less stable. 

 Mini-Batch Gradient Descent: Balances efficiency and stability by using small batches of data for 

updates. 

In distributed learning scenarios, parallelism plays a significant role: 

 Data Parallelism: Divides the dataset into shards for distributed training. 

 Model Parallelism: Splits the model across multiple compute nodes to reduce individual workload. 

 Hybrid Parallelism: Combines data and model parallelism to maximize scalability and efficiency. 

Gradient descent-based optimization in FL is supported by advanced optimizers such as Adam, RMSprop, 

and Momentum, which adjust learning rates dynamically to enhance convergence. 
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Privacy preservation Techniques in Federated Learning 

      To ensure data security and privacy in FL, several advanced techniques are employed: 

 Data Anonymization: Removes or obscures personally identifiable information (PII) to prevent re-

identification. Methods like k-anonymity and l-diversity improve data utility while maintaining 

privacy but are susceptible to linkage attacks. 

 Differential Privacy: Adds controlled random noise to the model updates, ensuring that the inclusion 

or exclusion of any individual’s data does not significantly affect the model. This method balances 

privacy with utility. 

 Secure Multi-Party Computation (SMC): Allows multiple parties to collaboratively compute a 

function over their data without revealing individual datasets. Techniques like secret sharing and 

garbled circuits ensure secure model training but may introduce computational overhead. 

FL also employs encryption techniques such as homomorphic encryption to protect data during computation. 

These privacy-preserving mechanisms collectively address the dual objectives of safeguarding user data and 

enabling effective model training across distributed systems. 

By combining decentralized learning with robust privacy techniques, Federated Learning is transforming the 

landscape of machine learning, making it more secure, scalable, and compliant with evolving data regulations. 

Privacy-Preserving Techniques in Machine Learning: As the demand for privacy-conscious machine learning 

(ML) systems grows, several advanced techniques have emerged to address data protection challenges. 

Homomorphic encryption and federated learning stand out as promising solutions to ensure privacy in 

centralized and decentralized ML architectures, respectively. These approaches not only comply with 

stringent regulations like the General Data Protection Regulation (GDPR) but also attempt to balance the 

trade-off between privacy and system performance. 

 

III.  HOMOMORPHIC ENCRYPTION: A PRIVACY-CENTRIC COMPUTATION TECHNIQUE 

       Homomorphic encryption enables computations to be performed directly on encrypted data without 

requiring decryption, thus preserving privacy throughout the computational process. Initially proposed by 

Gentry (2010), this technique ensures that the results obtained from encrypted computations are identical to 

those that would have been achieved with unencrypted data. Only the requester possessing the secret key can 

decrypt the computed results, safeguarding sensitive information from exposure during processing. 

Homomorphic encryption techniques are categorized into three types based on their computational 

capabilities: 

1. Partial Homomorphic Encryption (PHE): Supports limited operations, such as either addition or 

multiplication. 

2. Somewhat Homomorphic Encryption (SWHE): Allows a broader range of operations but still has 

restrictions on the number of operations. 

3. Fully Homomorphic Encryption (FHE): Facilitates arbitrary computations on encrypted data, 

offering the highest level of flexibility and functionality. 

While FHE has revolutionized privacy-preserving computations, its high computational overhead makes it 

challenging to implement in large-scale applications (Gilad-Bachrach et al., 2016). Thus, its adoption remains 

limited to niche scenarios where privacy concerns outweigh performance constraints. 

 

A Decentralized Approach to Privacy 

Federated Learning (FL) is a decentralized machine learning paradigm that trains models collaboratively 

while retaining raw data on user devices. This minimizes privacy risks associated with centralized data storage 

and ensures compliance with regulations like GDPR by sharing model parameters instead of raw data. Unlike 

traditional distributed learning, which assumes independent and identically distributed (IID) datasets, FL is 

designed for heterogeneous and non-IID data of varying sizes and distributions. This makes it ideal for large-

scale, real-world applications involving diverse devices with limited connectivity and bandwidth. By reducing 

data transfers and central storage, FL supports GDPR principles, such as purpose limitation and data 

minimization. However, challenges remain, including communication efficiency, edge-device computational 
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demands, and model aggregation in non-IID scenarios. Homomorphic encryption and FL represent key 

advancements in privacy-preserving machine learning. While homomorphic encryption secures centralized 

computations, FL’s decentralized design further reduces privacy risks. Both approaches face scalability and 

efficiency challenges, underscoring the need for ongoing research to improve practical implementation. 

. 

IV. TENSORFLOW FEDERATED(TFF): A FRAMEWORK FOR DECENTRALIZED MACHINE LEARNING 

TensorFlow Federated (TFF) is an open-source framework designed for machine learning and computations 

on decentralized data. It supports Federated Learning (FL), a technique where a shared global model is trained 

across multiple clients while keeping their data local. For instance, FL has been used to train mobile keyboard 

prediction models without uploading sensitive typing data to servers. 

TFF provides tools for simulating federated learning algorithms, experimenting with new algorithms, and 

performing federated analytics. Its architecture is divided into two main APIs: 

 

The architecture of Main APIs: 

1. Federated Learning (FL) API: Offers high-level interfaces for applying federated training and 

evaluation to existing TensorFlow models. 

2. Federated Core (FC) API: Provides lower-level interfaces for developing custom federated 

algorithms using TensorFlow and distributed communication operators in a functional programming 

environment. 

TFF allows declarative expression of federated computations for deployment across various runtime 

environments. It includes a performant multi-machine simulation runtime for experimentation, enabling both 

researchers and developers to explore federated learning use cases. 
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V. GDPR- COMPLIANCE IN CENTRALIZED FEDERATED LEARNING SYSTEMS 

  Federated Learning (FL) offers a privacy-preserving approach to machine learning by enabling model 

training on decentralized data. However, achieving compliance with the General Data Protection Regulation 

(GDPR) in centralized FL systems requires careful consideration of various roles, principles, and obligations 

outlined in the GDPR framework. Below is a detailed exploration of GDPR compliance aspects for centralized 

FL systems. 

 

The GDPR defines three primary roles: 

Role 

 
Description 

 
Obligations 

 

Data Subject 
 

The individual whose personal data is 

processed. 

 

Has rights to access, rectify, 

erase, and restrict the processing 

of their data. 

 

Data 

Controller 
 

The entity that determines the 

purposes and means of data 

processing. 

 

Responsible for ensuring GDPR 

compliance, obtaining valid 

consent, and safeguarding data. 

 

Data 

Processor 
 

The entity that processes data on 

behalf of the Data Controller. 

 

Must adhere to the instructions 

of the Data Controller and 

implement security measures. 

 

 

In centralized FL systems, the FL orchestrator typically acts as the Data Controller, while participating 

clients (e.g., devices or nodes) act as Data Processors. 

 

 

GDPR Principles and Compliance in Federated Learning 

 
 

Rights of Data Subjects 

     GDPR grants data subjects the following rights, which must be respected by centralized FL systems: 

1. Access: Users can request access to their data. For example, FL systems could allow users to view the 

types of updates being sent from their devices. 

2. Rectification: Users can correct inaccuracies in their data. This could involve enabling users to update 

incorrect labels or local data before training. 

3. Erasure (Right to be Forgotten): Users can request their data be erased. FL systems must ensure 

user contributions can be removed from future model updates. 

4. Restriction of Processing: Users can limit the scope of data processing. For instance, users could opt 

out of certain model features while remaining part of the system. 
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GDPR Compliance Investigation and Demonstration 

     Centralized FL systems must actively demonstrate compliance by: 

1. Conducting Regular Audits: 

o Reviewing data processing practices to ensure alignment with GDPR principles. 

o Evaluating the security of model updates and aggregation methods. 

2. Maintaining Records: 

o Documenting user consent. 

o Keeping logs of model training activities and updates. 

3. Data Protection Impact Assessments (DPIAs): 

o Identifying potential risks to user privacy and implementing mitigation strategies. For 

example, assessing privacy risks in a predictive text FL system. 

 

VI. DATASET-I: CITYSCAPES 

Cityscapes is a comprehensive dataset designed for the semantic understanding of urban street scenes. It 

includes semantic, instance-level, and dense pixel annotations for 30 distinct classes, organized into 8 

categories: flat surfaces, humans, vehicles, constructions, objects, nature, sky, and void. The dataset comprises 

approximately 5,000 finely annotated images and 20,000 coarsely annotated ones. The data was collected 

across 50 cities over several months, during daytime and under favorable weather conditions. Originally 

captured as video footage, specific frames were carefully selected to ensure diverse features such as a high 

number of dynamic objects, varying scene layouts, and diverse backgrounds. 

 

A. Semantic Segmentation on Cityscapes test 

 
 

B. Panoptic segmentation on Cityscapes 
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C. Real-Time Semantic Segmentation on Cityscapes test 

 
 

D. Semi-Supervised Semantic Segmentation on cityscapes 12.5% labeled 

 
 

 

VII. DATASET-II:  SPEECH COMMANDS 

       Speech Commands is an audio dataset of spoken words designed to help train and evaluate keyword-

spotting systems. The Speech Commands dataset consists of labeled audio clips for simple speech commands 

(e.g., "yes," "no," "stop," "go"), making it a great testbed for: 

 Training federated speech recognition models. 

 Evaluating the impact of non-IID data in FL. 

 Investigating privacy-preserving mechanisms for sensitive audio data. 

A. Keyword Spotting on Google Speech Commands 
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B. Audio Classification on Speech Commands 

 

C. Time Series Analysis on Speech Commands 

 

D. Speech Recognition on Speech Commands 
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VIII. USING ORANGE FOR DEVELOPING AND ANALYZING MACHINE LEARNING MODELS IN FEDERATED 

LEARNING 

IX. Orange is a powerful data visualization and analysis tool that offers an intuitive graphical interface for 

creating and deploying machine learning models. In the context of Federated Learning (FL), Orange can be 

used to simulate the training and evaluation of models while integrating privacy-preserving techniques that 

comply with GDPR principles. This involves analysing data distributions, optimizing models, and ensuring 

secure and efficient collaboration across decentralized devices. Here are some experimental proofs: 
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Improving Model Accuracy in Federated Learning 

 Federated Averaging Optimization: Aggregate weights from individual devices using federated 

averaging algorithms in the "Python Script" widget. Minimize model drift by balancing updates from 

diverse devices. 

 Bias Mitigation: Address non-IID data challenges by using Orange's "Feature Scoring" to normalize 

features or rebalance datasets before training. 

 Feature Selection and Engineering: Use the "Feature Selection" widget to identify the most important 

features across datasets then create derived features using "Edit Domain" for better model 

representation. 

 Ensemble Models: Combine multiple models (e.g., Random Forest, Gradient Boosting) using Orange's 

"Stack" feature to improve generalization and accuracy. 

 Cross-Validation: Validate models using the "Cross-Validation" widget to ensure performance 

consistency across decentralized devices. 

Analysis of Machine Learning Models 

Example Workflow in Orange: 

 Step 1: Preprocess data from decentralized devices with the "Data Preprocessing" widget. 

 Step 2: Train a Logistic Regression model on one device and a Random Forest model on another. 

 Step 3: Aggregate updates securely using a "Python Script" that implements federated averaging. 

 Step 4: Evaluate models on a central test dataset using "Confusion Matrix" and "ROC Analysis." 
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X. CONCLUSION 

Federated Learning (FL) is revolutionizing machine learning by enabling decentralized model training while 

preserving data privacy and security. This study demonstrated FL's ability to mitigate data breaches, maintain 

regulatory compliance, and enhance model accuracy through decentralized techniques. Real-world 

applications, such as urban management and autonomous driving, highlight FL's practicality in handling 

privacy-sensitive scenarios. Despite its potential, FL faces challenges like data heterogeneity, complex model 

aggregation, and communication overhead. Addressing these issues through further research is critical to 

optimizing FL for diverse data distributions and efficient communication protocols. As industries increasingly 

embrace data-driven innovations, FL emerges as a pivotal technology for secure, privacy-preserving AI 

solutions across sectors like healthcare, finance, and transportation. By adhering to privacy regulations and 

fostering collaboration, FL paves the way for transformative advancements in artificial intelligence, making 

it integral to the evolution of intelligent systems. 
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