

Quality By Design In Pharmacy

¹Rushikesh Gajanan Navale, ²Dr. Harshal Anwane, ³Dr. Shivshankar Mhaske, ⁴Karan Dnyanba Gavhane, ⁵Mayur Gulab Kharat, ⁶Rahul Ganesh Wankhade, ⁷Shankar Ramkrushna Bali, ⁸Om Nandkishor Bhandurge.

1Student, 2Professor, 3Princilpe, 4 Student, 5Student, 6Student, 7student, 8Student.

¹Pharmacy,

¹Satyajeet College of Pharmacy, Mehkar, India.

Abstract: In the pharmaceutical sector, Quality by Design (QbD) is a revolutionary strategy that emphasizes a proactive, scientifically grounded approach to guaranteeing product quality. Designing quality into the product from the very beginning of development is the main goal of QbD, in contrast to traditional approaches that depend on end-product testing. With the support of important regulatory agencies like the FDA and the International Council for Harmonization (ICH), this methodical approach guarantees adherence to strict quality requirements. In order to start the QbD process, a Quality Target Product Profile (QTPP) that outlines the performance criteria and desirable product attributes must be created. Critical Quality Attributes (CQAs) are the physical, chemical, biological, and microbiological characteristics that need to be managed to guarantee that the product fulfills the quality criteria that are intended. Critical Process Parameters (CPPs) and Critical Material Attributes (CMAs), which affect the CQAs, are identified in order to accomplish this control. QbD enables the development of a strong control strategy by utilizing sophisticated statistical tools, risk management strategies, and a deep comprehension of the manufacturing process. By reducing variability and guaranteeing constant product quality, this approach improves production processes, lowers the chance of batch failures, and reduces recalls. There are several advantages to using QbD in pharmaceutical development, such as increased overall efficiency, better product quality, and improved regulatory compliance. It supports the industry's transition to more creative, patient-centered methods, guaranteeing that the end result is not only the best in terms of quality but also safe and effective. In conclusion, Quality by Design is a progressive, all-encompassing strategy that alters the development and production of pharmaceutical goods by placing an emphasis on quality across the entire process.

Index Terms - Quality by Design, QTPP, CQAs, Design Space, Control Strategy, CMAs, CPPs, Risk Management.

I. INTRODUCTION

Quality: In Quality by Design, Quality is important word. So Quality is “standard or suitability for intended use.” This term includes such attribute of the identity, potency, and purity.

Quality by Design: A lot of approaches to the development of pharmaceutical products and their subsequent manufacture has been advocated by the US FDA and the International Council Harmonization (ICH). This approach has been mounted ‘Quality by Design’ (QbD) and it defined as- “A systematic approach to development that begins with predefined objective and emphasizes product and process understanding and process control, based sound science and quality risk management”[1].

In all cases, the product should be designed to meet patients’ needs and the intended product performance. Strategies for product development vary from company to company and from product to product. The approach can also vary and should be outlined in the submission. An applicant might choose either an empirical approach or a more systematic approach to product development, or a combination of both. A more systematic approach to development (also defined as quality by design) can include, for example, incorporation of prior knowledge, results of studies using design of experiments, use of quality risk management, and use of knowledge management (ICH Q10) throughout the lifecycle of the product[2].

A strategic strategy known as QBD incorporates quality considerations at every stage of a product's lifecycle. It's a set of guidelines that utilize statistical, analytical, and risk management techniques during the design, development, and manufacturing stages in order to enhance product quality using mathematical and scientific underpinnings. It entails a methodical and proactive approach of incorporating quality considerations at every stage of the product lifecycle, from development to manufacturing.^[3] It calls for a thorough comprehension of the key process parameters (CPPs), which are the variables influencing the manufacturing process, as well as the product's critical quality attributes (CQAs), which are the measurable features that determine its performance. The fundamental tenet of Quality by Design is to recognize and comprehend the connections between the CPPs that impact a product's CQAs. Combining statistical analysis, risk assessment, and scientific investigation allows for the acquisition of this knowledge. Manufacturers can create a design space where the product can reliably satisfy the required quality requirements by carefully examining these linkages.^[4] A deep comprehension of the product and its production process is necessary for QbD. Establishing a company's framework and approach to using QbD for its initial goods takes more time and money. Once established, though, a program like this should expedite development by using standardized methods and resources and making it easier to use data from products in the same class^[5]. For industry and regulatory approval, a good QbD method should offer a higher level of assurance of product quality and enhanced efficiency. The quality target product profile (QTPP), critical quality attributes (CQAs), risk assessments, design space, critical material attributes (CMAs), critical process parameters (CPPs), control strategy, and product life cycle management—which includes continuous improvement—are among the essential components of the quality by design (QbD) approach.^[6] Figure 1.

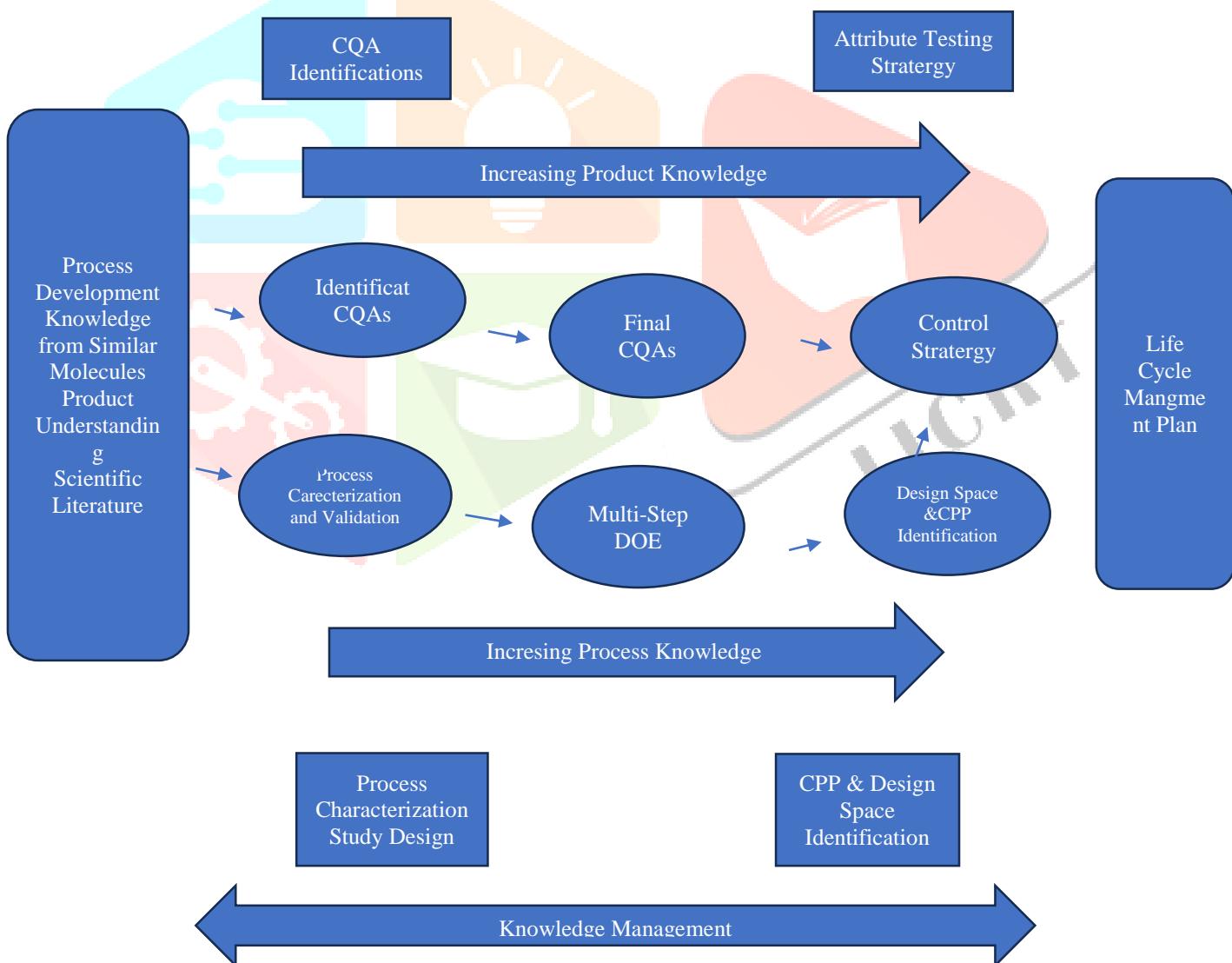


Fig. 1.1 Quality by Design (Roadmap)

1.1 Importance of QbD in pharmaceutical development:

Enhancing Product Quality and Consistency:

Rather than testing a thing to death, the main goal of QbD is to incorporate quality into it. QbD enables consistent manufacturing of high-quality pharmaceuticals by identifying and regulating critical process parameters (CPPs) and critical quality attributes (CQAs) early in the development phase [7]. According to published research, QbD's focus on process comprehension guarantees that the product's safety, effectiveness, and quality are maintained even in the event of little alterations in materials or conditions.[8]

Risk Reduction and Control:

The focus of QbD is quality risk management during the entire manufacturing and product development process. Through the execution of risk assessments, identification of possible hazards, and implementation of control techniques, manufacturers can reduce the probability that variability will result in quality problems. This strategy lowers the possibility of recalls or regulatory problems while ensuring a more dependable procedure.[9]

Regulatory Flexibility:

Governmental organizations like the FDA have recognized the advantages of QbD in expediting the approval procedure. Manufacturers can create a flexible design area that stays within predefined parameters by applying QbD concepts[10] Process parameter modifications do not need regulatory reapproval as long as operations stay within the design space. Because of its adaptability, time to market is accelerated and regulatory barriers are decreased.[11]

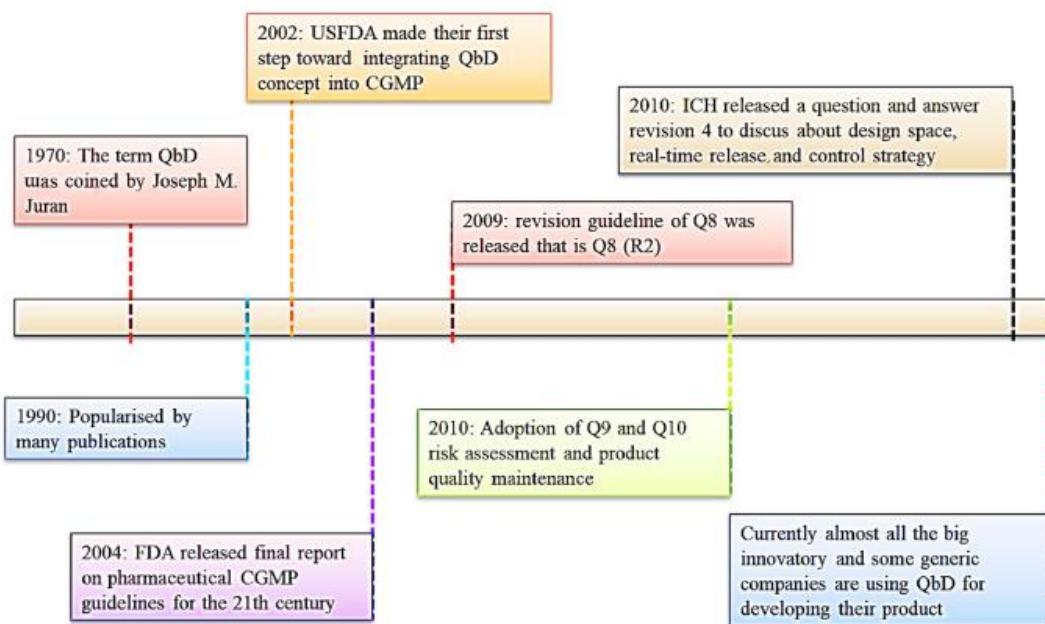
Cost Reduction and Process Efficiency:

Through the development of a thorough understanding of the product and process, Quality-by-Design (QbD) helps manufacturers to create effective processes that limit waste, cut costs, and minimize unpredictability[12]. This enhances operational effectiveness and lowers the need for extensive rework or batch failures, which results in significant cost savings over the course of the product lifecycle. Additionally, businesses can save time and money in their production cycles by lowering the requirement for extensive post-production testing.[13]

Facilitating Continuous Improvement:

Continuous process improvement is encouraged by QbD's feedback loop, which is one of its main features. QbD develops a culture where product and process understanding is always improving based on ongoing data gathering and analysis [14]. This not only aids in process optimization over time but also makes it possible to make better-informed decisions on process modifications and enhancements, which in turn raises the product's quality and dependability [15].

Ensuring Patient Safety and Product Efficacy:


In the process of developing new pharmaceuticals, patient safety comes first. QbD makes sure that every possible factor that could affect the quality of the finished product is found and managed, resulting in safer, more potent drugs.[16] Quality by Design (QbD) helps avoid unpleasant reactions or reduced efficacy caused by manufacturing faults or variability by establishing methods that maintain product consistency.[17]

1.2 Historical background:

J.M. Juran originally introduced the idea of QbD in 1970. After Toyota implemented the six sigma approach in 1980, quality system control and management truly got underway. Following that, cars Aeronautics and business began utilizing various quality control and management instruments, including quality, design for six sigma, lean six sigma, and management systems.[32] to both produce higher-quality goods and better control that product's quality through Hu et al. (2004). fig. 2.1. shows the journey of QbD in the pharmaceutical field.

The FDA came to the conclusion that some sort of quality

tool, such as QbD, had to be used in order to preserve the quality of pharmaceutical and biologic drug products after seeing entire scenarios[33]. From then on, the FDA set out to create new regulations for the creation of high-quality products that adhered to their quality standards. The FDA further published the first guidance document on current good manufacturing practices (cGMPs) for the twenty-first century, taking this goal into consideration[34].

Fig 1.2.1 Historical background of QbD approach development

Q8 (ICH Harmonized Tripartite Guideline, 2009) is the guiding document on pharmaceutical product development that ICH produced after that. This strategy has recently been adopted by the FDA for the development of analytical methods as well as biological goods. In QbD, in addition to ICH Q8, ICH Q9, and ICH Q10, were included for collaboratively ensuring the product quality[35]. The next document that ICH published is called Q8 (ICH Harmonized Tripartite Guideline, 2009), and it serves as a guide for developing pharmaceutical products. The FDA has just started using this approach for the creation of biological products and analytical techniques. To ensure product quality in a collaborative manner, QbD also incorporated ICHQ8, Q9, and Q10.[36]

1.2.2. Evolution of quality concepts in pharmaceuticals:

The development of quality concepts in the pharmaceutical business is a reflection of general industry trends in quality management along with the particular needs of guaranteeing the efficacy, safety, and uniformity of medications[37]. This change has been driven over time by market demands, scientific advancements, and regulatory requirements. The pharmaceutical business has witnessed substantial developments in the definition, management, and assurance of quality, from the early methods of quality control to the more comprehensive and systematic approaches such as Quality by Design (QbD).[38]

Early Quality Concepts: Quality Control (QC):

Quality Control (QC) was the first approach to quality control in the pharmaceutical industry. Its main goal was to test the finished product to make sure it fulfilled standards. This reactive strategy, prominent throughout the early to mid-20th century, entailed testing batches of medications after production to find any problems[39]. The presumption was that products passing QC testing would be safe and effective for patient usage.

Although it was first designed without taking into account possible differences in production processes, quality control is still crucial today. Rather, it depended on final product testing to identify any mistakes. This method did have some drawbacks, though, as it was unable to stop errors from happening and could not ensure that each unit in a batch fulfilled quality requirements.[40]

Good Manufacturing Practices (GMP): Preventative Quality Assurance:

The necessity for more proactive quality management became evident as pharmaceutical research improved and the regulatory environment tightened, especially in the wake of high-profile safety mishaps like the thalidomide catastrophe of the late 1950s and early 1960s. [41] This resulted in the creation of Good Manufacturing Practices (GMP), which were incorporated into regulations such as the U.S. Food, Drug, and Cosmetic Act and its modifications, and implemented in the 1960s.

GMPs, which emphasize the significance of managing and controlling production processes to prevent faults, signified a fundamental advance in the thought surrounding quality[42]. The emphasis moved from just evaluating the finished product to making sure that the right protocols, guidelines, and standards were

followed during the production process. GMPs also brought in the idea of validation, which involved testing crucial procedures like tablet compression, mixing, and sterilizing to make sure they consistently provided the intended result.[43]

GMPs have become the industry standard for pharmaceutical manufacturing, guaranteeing that businesses adhere to stringent guidelines for distribution, storage, and production. Since then, regulatory bodies including the FDA (United States), EMA (Europe), and WHO have revised and enhanced these methods to make sure they still hold true in today's pharmaceutical manufacturing.[44]

Total Quality Management (TQM) and Risk Management:

The pharmaceutical sector started investigating these ideas in the 1980s and 1990s, coinciding with the evolution of quality management systems in other industries (such as electronics and automotive) to emphasize Total Quality Management (TQM) and risk-based approaches[45] The goal of Total Quality Management (TQM) is to integrate quality into all facets of a business, including supplier relationships, customer satisfaction, and management procedures.

Pharmaceutical production started to be impacted by TQM concepts including leadership commitment, customer focus, and continuous improvement (Kaizen). At the same time, risk management gained prominence as businesses realized it was more cost-effective to foresee possible issues and mitigate risks than to deal with them after they materialized.[46]

Regulatory agencies started mandating that businesses identify and manage hazards inside their operations. As a result, the International Conference on Harmonization (ICH) published ICH Q9 (Quality Risk Management) in 2005, formalizing the incorporation of risk management concepts into the pharmaceutical quality system.[47]

Quality by Design (QbD): Proactive Quality Assurance:

The biggest development in pharmaceutical quality management was the move to Quality by Design (QbD). QbD, which was initially presented in the early 2000s as a component of the FDA's Pharmaceutical cGMPs for the 21st Century project, is a proactive strategy in which quality is "designed into" a product from the beginning. With QbD, quality control moves away from test-heavy, reactive methods and toward a more integrated, holistic approach that incorporates process and product development.[48]

In order to guarantee consistent quality during manufacturing, the fundamental tenet of quality by design (QbD) is comprehending the relationship between process parameters, raw materials, and critical quality attributes (CQAs) of a product. Important elements of QbD consist of:

Quality Target Product Profile (QTPP): The predetermined characteristics that a product must have to ensure its desired performance, safety, and efficacy.[49]

Critical Quality Attributes (CQAs): Specific properties that must be controlled within defined limits to ensure the quality of the final product.

Design Space: The combination of input parameters and process settings that ensure product quality.[50]

Control Strategy: A planned set of controls, including in-process monitoring, that ensures consistency in production.

The application of QbD and continuous improvement across the product lifecycle has been institutionalized by ICH recommendations such as ICH Q8 (Pharmaceutical Development) and ICH Q10 (Pharmaceutical Product Quality System).[50,51]

Process Analytical Technology (PAT):

The advancement of Process Analytical Technology (PAT), which permits real-time monitoring and control of production processes, has been a key factor in the success of QbD.[52] With PAT tools, producers can

evaluate quality parameters in real time during production and make necessary adjustments to ensure consistent product quality without waiting for end-product testing.

Together, PAT and QbD demonstrate a contemporary trend away from batch manufacturing and toward continuous manufacturing, which emphasizes a deeper scientific understanding of processes.[53]

Continuous Manufacturing and Future Directions:

The implementation of continuous manufacturing and more advanced digitalization techniques, including artificial intelligence (AI) and machine learning, to forecast and manage quality, represents the next stage in the evolution of quality concepts. With the help of these technologies, processes might be optimized and controlled in real time, which would lower variability and boost productivity.[54]

Furthermore, the advent of biopharmaceuticals and sophisticated treatments (such gene and cell therapies) has presented fresh chances and challenges for quality control, necessitating even more sophisticated control techniques because of the intricacy of these goods.[55]

1.2.3 Introduction and adoption of QbD by regulatory bodies (e.g., FDA, EMA):

In pharmaceutical development, Quality by Design (QbD) is a revolutionary strategy that emphasizes incorporating quality into products from the beginning instead of depending solely on post-production testing. It represents a larger trend away from traditional Quality by Testing methods and toward risk-based, science-driven quality management.[56] The key to QbD's widespread adoption has been the regulatory community's adoption of it. Notably, important regulatory organizations like the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA) have been instrumental in formalizing and advancing QbD concepts, resulting in their widespread adoption and application.[57]

FDA's Role in the Introduction of QbD:

As part of its initiatives to modernize pharmaceutical manufacturing and guarantee more consistent drug quality, the FDA has been in the forefront of promoting QbD. Early in the new millennium, the agency formally unveiled QbD concepts, signaling a dramatic shift from conventional compliance techniques that mostly depended on end-product testing.[58]

Pharmaceutical cGMPs for the 21st Century Initiative (2002-2004):

The FDA's 2002 program, "Pharmaceutical cGMPs for the 21st Century – A Risk-Based Approach," marked the official introduction of QbD. The goal of this project was to update the laws governing current good manufacturing practices (cGMPs). Instead of strict adherence to antiquated methods, the objective was to promote innovation in pharmaceutical manufacturing while guaranteeing that product quality was maintained through scientific understanding and risk management.[59]

The initiative highlighted several key points:

The limitation of end-product testing in ensuring drug quality.

The need for a deeper understanding of manufacturing processes to manage variability.

Encouragement for the industry to adopt modern quality management tools such as Process Analytical Technology (PAT).

The paper presented QbD as the main force behind this novel strategy. Pharmaceutical firms could more effectively and dependably assure product quality by comprehending and managing their manufacturing processes [59,60].

Guidance and Regulatory Support:

The FDA released comprehensive guidance materials in the years that followed to aid the industry in implementing QbD principles. In order to increase product awareness and reduce risks, businesses were encouraged to employ real-time process monitoring and control systems by the 2006 guidance "PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance." PAT was promoted as a crucial instrument for putting QbD principles into reality.[61]

The FDA's focus on quality-based drug development resulted in ICH Q8(R2) Pharmaceutical Development (2009), a more structured guidance document that outlined how manufacturers could incorporate QbD into their New Drug Applications (NDAs) and other regulatory submissions, formalizing the principles of QbD in regulatory filings.[62]

The FDA's adoption of QbD provided several key benefits:

Greater regulatory flexibility, particularly in post-approval changes, when operating within a defined Design Space.

A science-based approach to quality, reducing the likelihood of batch failures.

Encouraging innovation in manufacturing processes, as companies were no longer bound by rigid, conservative approaches.[63]

European Medicines Agency (EMA) and QbD Adoption:

Working alongside the FDA and via its participation in the International Council for Harmonization (ICH), the European Medicines Agency (EMA) was also instrumental in the regulatory approval of QbD. The European Medicines Agency (EMA) promptly incorporated QbD concepts into its framework for pharmaceutical product development and approval, as a result of its focus on standardizing regulatory standards throughout Europe.[64]

ICH Harmonization Efforts:

Global QbD adoption has been greatly aided by the ICH standards, which were created by cooperation between regulatory bodies and the pharmaceutical industries in the United States, Europe, and Japan. Specifically, three important ICH guidelines established QbD principles and offered a uniform regulatory framework for these areas.[65]

ICH Q8 (Pharmaceutical Development): centered on applying QbD concepts to the creation of a reliable pharmaceutical product. The guidelines placed a strong emphasis on process understanding using Design Space principles, the Quality Target Product Profile (QTPP), and Critical Quality Attributes (CQAs).[66]

ICH Q9 (Quality Risk Management): This standard encouraged businesses to recognize, assess, and reduce risks during the course of developing new products and manufacturing them. It also established a risk-based approach to pharmaceutical quality. [66,67]

Pharmaceutical Quality System (ICH Q10): ICH Q10, which builds on Q8 and Q9, offers a thorough framework for a quality system that incorporates QbD concepts throughout the whole product lifecycle, from development to post-approval [68].

By actively participating in the creation of these guidelines, EMA was able to guarantee that they adhered to its own regulatory standards. The European Medicines Agency (EMA) incorporated the ICH Q8, Q9, and Q10 standards into the regulatory requirements for Marketing Authorization Applications (MAAs) in the EU. Similar to the FDA, producers in Europe now have more freedom to innovate thanks to the EMA's embrace of QbD, so long as they can show that they have a solid scientific grasp of their processes [69].

Benefits and Regulatory Flexibility:

QbD has gained acceptance in Europe as a means of ensuring improved product quality as well as regulatory flexibility. Faster post-approval modifications are made possible by EMA, which has made manufacturing operations within a predetermined design space more efficient. Additionally, by allowing pharmaceutical companies to create and submit a single QbD-based dossier that satisfies FDA and EMA standards, EMA's use of QbD has improved global harmonization by lowering complexity and regulatory burden. [70]

Global Harmonization and the Role of ICH:

The International Council for Harmonization (ICH) played a major role in facilitating the adoption of QbD by regulatory agencies like the FDA and EMA. The ICH recommendations (Q8, Q9, and Q10) developed an internationally unified framework for pharmaceutical quality management based on QbD principles [71]. These recommendations have been extensively embraced by regulatory bodies across the globe, guaranteeing that QbD's advantages reach important countries like Japan and Canada in addition to the United States and Europe.[72]

A thorough framework for pharmaceutical development based on QbD principles was supplied by ICH Q8, which also included instructions on how to define QTPP, CQAs, CPPs (Critical Process Parameters), and Design Space. QbD was supported by risk management tools that were developed by ICH Q9, and QbD concepts are integrated throughout the product lifecycle by the Pharmaceutical Quality System, which was established by ICH Q10. Due to the widespread implementation of these recommendations, QbD is now the foundation for contemporary pharmaceutical development and production [73,74].

2.OBJECTIVES OF THE REVIEW:

1. To Define the Concept of Quality by Design (QbD).
2. To Outline the Key Elements and Components of QbD.
3. To Assess the Importance of QbD in Enhancing Product Quality and Consistency.
4. To Highlight the Role of QbD in Regulatory Flexibility and Compliance.
5. To Examine the Economic and Operational Benefits of QbD.
6. To Explore the Challenges and Limitations of Implementing QbD.
7. To Analyze Case Studies and Practical Applications of QbD.

3.REVIEW OF LITERATURE:

1. The paper by Beg S. And his Colleagues (Year) provides a comprehensive overview of the fundamental principles, frameworks, and applications of Quality by Design (QbD) in the pharmaceutical industry. QbD represents a systematic approach to pharmaceutical development and manufacturing that aims to ensure predefined product quality by understanding and controlling the processes from the start. The authors effectively highlight the critical components of QbD, including risk management, design space, process analytical technology (PAT), and continuous improvement [1]
2. Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control" by Dharmaraja Selvamuthu and Dipayan Das is a comprehensive textbook that covers a wide range of statistical concepts and methods. Here's a brief review of the literature on this book: The book is structured to provide an accessible presentation of concepts from probability theory, statistical methods, the design of experiments, and statistical quality control. It is particularly shaped by the authors' experience teaching these subjects to engineering students [4]
3. Introduction to Engineering Statistics and Six Sigma: Statistical Quality Control and Design of Experiments and Systems" by Theodore T. Allen is a well-regarded textbook that integrates statistical methods with Six Sigma principles.[5]
4. "Quality by Design for Biopharmaceuticals" by Anurag S. Rathore and Helen Winkle is a pivotal work that explores the application of Quality by Design (QbD) principles in the biopharmaceutical industry. Here's a review of the literature on this book: Transformative Approach, Comprehensive Framework, Practical Insights, Regulatory Perspectives, Case Studies [14]
5. New Product Quality and Product Development Teams" by Rajesh Sethi explores the critical factors influencing new product quality and the role of cross-functional teams in product development. Here's a review of the literature on this work: Impact on Market Success, Role of Cross-Functional Teams, Team Characteristics and Quality, Contextual Influences [19]
6. Zhao, Fu, Zhou, and Hu's review provides a detailed and insightful overview of the current state and advancements in process monitoring tools for cell culture bioprocesses. The emphasis on PAT, sensor technology, and real-time monitoring underscores the importance of these tools in achieving high-quality and consistent biopharmaceutical products [35]
7. Kozlowski and Swann's review provides a comprehensive overview of the current and future issues in monoclonal antibody manufacturing. By addressing the challenges and highlighting the advancements in the field, the authors offer valuable insights for researchers and manufacturers aiming to improve the efficiency and quality of mAb production. [40]
8. Dahiya, Bhatnagar, and Singh's work provides valuable insights into the importance of consistency in conceptual data warehouse design. By proposing a new quality metric and addressing common challenges, the authors contribute significantly to the field, offering practical solutions for improving data warehouse quality [44]

9. Russ Somma's work provides valuable insights into how development knowledge can enhance manufacturing capabilities and facilitate the implementation of QbD in the pharmaceutical industry. By focusing on early-stage development, regulatory flexibility, and technological innovations, the article offers a comprehensive guide for improving product quality and manufacturing efficiency [51].

10. Mishra, V., Thakur, S., Patil, A., & Shukla, A. paper provides a comprehensive overview of the current state of QbD in the pharmaceutical industry. The article effectively underscores the importance of QbD in achieving consistent product quality while reducing the risk of failures and inefficiencies in drug development. The authors also highlight the ongoing challenges in fully adopting QbD, particularly regarding its implementation in large-scale manufacturing and the need for adequate training and resources. This review is valuable for researchers, pharmaceutical professionals, and policymakers interested in the intersection of quality assurance, regulatory standards, and process optimization in pharmaceutical manufacturing. It offers a balanced perspective on the promise of QbD, while acknowledging the practical challenges of its widespread application. [62]

4. METHOD AND MATERIAL CORE CONCEPTS OF QBD:

3.1 Quality Target Product Profile (QTPP): is a strategic document that describes the ideal characteristics and requirements for a finished product, usually a medication or biologic, and is used in pharmaceutical development. It is a component of the Quality by Design (QbD) methodology, which places an emphasis on incorporating quality early in the development process as opposed to doing quality checks afterwards [75]. In order to guarantee that the product satisfies regulatory criteria and provides patients with therapeutic advantages, the QTPP is an essential component of the pharmaceutical development lifecycle. [76]

The QTPP outlines characteristics that have an impact on the end product's effectiveness, safety, and quality. Among the fundamental components are:

1. Dosage Form: if the medication comes in the form of a pill, capsule, injectable, etc.
2. Route of Administration: if the medication comes in the form of a pill, capsule, injectable, etc.
3. Strength: The drug's dosage or concentration in each unit.
4. Pharmacokinetics: parameters pertaining to excretion, metabolism, distribution, and absorption (ADME) [77].
5. Stability: shelf life and recommended storage for the product.
6. Manufacturing: particular standards for scalability, quality, and reproducibility in production.
7. Safety and Efficacy: Clinical performance goals, including target safety and efficacy thresholds.

These characteristics aid in determining what has to be produced in terms of the manufacturing process, control strategy, and medication formulation to fulfill the intended usage and clinical performance of the finished product. [78]

4.1.1 Benefits of QTPP in the QbD Framework:

1. Enhanced Product Quality: By maintaining focus on crucial characteristics that directly impact the medication's safety and effectiveness, QTPP raises the standard of the finished product. The development team can reduce batch variability and improve repeatability by optimizing processes to fulfill these stated criteria by setting specific targets [79].

2. Risk Management: The QTPP aids in the early identification of possible risks and variables during the development process. Manufacturers can lower the possibility of failures during later stages of development or after product launch by taking preventive measures and connecting CQAs and CPPs to potential risks. [80]

3. Streamlined Regulatory Review: QbD principles are promoted by regulatory bodies like the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA). When a product designed using QTPP and QbD is submitted, it can help show that the product and its quality controls are well understood, which could shorten the review process and minimize post-approval adjustments.

4. Efficient Process Development: The QTPP supports in the creation of robust manufacturing processes. Process optimization can be more concentrated as a result of the precise definition of the final product's quality targets, which enables effective production scaling while maintaining consistency in quality. [81]

4.1.2 Challenges and Limitations of QTPP in QbD:

1. Initial Complexity and Resource Intensive: Quality assurance, regulatory affairs, process engineering, formulation scientists, and other departments must work together to build a comprehensive QTPP. Using a cross-functional strategy can make early-stage development more complex and expensive.
2. Adaptability: A stringent QTPP can find it challenging to make changes brought forth by new information discovered during clinical trials or by modifications to regulatory requirements. Flexibility is required to amend the QTPP in light of new information while adhering to overall quality standards.[82]
3. Data Dependency: The provision of high-quality data is essential to the effective use of QTPP and QbD. Assumptions may need to be made when there is a lack of early evidence, which may need to be reevaluated later on in the process.

4.2 Critical Quality Attributes (CQAs): The Critical Quality Attribute (CQA) is a key idea in Quality-Based Design. CQAs are the aspects of a drug product or substance that are physical, chemical, biological, or microbiological and that have to be kept within specified bounds in order to guarantee the intended level of product quality. They are essential for guaranteeing the effectiveness, safety, and functionality of medicinal goods.[83]

CQAs identify the features of the product that are most important to patient outcomes, which directs the development process and gives a clear focus for controlling product quality. CQA identification and control lowers variability risk and guarantees that the finished product continuously fulfills planned quality standards.[84]

4.2.1 Identifying Critical Quality Attributes:

1. Understanding Product and Process: Acquiring a deep grasp of the product and the manufacturing process is the first step towards defining CQAs. This entails being aware of the drug's dose type, administration method, and mode of action. It is vital to analyze aspects such as drug release, absorption, and degradation in order to determine which characteristics are most important for preserving safety and effectiveness.[85]
2. Risk Assessment and Prioritization: Not all quality criteria are crucial; those that directly affect patient safety and therapeutic efficacy are deemed critical. Risk assessment matrices and Failure Mode and Effects Analysis (FMEA) are two tools that are used to rank which attributes require stringent management and evaluate potential risks.
3. Critical Process Parameters (CPPs) and CQAs: Variables that impact CQAs are known as critical process parameters. Manufacturers can directly influence the quality of their products by controlling processes through the identification of correlations between CPPs and CQAs. For example, maintaining the stability of the active pharmaceutical ingredient (API) throughout drug manufacture may depend on temperature management.[86]

4.2.2 Role of CQAs in the QbD Framework:

1. Linking CQAs to Product and Process Design: CQAs direct the development of both products and processes inside the QbD framework. Early CQA identification guarantees that developers concentrate on important facets of the product's quality. Manufacturers can assure consistent bioavailability by, for instance, optimizing the formulation by connecting dissolving rates to particle size distribution.[87]
2. Ensuring Regulatory Compliance: The FDA and EMA are two regulatory bodies that stress the significance of CQAs in their standards for quality. Demonstrating a good understanding of CQAs and their control measures is vital for securing product approval. Quality by Design (QbD) guarantees that the product satisfies safety and efficacy regulations by incorporating quality from the beginning [88].
3. Risk Management: By defining CQAs, one may guarantee that the right controls are in place to mitigate any risks to the quality of the product and help identify those risks. Through the integration of CQAs with Critical Process Parameters (CPPs), manufacturers can enhance their capacity to anticipate and handle unpredictability. This lowers the possibility of errors occurring during or after approval in clinical trials.
4. Continuous Improvement: CQAs and QbD encourage ongoing process improvement. Manufacturers can identify possible problems early in the production process and make real-time process adjustments to maintain consistent product quality by routinely monitoring CQAs.[89]

4.2.3 Challenges in Defining and Controlling CQAs:

- 1.Complexity in Early Stages: Early in the development process, it might be challenging to identify every CQA, particularly for complicated products like biologics. Reliance on predictive models in the absence of sufficient data may result in erroneous control or prioritization tactics.
- 2.Evolving Understanding: Clinical trial data may lead to changes in existing CQAs or the emergence of new ones. A dynamic approach to Quality by Design (QbD) and adaptable development methodologies are necessary to address new discoveries without generating major delays in the development process.[90]
- 3.Resource Intensive: It can take a lot of resources to develop a QbD plan that addresses the detection, management, and ongoing observation of CQAs. The complexity and cost are increased by the requirement for multidisciplinary collaboration in the areas of formulation development, process engineering, quality control, and regulatory affairs.

4.3 Critical Material Attributes (CMAs) and Critical Process Parameters (CPPs):

- 4.3.1 Critical Material Attributes (CMAs): The physical, chemical, biological, or microbiological properties of raw materials, excipients, and intermediates utilized in the manufacturing process are referred to as critical material attributes, or CMAs. In order to guarantee that the finished product is of the desired quality, CMAs are characteristics that need to be kept within certain bounds.[91]

Importance of CMAs in QbD:

Pharmaceutical businesses may reduce raw material variability, lower the risk of batch failures, and ensure product consistency by identifying CMAs early in the development process. Businesses can create solid formulations and steer clear of downstream quality problems by comprehending the interaction between CMAs and CQAs.[92]

- 4.3.2 Critical Process Parameters (CPPs): The manufacturing process's operational parameters known as Critical Process Parameters (CPPs) can have a major effect on CQAs when they are changed beyond a certain point. These include factors pertaining to pH, pressure, temperature, mixing time, and other operational aspects of the manufacturing process. Maintaining the quality of the finished drug product depends on CPP control.[93]

Challenges in Implementing CMAs and CPPs in QbD:

Determining CPPs requires a thorough comprehension of how every process parameter

1. Complexity: It can be difficult and resource-intensive to identify and regulate all pertinent CMAs and CPPs; this calls for a thorough understanding of both materials and processes. The initial outlay for product development may rise as a result.
2. Data-Driven Decisions: Data is essential to QbD effectiveness, and inadequate early-stage data on CMAs or CPPs might result in inappropriate control measures or prioritization. Gathering sufficient evidence to support judgments may involve substantial testing and modeling.
3. Adaptability: When new information becomes available during scale-up or after product commercialization, both CMAs and CPPs may change. It can be difficult to ensure control strategy flexibility while yet adhering to regulations.[93,94]

- 4.4 Design of Experiments (DoE): it is a statistical technique that aids in the methodical planning, execution, analysis, and interpretation of controlled tests, which include manipulating one or more input components (variables) to see how they affect an output (response). It offers an organized, data-driven method for examining the connections between answers and factors, which aids in process optimization and the identification of crucial elements that affect the caliber of the final product.[95]

4.4.1 Role of DoE in Pharmaceutical QbD:

- 1.Process Optimization: DoE aids in determining the best process parameter settings to attain the required level of product quality. DoE can determine not only the primary effects but also the interactions between variables that may affect the quality of the product by looking at several elements at once.
- 2.Robustness Studies: DoE can be used to assess a process's robustness and determine how sensitive it is to variations in particular parameters. This guarantees that, in a variety of circumstances, the process continuously yields a product that satisfies predetermined quality features.
- 3.Identifying Critical Process Parameters (CPPs): To ascertain which process parameters have the biggest impact on product CQAs, DoE is crucial. Manufacturers are able to concentrate on managing the most important variables by using DoE to examine the connections between inputs and outcomes.[96]

4. Formulation Development: When developing a formulation, DoE is used to determine the best combination of constituents (API, excipients, etc.) to achieve the desired product performance, such as stability, dissolving rate, or bioavailability.

5. Quality Risk Management: DoE is an effective tool for risk management because it makes it possible to comprehend possible process variability and how deviations from goal values affect the quality of the final product in greater detail. The development of risk-reduction strategies is informed by this knowledge. [97]

4.4.2 Benefits of DoE in QbD for Pharmaceutical Development:

1. Efficient Process Understanding: DoE offers an organized method for comprehending how various elements affect product quality. Compared to conventional one-factor-at-a-time (OFAT) experiments, it saves time and money by enabling the simultaneous analysis of many factors.

2. Optimization and Robustness: Through the identification of the optimal combination of input elements necessary to achieve the desired product quality, DoE aids in process optimization. It also gives producers the opportunity to incorporate robustness into the process, guaranteeing constant performance even in a range of circumstances.

3. Data-Driven Decisions: DoE makes objective, data-driven decisions possible by utilizing statistical analysis. It provides more exact control over the process by quantifying the effect of every factor and interaction on the final result. [98]

4. Cost and Time Efficiency: While planning is necessary in advance for the design and analysis of a DoE experiment, the capacity to investigate several parameters at once saves a substantial amount of money and time during the development and scale-up stages.

5. Regulatory Compliance: The FDA and EMA are two regulatory bodies that support the application of QbD and DoE. Using DoE speeds up regulatory approval and reduces post-approval modifications by demonstrating a deep comprehension of the process and its variability. [99]

4.4.3 Challenges of DoE in QbD:

1. Complexity in Design: It can be difficult to design a DoE that strikes a balance between the quantity of components, the number of runs, and the resources needed, particularly for intricate processes with lots of variables.

2. Data Interpretation: DoE results can be complicated to statistically analyze, and accurate data interpretation calls for knowledge of both pharmaceutical science and statistics. Inaccurate judgments on the criticality of factors may arise from misinterpreting the results.

3. Resource Intensive: Even though DoE might save money over time, the initial setup, testing, and data analysis can be very expensive, especially for businesses without internal DoE specialists.

4. Scalability: Larger-scale manufacturing may not necessarily benefit from the same circumstances that are optimized in small-scale studies. More validation tests are necessary to guarantee scalability from lab settings to commercial production. [100]

4.5 Risk Management

International recommendations like ICH Q9, which offer a defined framework for controlling risks connected to pharmaceutical quality, often outline a science-and risk-based approach to risk management in QbD. Manufacturers may foresee any problems and put plans in place to mitigate them by using efficient risk management tools and processes. This keeps the product safe, effective, and of the highest caliber. [101]

4.5.1 Importance of Risk Management in QbD:

1. Patient Safety: Making sure a pharmaceutical product satisfies safety regulations and doesn't endanger patients is the main objective of risk management. The product will function as intended for the duration of its shelf life if risks associated with critical quality attributes (CQAs) are identified and controlled.

2. Regulatory Compliance: Pharmaceutical businesses are required by regulatory agencies like the FDA and EMA to incorporate risk management procedures into their QbD plans. These organizations demand that manufacturers show that they have a good grasp of the risks connected to their goods and operations and that those risks are well controlled.

3. Product Consistency: Process control through risk management guarantees constant product quality across batches. It lowers the possibility of recalls, out-of-specification outcomes, and batch failures—all of which can be expensive and harm a company's reputation.

4. Cost-Effectiveness: Efficient risk management enables businesses to concentrate resources on managing the most important parts of their operations, resulting in increased production efficiency and lower expenses for scrap, rework, and corrective actions. [102]

4.5.2 Challenges in Risk Management for QbD:

1.Complexity of Processes: Numerous phases, materials, and variables are frequently involved in complex pharmaceutical processes. It can be challenging to recognize and manage every possible risk, particularly in large-scale production.

2.Data Availability: Access to thorough data on process performance, variability, and product quality is necessary for effective risk management. Limited data availability might sometimes make it difficult to carry out comprehensive risk assessments.

3.Balancing Risk and Resources: Although risk management is crucial, it can be resource-intensive, including a substantial investment of time and knowledge. Businesses have to strike a balance between the necessity of thorough risk assessments and the real-world constraints of staff, money, and time.

4.Dynamic Nature of Risks: As procedures change or new information becomes available, risks may change over time. It takes constant observation and modification to keep a risk management plan current.[103]

4.6 Control Strategy

A control strategy is a collection of controls that guarantee process performance and product quality. These controls are derived from current understanding of the product and process. These controls, which comprise input material controls, process parameters, in-process testing, and final product specifications, can be implemented at various stages of the process. A control strategy's objective is to guarantee that every facet of the process and product stays within reasonable bounds in order to continuously produce a product of the required caliber.[104]

4.6.1 Importance of Control Strategy in QbD:

1.Ensures Product Quality and Safety: Control strategies guarantee that the finished product is safe, efficient, and of high quality by managing Critical Process Parameters (CPPs) and Critical Material Attributes (CMAs), which have an impact on a product's Critical Quality Attributes (CQAs).

2.Regulatory Compliance: When submitting a product for approval, regulatory bodies like the FDA and EMA stress the importance of having a strong control system. Reducing post-approval modifications and speeding up regulatory approvals can be achieved by proving that a thorough control system is in place.[105]

3.Process Efficiency: Through the reduction of variability, the prevention of faults, and the reduction of the need for recalls or rework, an optimized control approach can improve process efficiency. This results in a more dependable manufacturing process, lower costs, and reduced downtime.

4.Facilitates Continuous Improvement: Manufacturers can find possibilities for process optimization and improvement over time by putting in place a control plan based on real-time monitoring and feedback loops. This will increase performance and lower the chance of failure.[106]

4.6.2 Challenges in Implementing Control Strategy:

1.Complexity of Pharmaceutical Processes: Manufacturing procedures for pharmaceuticals can be extremely intricate, with many steps and variables. It can be difficult to create a control strategy that takes into account every possible risk while still being realistic and effective, particularly for large-scale systems.

2.Balancing Control and Flexibility: A robust control strategy must strike a balance between maintaining strict control over critical parameters and allowing flexibility for minor variations that do not significantly impact product quality. Overly rigid control strategies can lead to unnecessary interventions and increased costs.

3.Real-Time Monitoring and Data Management: Large volumes of data are produced when real-time monitoring techniques like PAT are used, and they must be properly maintained and analyzed. Integrating these data streams into decision-making procedures and making sure that timely actionable insights are obtained present a problem.

4.Adapting to Changes in Raw Materials and Supply Chain: Changes in the supply chain or variations in raw materials can affect the quality of the final product and necessitate modifying the control approach. To prevent interruptions in product quality, manufacturers must constantly evaluate these risks and modify their control procedures accordingly.[107]

5.ADVANTAGES OF QBD:

1.Improved Product Quality and Consistency: The increase in product quality and consistency is one of QbD's biggest benefits. Pharmaceutical firms may more effectively identify and regulate Critical Quality Attributes (CQAs), Critical Material Attributes (CMAs), and Critical Process Parameters (CPPs) by having a deeper understanding of the product and process. This makes it possible to guarantee that the finished product constantly satisfies established quality criteria.

2.Increased Regulatory Flexibility and Compliance: The FDA and EMA, among other regulatory bodies that support a science-based approach to pharmaceutical development, have set expectations that the QbD framework complies with. Because the QbD technique fosters innovation, lowers risks, and improves product understanding, regulatory bodies encourage it.

3. Risk-Based Approach to Product Development: In order to identify possible hazards early in the development process and enable mitigation techniques, QbD integrates a risk-based approach to pharmaceutical development and production. By concentrating resources on crucial areas that affect product quality, this method enhances decision-making across the product lifecycle. [108]

4. Reduction in Manufacturing Costs and Waste: By lowering manufacturing variability, batch failures, and product recalls, QbD implementation can result in significant cost reductions for the pharmaceutical industry. Through a thorough understanding of the process, QbD reduces unpredictability and the need for expensive rework, rejects, or over-testing.

5. Enhanced Process Understanding and Control: QbD promotes a deeper understanding of both product and process, which allows for more efficient and reliable manufacturing. This knowledge extends to the development of a design space where operating conditions can vary without compromising product quality. Companies that operate within this design space can achieve flexibility in their manufacturing processes without the need for regulatory re-approval.

6. Facilitation of Continuous Improvement and Innovation: By employing process and product data to find areas for optimization across the product lifecycle, QbD promotes a culture of continuous improvement. Cost-effectiveness, quality, and efficiency all continue to improve as a result of this constant observation.

7. Reduction in Time-to-Market: Pharmaceutical items can be brought to market more quickly by using QbD to expedite development durations. Businesses can cut down on delays caused by quality problems throughout development and manufacture by planning procedures with quality in mind from the beginning.

8. Supports Global Harmonization: The ICH Q8, Q9, and Q10 recommendations are among the international regulatory criteria that the QbD approach complies with. A more efficient worldwide supply chain is made possible by this harmonization, which also makes global product registration easier and decreases variability in the approval process. [109]

6. CHALLENGES AND LIMITATIONS:

1. Complexity in Implementation:

Comprehensive Knowledge Requirement: A thorough understanding of the product and process is essential to QbD. For QbD integration to be successful, pharmaceutical businesses must have a firm understanding of the chemistry, manufacturing, and controls (CMC). However, it takes a lot of time and money to collect the required scientific data.

Extensive Data Generation and Analysis: QbD entails producing large volumes of data through labor-intensive experiments such as Design of Experiments (DoE). This is particularly difficult for smaller businesses since they do not have the means to manage the more sophisticated data. [110]

2. High Initial Investment and Resource Allocation:

Financial Burden: Investment in cutting-edge technology, including modeling tools, process analytical technologies (PAT), and qualified staff, is required by the QbD framework. The return on investment could not happen right away, and the upfront expenses could be too much, particularly for smaller businesses.

Training and Expertise Development: Implementing QbD successfully necessitates specific knowledge and proficiency in fields like statistical analysis, risk management, and DoE. The cost of the training required to provide staff members these abilities can also be high. [111]

3. Regulatory Uncertainty:

Lack of Harmonized Guidelines: Regional differences exist in QbD regulatory regimes. Even though organizations like the FDA and EMA support QbD, pharmaceutical companies may find it challenging to

coordinate their processes due to the absence of globally unified norms, particularly when targeting numerous international markets.

Regulatory Rigor: The approval procedure may become more rigorous and complex, requiring more thorough documentation and validation tests, even while authorities support QbD. This can lead to extended approval periods.[112]

4. Difficulty in Risk Assessment:

Uncertainty in Risk Prioritization: To find and manage variability, QbD uses risk management techniques including Failure Mode and Effects Analysis (FMEA). However, because procedures, tools, and materials vary widely, it is still challenging to choose which elements to prioritize and precisely assess. Differentiating between "critical" and "non-critical" process parameters is another difficulty.

Data Interpretation Issues: Although QbD offers a methodical approach to risk-based decision-making, the analysis of sizable datasets from several sources (such as clinical trials, laboratory testing, and manufacturing processes) can occasionally result in contradictory findings or make consistent decision-making difficult.[113]

5. Challenges in Process Control and Scale-Up:

Process Variability: Controlling process variability is one of QbD's main objectives. Variability is still possible in manufacturing, though, especially when scaling up from small-scale laboratory settings to large production. Unexpected difficulties, including modifications in the dynamics of the equipment or the quality of the raw materials, are frequently encountered while moving from pilot to commercial scale.

Process Analytical Technology (PAT) Limitations: PAT tools are crucial for QbD-based real-time manufacturing process monitoring. Their efficacy, however, may be limited by technological constraints, such as sensitivity problems or the inability to continuously assess specific properties throughout the procedure.[114]

6. Resistance to Change:

Cultural and Organizational Barriers: Significant adjustments to the company's culture and mentality are frequently required while implementing QbD. QbD promotes quality to be ingrained from the beginning, while traditional pharmaceutical development concentrates on quality inspections after production. Adoption of QbD may be slowed or hampered by resistance from staff members or departments used to conventional procedures.

Management Buy-In: Because QbD is thought to be complex and requires a long-term commitment, senior management might not completely understand its advantages. Strategic prioritizing and proper resource allocation may be hampered by this lack of executive support.

7. Time-Consuming Development Process:

Extended Development Timelines: Although the ultimate goal of QbD is to increase manufacturing process efficiency, the development stage may take longer than with conventional methods. Time-to-market can be delayed by the iterative nature of process optimization and experimental design, which could be an issue in sectors where competitiveness depends on speed.[115]

7. FUTURE PERSPECTIVES:

1. Increased Emphasis on Data Integrity and Cybersecurity:

Data integrity and cybersecurity become crucial issues as QbD depends more and more on digital technology to guarantee accurate data collection, processing, and safe storage.

Robust cybersecurity protocols and data integrity standards guard against illegal modifications and data breaches while guaranteeing regulatory compliance.

2. Application in New Fields: Personalized Medicine and Biologics:

These days, QbD concepts are being applied to new and developing industries including gene treatments, customized medicine, and biologics, each of which has particular difficulties because of its complexity.

Aiming for excellent quality in distinctive, patient-specific goods, this expansion necessitates modifying QbD methodologies to manage the variability and customized nature of these therapies.

3. Integration of Artificial Intelligence (AI) and Machine Learning (ML):

In order to understand complex systems, forecast results, and optimize processes in real time, QbD procedures are using AI and ML algorithms.

By examining big datasets and spotting trends that conventional approaches would overlook, these technologies improve process comprehension and result in more precise and dependable process control.

4. Use of Advanced Data Analytics:

QbD is increasingly reliant on advanced data analytics, such as big data and real-time data analytics. Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs) can be quickly identified thanks to these technologies.

More thorough quality control is made possible by real-time monitoring and data analytics, which also improve the capacity to identify problems early on.

5. Continuous Manufacturing and Process Analytical Technology (PAT):

Continuous manufacturing is becoming more and more popular than traditional batch procedures, especially in the biotech and pharmaceutical sectors.

When combined with PAT, QbD in continuous manufacturing allows for shorter production times, better product uniformity, and real-time quality control.

6. Digital Twins for Process Modeling:

Manufacturing processes are being simulated using digital twins, which are virtual representations of real processes that enable quick iterations and virtual experimentation.

This trend supports QbD by enabling the testing of different variables and conditions virtually, optimizing the process design before actual production.

7. Regulatory Harmonization and Global Standards:

With the help of agencies like the FDA, EMA, and ICH, regulatory bodies around the world are advocating for businesses to adopt QbD concepts.

Global standards are being harmonized to facilitate smoother, faster regulatory approvals and more consistent quality assurance processes worldwide.

8. Increased Focus on Lifecycle Management and Post-Approval Changes (PAC):

QbD is shifting toward a lifecycle approach, which means that quality is controlled throughout the product's whole lifecycle, not only during development.

This allows manufacturers to make post-approval changes more flexibly, with minimal regulatory submissions, provided a strong QbD framework is in place.

9. Enhanced Design of Experiments (DoE) Techniques:

With multi-objective optimization strategies that manage greater dimensional data, DoE methods are evolving into increasingly complex approaches.

More accurate identification of process parameters and product qualities is made possible by modern DoE methodologies, which increase the effectiveness and robustness of experimental design.

8. RESULT:

The result of implementing Quality by Design (QbD) in product development and manufacturing is typically seen in several key areas:

1. Improved Product Quality:

Consistent Output: By identifying critical quality attributes (CQAs) and ensuring that these are consistently met through controlled design and processes, products are more likely to meet desired specifications every time.

Reduced Variability: Systematic design of processes reduces variability in product outcomes, leading to more reliable and stable products.

2. Enhanced Process Understanding:

Through the identification and control of critical process parameters (CPPs), QbD fosters a deeper understanding of the manufacturing process. This enables better control over the production environment and reduces the likelihood of defects or failures.

3. Reduced Risk and Increased Predictability:

Risk Mitigation: By proactively identifying potential issues and risks, QbD allows manufacturers to address problems before they affect production, minimizing the likelihood of failures or recalls.

Predictable Outcomes: The approach enhances the ability to predict how changes in raw materials, equipment, or environment will impact the final product, ensuring smoother scaling from development to full-scale production.

4. Regulatory Compliance and Faster Approvals:

Faster approvals: Regulatory bodies like the FDA expect QbD principles to be incorporated into product development. Companies that use QbD are often able to provide more comprehensive data on product design, manufacturing processes, and quality controls, which can streamline approval processes.

Better Documentation: Detailed documentation of the design and testing processes, inherent in QbD, improves compliance and makes it easier to demonstrate adherence to regulatory standards.

5. Cost Efficiency:

Lower Manufacturing Costs: By minimizing defects, waste, and rework, and by optimizing processes based on solid design principles, QbD can lead to cost savings over time.

Fewer Product Failures: Reducing the likelihood of product failures or non-conformance reduces costly recalls and rework.

6. Continuous Improvement

QbD emphasizes continual monitoring and refinement of both product design and manufacturing processes. This results in an ongoing improvement in quality, efficiency, and risk management over time.

7. Increased Customer Satisfaction

High and consistent product quality leads to better customer satisfaction, as products meet or exceed expectations more reliably.

9.CONCLUSION:

In conclusion, Quality by Design (QbD) represents a transformative shift in the way products are developed, particularly within the pharmaceutical industry. By integrating quality into every stage of development—from initial concept to final production—QbD aims to ensure that products meet predefined quality standards consistently, minimizing variability and maximizing reliability. QbD encourages a deeper understanding of product characteristics, process dynamics, and potential risks, enabling manufacturers to design processes that are inherently more robust. This proactive, science-based approach not only supports regulatory compliance but also leads to more efficient development processes, reduces the need for costly corrective actions, and ensures the production of safer, higher-quality products. Ultimately, QbD helps foster a culture of continuous improvement and innovation, allowing companies to better meet the needs of patients, regulators, and the market, while driving operational excellence and cost savings. As the pharmaceutical industry continues to evolve, the adoption of QbD will remain central to achieving long-term success and ensuring the delivery of safe, effective, and high-quality products.

10.REFERENCES:

1. Beg, S., Hasnain, M. S., Rahman, M., & Swain, S. (2019). Introduction to quality by design (QbD): fundamentals, principles, and applications. In *Pharmaceutical quality by design* (pp. 1-17). Academic Press.
2. Parr, W. C. (1989). Introduction to quality engineering: designing quality into products and processes.
3. Juran, J. M. (1992). *Juran on quality by design: The new steps for planning quality into goods and services*. Simon & Schuster.
4. Selvamuthu, D., & Das, D. (2018). *Introduction to statistical methods, design of experiments and statistical quality control* (Vol. 445). Singapore: Springer Singapore.
5. Allen, T. T. (2006). *Introduction to engineering statistics and six sigma: statistical quality control and design of experiments and systems*. Springer Science & Business Media.
6. Montgomery, D. C. (2019). *Introduction to statistical quality control*. John wiley & sons.
7. Riley, C. M., Nguyen, K. L., Gellermann, G., & Kirsch, S. (2025). Introduction. In *Specification of Drug Substances and Products* (pp. 3-18). Elsevier.
8. Beckford, J. (2016). *Quality: A critical introduction*. Routledge.
9. Montgomery, D. C. (2007). *Introduction to statistical quality control*. John Wiley & Sons.
10. Jiang, R. (2015). *Introduction to quality and reliability engineering*. Springer.
11. Yu, L. X. (2008). Pharmaceutical quality by design: product and process development, understanding, and control. *Pharmaceutical research*, 25, 781-791.
12. Banerjee, A., Fizza, K., Georgakopoulos, D., Forkan, A. R. M., Jayaraman, P. P., & Milovac, J. K. (2024). Improving the High-Quality Product Consistency in a Digital Manufacturing Environment. *IEEE Transactions on Industrial Informatics*.
13. Sheng Goh, Y., Chattaraman, V., & Forsythe, S. (2013). Brand and category design consistency in brand extensions. *Journal of Product & Brand Management*, 22(4), 272-285.
14. Rathore, A. S., & Winkle, H. (2009). Quality by design for biopharmaceuticals. *Nature biotechnology*, 27(1), 26-34.
15. Melsheimer, R., Calmann, M., DeRitis, A., Philip, V., Van Gog, F., Doolittle, L., ... & Neblock, D. (2018). Ensuring product quality, consistency and patient supply over time for a large-volume biologic: experience with Remicade®. *BioDrugs*, 32, 405-414.
16. De Mattia, F., Chapsal, J. M., Descamps, J., Halder, M., Jarrett, N., Kross, I., ... & Hendriksen, C. (2011). The consistency approach for quality control of vaccines—a strategy to improve quality control and implement 3Rs. *Biologicals*, 39(1), 59-65.
17. Tatum, J. D., Smith, G. C., & Belk, K. E. (2000). New approaches for improving tenderness, quality, and consistency of beef. *Journal of Animal Science*, 77, 1-10.

18. Morales, J. A. (1995). *Material quality consistency in a quality control process* (Doctoral dissertation, Walden University).
19. Sethi, R. (2000). New product quality and product development teams. *Journal of marketing*, 64(2), 1-14.
20. Wang, H. X., Chen, J., Hu, Y. C., & Ye, M. (2008, November). The consistency of product design and brand image. In *2008 9th International Conference on Computer-Aided Industrial Design and Conceptual Design* (pp. 1142-1144). IEEE.
21. Reuter, C., & Brambring, F. (2016). Improving data consistency in production control. *Procedia CIRP*, 41, 51-56.
22. Spina, G., Verganti, R., & Zottori, G. (2002). Factors influencing co-design adoption: drivers and internal consistency. *International Journal of Operations & Production Management*, 22(12), 1354-1366.
23. Giguère, F., Rivest, L., & Desrochers, A. (2003). Improving Design Productivity and Product Data Consistency: From Design Intent to Solid Models through Technological Links. In *Feature Based Product Life-Cycle Modelling: IFIP TC5/WG5. 2 & WG5. 3 Conference on Feature Modelling and Advanced Design-for-the-Life-Cycle Systems (FEATS 2001) June 12-14, 2001, Valenciennes, France* (pp. 77-91). Springer US.
24. Beverland, M. B., Wilner, S. J., & Micheli, P. (2015). Reconciling the tension between consistency and relevance: Design thinking as a mechanism for brand ambidexterity. *Journal of the Academy of Marketing Science*, 43, 589-609.
25. Navarro, L. F. M. (2018). Comparative analysis of content production models and the balance between efficiency, quality, and brand consistency in high-volume digital campaigns. *Journal of Empirical Social Science Studies*, 2(6), 1-26.
26. Trentin, A., Perin, E., & Forza, C. (2012). Product configurator impact on product quality. *International Journal of Production Economics*, 135(2), 850-859.
27. Wang, H. H., & Chen, C. P. (2024). Identifying Brand Consistency by Product Differentiation Using CNN. *CMES-Computer Modeling in Engineering & Sciences*, 140(1).
28. McKay, A., Rice, H. P., Chau, H. H., & de Pennington, A. (2021). Maintaining consistency across design descriptions in engineering product development. *Proceedings of the Design Society*, 1, 1987-1996.
29. Lamanna, W. C., Holzmann, J., Cohen, H. P., Guo, X., Schweigler, M., Stangler, T., ... & Schiestl, M. (2018). Maintaining consistent quality and clinical performance of biopharmaceuticals. *Expert Opinion on Biological Therapy*, 18(4), 369-379.
30. Alt, N., Zhang, T. Y., Motchnik, P., Taticek, R., Quarby, V., Schlothauer, T., ... & Harris, R. J. (2016). Determination of critical quality attributes for monoclonal antibodies using quality by design principles. *Biologicals*, 44(5), 291-305.
31. Liang, W. Automating Color Consistency and Quality Control in Product Variations Using AI Algorithms.
32. Su, L., Xu, Z., Chen, Y., Jiang, S., & Tian, Y. (2017, December). Door Closure Sound Quality Improvement Design Based on Acoustic Positioning Technology and Consistency Evaluation. In *2017 International Conference on Computer Technology, Electronics and Communication (ICCTEC)* (pp. 98-102). IEEE.
33. Mei, M. Q., Wang, L., & Yan, J. (2023). Maintaining product quality consistency when offshoring to emerging markets: The role of subsidiary control. *Journal of International Management*, 29(1), 100989.
34. Hassett, B., Singh, E., Mahgoub, E., O'Brien, J., Vicik, S. M., & Fitzpatrick, B. (2018, January). Manufacturing history of etanercept (Enbrel®): Consistency of product quality through major process revisions. In *MAbs* (Vol. 10, No. 1, pp. 159-165). Taylor & Francis.
35. Zhao, L., Fu, H. Y., Zhou, W., & Hu, W. S. (2015). Advances in process monitoring tools for cell culture bioprocesses. *Engineering in Life Sciences*, 15(5), 459-468.
36. Yan, B. J., & Qu, H. B. (2013). An approach to optimize the batch mixing process for improving the quality consistency of the products made from traditional Chinese medicines. *Journal of Zhejiang University SCIENCE B*, 14(11), 1041-1048.

37. Bernik, M., Sondari, M., & Indika, D. R. (2017). Model of quality management system to maintain quality consistency in higher education. *Review of Integrative Business and Economics Research*, 6(04), 235-242.

38. Flynn, B. B., Schroeder, R. G., & Sakakibara, S. (1994). A framework for quality management research and an associated measurement instrument. *Journal of Operations management*, 11(4), 339-366.

39. Roy, R. K. (2001). *Design of experiments using the Taguchi approach: 16 steps to product and process improvement*. John Wiley & Sons.

40. Kozlowski, S., & Swann, P. (2006). Current and future issues in the manufacturing and development of monoclonal antibodies. *Advanced drug delivery reviews*, 58(5-6), 707-722.

41. Brumano, L. P., da Silva, F. V. S., Costa-Silva, T. A., Apolinário, A. C., Santos, J. H. P. M., Kleingesinds, E. K., ... & Junior, A. P. (2019). Development of L-asparaginase biobetters: current research status and review of the desirable quality profiles. *Frontiers in bioengineering and biotechnology*, 6, 212.

42. Hendriksen, C., Arciniega, J. L., Bruckner, L., Chevalier, M., Coppens, E., Descamps, J., ... & Swam, H. (2008). The consistency approach for the quality control of vaccines. *Biologicals*, 36(1), 73-77.

43. Huang, M. S., Nian, S. C., & Lin, G. T. (2021). Influence of V/P switchover point, injection speed, and holding pressure on quality consistency of injection-molded parts. *Journal of Applied Polymer Science*, 138(41), 51223.

44. Dahiya, N., Bhatnagar, V., & Singh, M. (2015). Enhancing consistency of conceptual data warehouse design. *International Journal of Computational Systems Engineering*, 2(1), 11-24.

45. Trent, R. J., & Monczka, R. M. (1999). Achieving world-class supplier quality. *Total Quality Management*, 10(6), 927-938.

46. Robertson, S. C. (1983, February). A DESIGN TO ENHANCE THE QUALITY, CONSISTENCY, AND AVAILABILITY OF PROFESSIONAL EDUCATION. In *PUB TYPE Collected Works-Conference Proceedings (021) Viewpoints (120) Reports Research/Technical* (p. 203).

47. Yang, K., Basem, S., & El-Haik, B. (2003). *Design for six sigma* (pp. 184-186). New York: McGraw-Hill.

48. Nowack, M., Endrikat, J., & Guenther, E. (2011). Review of Delphi-based scenario studies: Quality and design considerations. *Technological Forecasting and Social Change*, 78(9), 1603-1615.

49. Plowright, A. T., Johnstone, C., Kihlberg, J., Pettersson, J., Robb, G., & Thompson, R. A. (2012). Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle. *Drug discovery today*, 17(1-2), 56-62.

50. Harvey, G., & Lynch, E. (2017). Enabling continuous quality improvement in practice: the role and contribution of facilitation. *Frontiers in Public Health*, 5, 27.

51. Somma, R. (2007). Development knowledge can increase manufacturing capability and facilitate quality by design. *Journal of Pharmaceutical Innovation*, 2(3), 87-92.

52. Thor, J., Wittlöv, K., Herrlin, B., Brommels, M., Svensson, O., Skår, J., & Øvretveit, J. (2004). Learning helpers: how they facilitated improvement and improved facilitation—lessons from a hospital-wide quality improvement initiative. *Quality Management in Healthcare*, 13(1), 60-74.

53. Matchar, D. B., Patwardhan, M. B., Samsa, G. P., & Haley, W. E. (2006). Facilitated process improvement: an approach to the seamless linkage between evidence and practice in CKD. *American journal of kidney diseases*, 47(3), 528-538.

54. Clarkson, J., & Eckert, C. (Eds.). (2010). Design process improvement: a review of current practice.

55. Buckler, B. (1996). A learning process model to achieve continuous improvement and innovation. *The learning organization*, 3(3), 31-39.

56. McHugh, M., Brown, T., Liss, D. T., Walunas, T. L., & Persell, S. D. (2018). Practice facilitators' and leaders' perspectives on a facilitated quality improvement program. *The Annals of Family Medicine*, 16(Suppl 1), S65-S71.

57. Anderson, E., & Davis, S. (2024). Coaching for equity-oriented continuous improvement: Facilitating change. *Journal of Educational Change*, 25(2), 341-368.

58. Bartezzaghi, E., Corso, M., & Verganti, R. (1997). Continuous improvement and inter-project learning in new product development. *International Journal of Technology Management*, 14(1), 116-138.

59. Hyland, P., Di Milia, L., & Becker, K. (2005). The role of human resource development in continuous improvement: facilitating learning and change. In *3rd Annual ANZAM Operations Management Symposium* (pp. 1-11).

60. Pimentel, C. B., Mills, W. L., Palmer, J. A., Dillon, K., Sullivan, J. L., Lewi, N. J., ... & Hartmann, C. W. (2019). Blended facilitation as an effective implementation strategy for quality improvement and research in nursing homes. *Journal of nursing care quality*, 34(3), 210-216.

61. Pramod, K., Tahir, M. A., Charoo, N. A., Ansari, S. H., & Ali, J. (2016). Pharmaceutical product development: A quality by design approach. *International journal of pharmaceutical investigation*, 6(3), 129.

62. Mishra, V., Thakur, S., Patil, A., & Shukla, A. (2018). Quality by design (QbD) approaches in current pharmaceutical set-up. *Expert opinion on drug delivery*, 15(8), 737-758.

63. Patil, A. S., & Pethe, A. M. (2013). Quality by Design (QbD): A new concept for development of quality pharmaceuticals. *International journal of pharmaceutical quality assurance*, 4(2), 13-19.

64. Grangeia, H. B., Silva, C., Simões, S. P., & Reis, M. S. (2020). Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. *European journal of pharmaceuticals and Biopharmaceutics*, 147, 19-37.

65. Fukuda, I. M., Pinto, C. F. F., Moreira, C. D. S., Saviano, A. M., & Lourenço, F. R. (2018). Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). *Brazilian journal of pharmaceutical sciences*, 54, e01006.

66. Schlindwein, W. S., & Gibson, M. (Eds.). (2018). *Pharmaceutical Quality by Design: a practical approach*. John Wiley & Sons.

67. Kovács, B., KOVÁCS-DEÁK, B. O. G. L. Á. R. K. A., SZÉKELY-SZENTMIKLÓSI, I. S. T. V. Á. N., FÜLÖP, I., BÁBA, L. I., BODA, F., & PÉTERFI, O. (2021). Quality-by-design in pharmaceutical development: From current perspectives to practical applications. *Acta Pharmaceutica*, 71(4), 497-526.

68. Jain, S. (2014). Quality by design (QBD): A comprehensive understanding of implementation and challenges in pharmaceuticals development. *Int. J. Pharm. Pharm. Sci*, 6, 29-35.

69. Colledani, M., Tolio, T., Fischer, A., Iung, B., Lanza, G., Schmitt, R., & Váncza, J. (2014). Design and management of manufacturing systems for production quality. *Cirp Annals*, 63(2), 773-796.

70. Jha, P. K., Jha, R., Datt, R., & Guha, S. K. (2011). Entropy in good manufacturing system: Tool for quality assurance. *European Journal of Operational Research*, 211(3), 658-665.

71. Qamar, S. Z., Al-Hinai, N., & Márquez, F. P. G. (2024). *Quality Control and Quality Assurance: Techniques and Applications*. BoD—Books on Demand.

72. Mitra, A. (2016). *Fundamentals of quality control and improvement*. John Wiley & Sons.

73. Jani, U. K. (2016). Good manufacturing practices (GMP):“planning for quality and control in microbiology”. *Frontier Discoveries and Innovations in Interdisciplinary Microbiology*, 71-77.

74. Tashi, T., Mbuya, V. B., & Gangadharappa, H. V. (2016). Corrective action and preventive actions and its importance in quality management system: A review. *International Journal of Pharmaceutical Quality Assurance*, 7(1), 1-6.

75. World Health Organization. (2024). *Quality assurance of pharmaceuticals: a compendium of guidelines and related materials. Volume 2. Good manufacturing practices and inspection*. World Health Organization.

76. Schwemer, W. L. (1998). The key to product quality assurance. *Food & Drug LJ*, 53, 627.

77. Lionberger, R. A., Lee, S. L., Lee, L., Raw, A., & Yu, L. X. (2008). Quality by design: concepts for ANDAs. *The AAPS journal*, 10, 268-276.

78. Yenduri, G., Costa, A. P., Xu, X., & Burgess, D. J. (2022). Impact of critical process parameters and critical material attributes on the critical quality attributes of liposomal formulations prepared using continuous processing. *International Journal of Pharmaceutics*, 619, 121700.

79. Mohammed, A. Q., Sunkari, P. K., Srinivas, P., & Roy, A. K. (2015). Quality by design in action 1: controlling critical quality attributes of an active pharmaceutical ingredient. *Organic Process Research & Development*, 19(11), 1634-1644

80. Short, S. M., Cogdill, R. P., Drennen III, J. K., & Anderson, C. A. (2011). Performance-based quality specifications: The relationship between process critical control parameters, critical quality attributes, and clinical performance. *Journal of pharmaceutical sciences*, 100(4), 1566-1575.

81. Alt, N., Zhang, T. Y., Motchnik, P., Taticek, R., Quarmby, V., Schlothauer, T., ... & Harris, R. J. (2016). Determination of critical quality attributes for monoclonal antibodies using quality by design principles. *Biologics*, 44(5), 291-305.

82. Maillet, C., Sion, C., De Isla, N., Toye, D., & Olmos, E. (2021). Quality by design to define critical process parameters for mesenchymal stem cell expansion. *Biotechnology Advances*, 50, 107765.

83. Vuchkov, I. N., & Boyadjieva, N. L. (2013). *Quality improvement with design of experiments: A response surface approach* (Vol. 7). Springer Science & Business Media.

84. Fahmy, R., Kona, R., Dandu, R., Xie, W., Claycamp, G., & Hoag, S. W. (2012). Quality by design I: application of failure mode effect analysis (FMEA) and Plackett–Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. *AAPS pharmscitech*, 13, 1243-1254.

85. Ranga, S., Jaimini, M., Sharma, S. K., Chauhan, B. S., & Kumar, A. (2014). A review on Design of Experiments (DOE). *Int. J. Pharm. Chem. Sci*, 3(1), 216-24.

86. Kechagias, J. (2007). Investigation of LOM process quality using design of experiments approach. *Rapid Prototyping Journal*, 13(5), 316-323.

87. Torres, M. (2015). Challenges in Implementing Quality By Design. *Bioprocess International*, 13, 6.

88. Varu, R. K., & Khanna, A. (2010). Opportunities and challenges to implementing Quality by Design approach in generic drug development. *Journal of Generic Medicines*, 7(1), 60-73.

89. Schröder, M., Schmitt, S., & Schmitt, R. (2015). Design and implementation of quality control loops: Strategies to reach stable business processes. *The TQM Journal*, 27(3), 294-302.

90. Judi, H. M., Genasan, D., & Jenal, R. (2011). *Quality control implementation in manufacturing companies: motivating factors and challenges*. INTECH Open Access Publisher.

91. Arndt, T., Lemmerer, C., Sihl, W., & Lanza, G. (2016). Target system based design of quality control strategies in global production networks. *Procedia CIRP*, 50, 336-341.

92. Sangshetti, J. N., Deshpande, M., Zaheer, Z., Shinde, D. B., & Arote, R. (2017). Quality by design approach: Regulatory need. *Arabian Journal of chemistry*, 10, S3412-S3425.

93. Van Buskirk, G. A., Asotra, S., Balducci, C., Basu, P., DiDonato, G., Dorantes, A., ... & Vaithiyalingam, S. (2014). Best practices for the development, scale-up, and post-approval change control of IR and MR dosage forms in the current quality-by-design paradigm. *AAPS PharmSciTech*, 15, 665-693.

94. Colombo, S., Beck-Broichsitter, M., Bøtker, J. P., Malmsten, M., Rantanen, J., & Bohr, A. (2018). Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. *Advanced drug delivery reviews*, 128, 115-131.

95. Fisher, R. A., Fisher, R. A., Genetiker, S., Fisher, R. A., Genetician, S., Britain, G., ... & Généticien, S. (1966). *The design of experiments* (Vol. 21). Edinburgh: Oliver and Boyd.

96. Barker, T. B., & Milivojevich, A. (2016). *Quality by experimental design*. CRC Press.

97. Antony, J. (2023). *Design of experiments for engineers and scientists*. Elsevier.

98. Cavazzuti, M., & Cavazzuti, M. (2013). Design of experiments. *Optimization methods: from theory to design scientific and technological aspects in mechanics*, 13-42.

99. Konda, R., Rajurkar, K. P., Bishu, R. R., Guha, A., & Parson, M. (1999). Design of experiments to study and optimize process performance. *International Journal of Quality & Reliability Management*, 16(1), 56-71.

100. Welch, W. J., Yu, T. K., Kang, S. M., & Sacks, J. (1990). Computer experiments for quality control by parameter design. *Journal of quality technology*, 22(1), 15-22.

101. Ali, R., Mehta, P., Monou, P. K., Arshad, M. S., Panteris, E., Rasekh, M., ... & Ahmad, Z. (2020). Electrospinning/electrospraying coatings for metal microneedles: A design of experiments (DOE) and quality by design (QbD) approach. *European Journal of Pharmaceutics and Biopharmaceutics*, 156, 20-39.

102. Telford, J. K. (2007). A brief introduction to design of experiments. *Johns Hopkins apl technical digest*, 27(3), 224-232.

103. Grangeia, H. B., Silva, C., Simões, S. P., & Reis, M. S. (2020). Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. *European journal of pharmaceutics and Biopharmaceutics*, 147, 19-37.

104. Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2022). Quality management systems in regulatory affairs: Implementation challenges and solutions. *Journal for Research in Applied Sciences and Biotechnology*, 1(3), 278-284.

105. Zsidisin, G. A., & Ritchie, B. (2009). Supply chain risk management—developments, issues and challenges. In *Supply chain risk: A handbook of assessment, management, and performance* (pp. 1-12). Boston, MA: Springer US.

106. Peterson, P. L., Hawkins, J. D., & Catalano, R. F. (1992). Evaluating comprehensive community drug risk reduction interventions: Design challenges and recommendations. *Evaluation review*, 16(6), 579-602.

107. Jeyapaul, R., Shahabudeen, P., & Krishnaiah, K. (2005). Quality management research by considering multi-response problems in the Taguchi method—a review. *The International Journal of Advanced Manufacturing Technology*, 26, 1331-1337.

108. Karklina-Admine, S., Cevers, A., Kovalenko, A., & Auzins, A. (2024). Challenges for Customs Risk Management Today: A Literature Review. *Journal of Risk and Financial Management*, 17(8), 321.

109. Evans, J. R., & Lindsay, W. M. (2005). The management and control of quality.

110. Tang, O., & Musa, S. N. (2011). Identifying risk issues and research advancements in supply chain risk management. *International journal of production economics*, 133(1), 25-34.

111. Martin, J. L., Norris, B. J., Murphy, E., & Crowe, J. A. (2008). Medical device development: The challenge for ergonomics. *Applied ergonomics*, 39(3), 271-283.

112. Williams, R., Van Der Wiele, T., Van Iwaarden, J., Bertsch, B., & Dale, B. (2006). Quality management: the new challenges. *Total Quality Management and Business Excellence*, 17(10), 1273-1280.

113. Fenz, S., Heurix, J., Neubauer, T., & Pechstein, F. (2014). Current challenges in information security risk management. *Information Management & Computer Security*, 22(5), 410-430.

114. Landrigan, P. J., Kimmel, C. A., Correa, A., & Eskenazi, B. (2004). Children's health and the environment: public health issues and challenges for risk assessment. *Environmental health perspectives*, 112(2), 257-265.

115. Singhal, P., Agarwal, G., & Mittal, M. L. (2011). Supply chain risk management: Review, classification and future research directions. *International Journal of Business Science & Applied Management*, 6(3).