

A Review On Immune Modulations In Drug Therapy

Dr. D. Rama Bhrama Reddy ^{1*}, K.Malleswari^{2*}, k.Guru brahma chari³

1* Principal & Professor, Department of Phytochemistry, Nalanda Institute of Pharmaceutical Sciences, Sattenapalli[M], Guntur District,.522438. Ap, India

2* Associate professor, Department of Pharmaceutics, Nalanda Institute of Pharmaceutical Sciences, Sattenapalli [M], Guntur District. 522438, A.P. India

3, Student, Department of B. Pharmacy, Nalanda Institute of Pharmaceutical Sciences, Sattenapalli[M]
Guntur District,522438, A.P. India

Abstract:

Immune modulation in drug therapy refers to altering or regulating the immune system's activity to achieve a desired therapeutic effect. It involves enhancing or suppressing the immune response, depending on the condition being treated. In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Immune modulation in drug therapy plays a vital role in restoring immune balance by either suppressing, stimulating, or adjusting the immune response to treat diseases such as autoimmune disorders, cancer, and infections. Examples include immunosuppressants for organ transplant patients and immunostimulatory drugs for cancer immunotherapy. The potential targets to modulate immunity are as multiple as the components of the immune system.

Keywords: Immune modulation, medical techniques, Therapeutic effect, Immunotherapy, Immunosuppressants.

Introduction:

Immune modulation in drug therapy refers to altering or regulating the immune system's activity to achieve a desired therapeutic effect. The immune system has an invaluable role in the resistance to pathogenic infections and the maintenance of homeostasis. An adequate immune response to an encountered danger is an eligible and a deliberate balance-saving mechanism. Some of them have their source in the chronic inflammatory process, while others result from the buildup of an abnormal immune response against particular cells, thus leading to the development of autoimmune diseases.

The immune system is a multiscale network comprising genes, molecules, cells, and organs that work synergistically to combat various threats to the organism. Advances in understanding this complex system allow us to selectively influence specific components, improving the treatment of many diseases.

For example, in oncology, T cells' natural ability to recognize tumor cells can be enhanced. Mesenchymal stem cells (MSCs) are utilized for their paracrine anti-inflammatory properties, while specific proinflammatory factors like TNF- α and IL-6 can be inactivated using monoclonal antibodies. Novel

methods of antibody design and production further broaden therapeutic potential, including mimicking immunomodulatory signals on antigen-presenting cells. Proinflammatory factors can also be inhibited by blocking their release, and pharmaceuticals targeting inflammasome functioning are increasingly being explored. Well-established immunomodulatory therapies—such as corticosteroids, non-steroidal anti-inflammatory drugs (NSAIDs), histamine antagonists, and interferons—continue to evolve with research focused on improving their efficiency. Immunomodulation thus offers a versatile approach to influencing immune responses at various stages of disease progression. While the field remains incompletely explored, it presents a powerful tool for disease regulation.

This review introduces immunity mechanisms and immunomodulation strategies in basic science and clinical practice. It provides a cross-sectional overview, ranging from conventional pharmaceutical interventions and biological therapies to cutting-edge advancements, such as genome editing and regenerative medicine tool

Types of immune modulators:

1. Immunosuppression

- Reduces or suppresses the immune response.
- **Purpose:** Used to prevent the immune system from attacking the body (autoimmune diseases) or rejecting transplanted organs.
- **Examples:**
 - *Corticosteroids* (e.g., prednisone)
 - *Calcineurin inhibitors* (e.g., cyclosporine, tacrolimus)
 - *Monoclonal antibodies* (e.g., infliximab for rheumatoid arthritis).

FAMILY	DRUG	PHARMACOLOGICAL EFFECT
Drugs that bind to immunophilins	Cyclosporine A, Tacrolimus and Sirolimus	Inhibition gene transcription of cytokines (e.g., IL-2) in T lymphocytes (blocking their proliferation), Inhibition of cytokines of T lymphocytes
Glucocorticoids	Prednisone and dexamethasone	Inhibition of transcription of cytokines into T lymphocytes and macrophages
Glucocorticoids	Azathioprine, Cyclophosphamide, Mophetil mycophenolate and Leflunomid	Inhibition of cell proliferation, Inhibition of proliferation of T and B lymphocytes, Inhibition of cell proliferation
Antilymphocyte antibodies	Polyclonal antibodies Anti-thymocytes	Triggering effector phase of specific immunity against lymphocytes
Monoclonal antibodies	Muromonab (OKT3) Anti-cytokines and anti-receptors	Destruction of CD3+ cells (T lymphocytes), Neutralization or destruction of molecules of the immune system.
Hyposensitization	Allergens	Reversal of response from type IgE to IgG (from Th2 to Th1), Reduction in reactivity to allergen

Table 1:Immunosuppressants

2. Immunostimulation

- Enhances or boosts the immune response.
- **Purpose:** Helps fight infections, cancers, or other immune deficiencies.
- **Examples:**
 - *Vaccines* (activate immune system against pathogens)
 - *Cytokines* (e.g., interferons, interleukins)
 - *Immunostimulatory drugs* like checkpoint inhibitors for cancer immunotherapy.

FAMILY	DRUG	PHARMACOLOGICAL EFFECT
Bacterial and fungal products	Bacillus calmette guerien(BCG)	Activation of macrophages (APC), NK cells, and B lymphocyte
	Muramyl dipeptide(MDP)	Activation of macrophages (APC and phagocytosis) Activation of macrophages (APC and phagocytosis)
	Lipopolysaccharides(LPS)	Activation of macrophages (APC and phagocytosis) Activation of macrophages (APC and phagocytosis)
	Propionibacterium species	APC, phagocytosis, Activation of Tc and B lymphocytes
	Glucan	Phagocytosis
Thymic factors	Thymosins	Maturation of thymocytes into T lymphocyte
Synthetic drugs	Levamisole isoprinosine	Maturation and activation of T lymphocytes, phagocytosis, and chemotaxis Proliferation of T lymphocytes; activation of Th, Tc, NK, phagocytosis and chemotaxis
Polyclonal antibodies	Specific antibodies	Triggering effector phase of specific immunity against various antigens
Recombinant cytokines	Interleukin 2(11 2)	Activation of lymphocytes Th (proliferation),
	Inter leukin 1(11-1)	Tc (lysis), and B
	Interleukin 12(11-12)	Activation of Th lymphocyte
	Interfron gamma(1FN)	Proliferation of monocytes Activation of macrophages, lymphocytes, and NK cells, increase in expression of MHC II
Monoclonal antibodies	Specific antibodies	Triggering effector phase of specific immunity against antigen (e.g., tumor)
Vaccines	Antigens	Triggering of specific immunity (phases of recognition, activation, and effector)

Table 2. Immunostimulators

3. Immunomodulation

- Adjusts the immune response to restore balance without complete suppression or overstimulation.
- **Purpose:** Achieves a controlled immune response suitable for chronic diseases.
- **Examples:**
 - *Biologic therapies* (e.g., TNF inhibitors for autoimmune diseases).

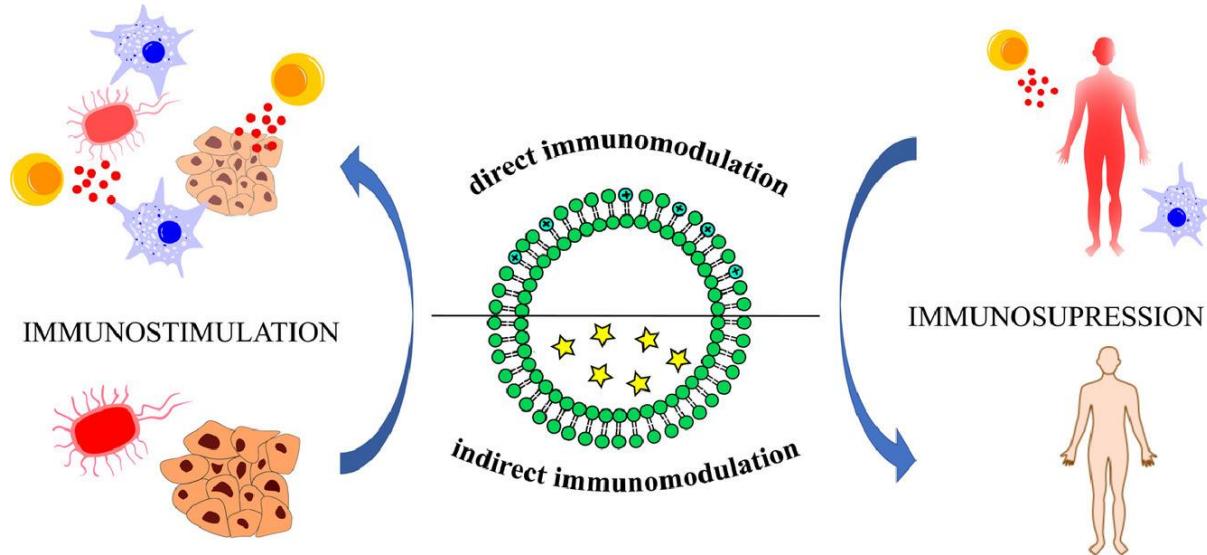


Figure 1: About Immunostimulation and Immunosuppression in body

2 Innate Immune Response:

Innate immunity is the body's first line of defense, providing a **rapid, non-specific response** without immune memory. It involves **epithelial barriers, phagocytes** (neutrophils, dendritic cells, monocytes, macrophages), the **complement system, NK cells**, and tissue-resident immune cells.

When infections or cell damage occur, phagocytes detect **PAMPs** or **DAMPs** via **pattern recognition receptors (PRRs)**. Pathogens are internalized, digested, and presented to the adaptive immune system through **MHCII**. Additionally, PRR activation triggers **NF-κB**, leading to the production of **pro-IL-1β** and **pro-IL-18**, as well as inflammasome activation (e.g., **NLRP3**).

NLRP3 inflammasomes require secondary signals, such as **potassium efflux, calcium influx, or ROS**, to activate **caspase-1**. Caspase-1 cleaves pro-IL-1β and pro-IL-18 into their active forms, promoting inflammation.

Therapeutic Applications

- **Monoclonal antibodies** targeting interleukins are used for diseases like **atopic dermatitis** (e.g., *dupilumab*), **plaque psoriasis** (e.g., *ustekinumab*), and **COVID-19** (e.g., *tocilizumab*).
- **IL-6 receptor inhibitors** like *sarilumab* are explored in clinical trials for melanoma.
- Some **antidepressants** (e.g., *tianeptine, fluoxetine*) show anti-inflammatory effects by targeting NLRP3 pathways.
- **Fingolimod** (used for multiple sclerosis) inhibits NLRP3 inflammasome assembly, reducing proinflammatory cytokines and promoting an anti-inflammatory microglia phenotype.

Caspase-1 also cleaves **pro-gasdermin D proteins**, contributing to inflammatory signaling pathways. This highlights the potential of targeting innate immune mechanisms for disease treatment.

3 Adaptive immunity:

Adaptive immunity involves mostly lymphocytes, namely, T cells and B cells. It provides long-lasting immunity with highly specific clonal responses to a large diversity of antigens. The adaptive immune response is self-limiting and quickly declines as the infection is eliminated as it generates immune memory and self-reactivity.

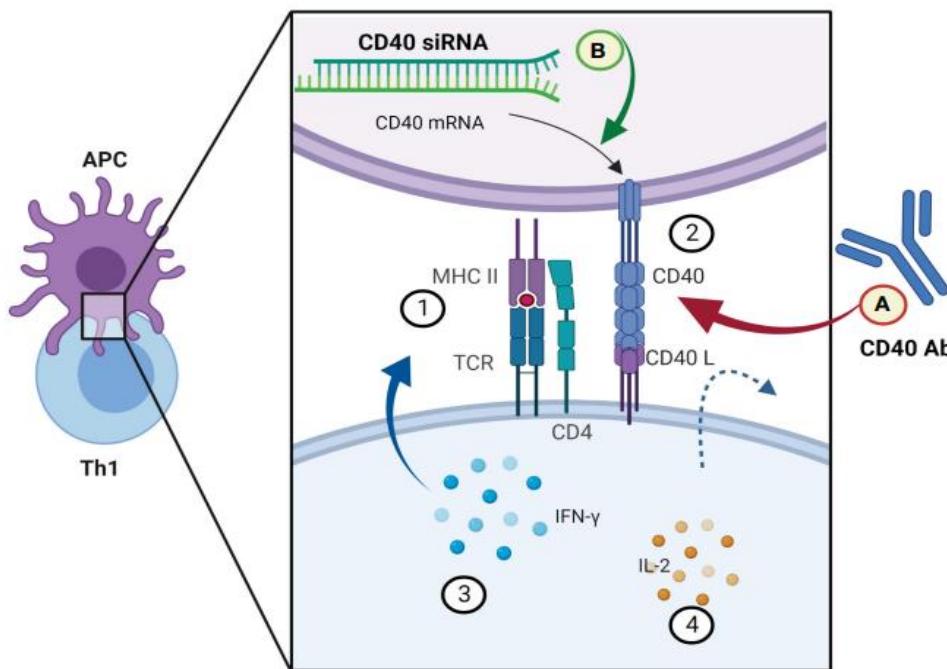
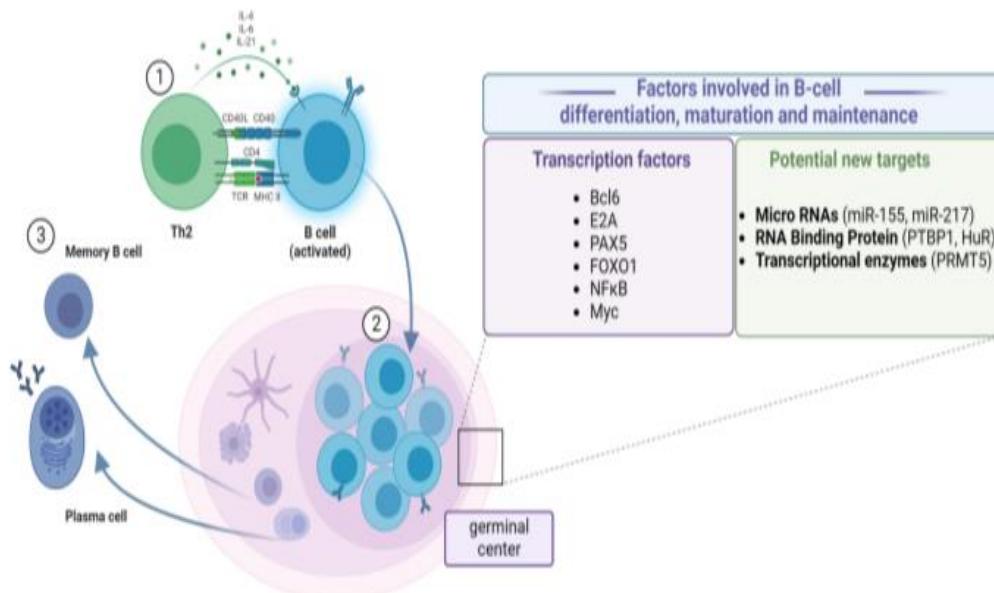


FIGURE 2: Examples of novel immunomodulatory strategies in modifying the interactions between CD40 and CD40L signal molecules. APC and Th1 signaling molecules in the first step of cytotoxic T-cell activation. (1) MHCII presenting antigen of the pathogen to the Th1 cell. (2) An additional signal in return activates the APC. (3) INF- γ intensifies the activation of the APC. (4) IL-2 released by Th1 cells stimulates cytotoxic T cells to enable the elimination of infected cells. (A) Co-stimulation of CD40L could be simulated by a monoclonal antibody.


4 Classic pharmacological approach for immunomodulation:

Immunosuppressants modulate various stages of the immune response:

1. They influence **gene transcription** for proteins essential to lymphocyte function.
2. They regulate the **humoral response**, including antibody production and affinity.

These drugs are widely used in the treatment of **autoimmune diseases** and for preventing **transplant rejection**. Key immunosuppressants include:

- **Corticosteroids**
- **Non-steroidal anti-inflammatory drugs (NSAIDs)**
- **Histamine antagonists (HAs)**
- **Cellular signaling inhibitors.**

FIGURE 3: Steps of B-cell differentiation and maturation. (1) Antigen recognition induces the expression of effector molecules by T cells, which activate the B cells. (2) B-cell proliferation in the germinal center. (3) Differentiation between resting memory cells and antibody-secreting plasma cells. Establishing the role of particular factors in the regulation of transcriptional and post-transcriptional mechanisms of B-cell differentiation, maturation, and maintenance, which could help design better treatment and vaccination procedures.

4 Inflammatory response:

The inflammatory response, closely tied to the innate immune system, begins with vasodilation and increased blood flow, resulting in redness and heat in the affected area. Enhanced vascular permeability allows inflammatory cells to move into tissues, causing swelling and edema. Pain sensitivity is heightened by mediators like bradykinins and prostaglandins. Neutrophils, guided by chemokine gradients, help clear infections through chemotaxis. Systemic symptoms such as fever, chills, and fatigue conserve energy for pathogen defense, driven by elevated inflammatory markers like CRP and ferritin. The innate response also activates the adaptive immune system by upregulating molecules like MHCII and B7. Chronic or excessive inflammation underlies many diseases, making anti-inflammatory drugs critical for treatment.

5 Genomic Strategies in Immunomodulation: CRISPR–Cas9

CRISPR–Cas9 is a genome-editing tool derived from the bacterial adaptive immune system, first identified in *Escherichia coli* in 1987 and later recognized in prokaryotes in 2000. It functions as molecular scissors, allowing for precise gene editing. This is achieved through gene inactivation via non-homologous end joining (NHEJ) or replacement through homologous end joining (HEJ).

The technology has numerous applications, including gene discovery through CRISPR screening and the investigation of disease pathogenesis. Dr. Howard E. Gendelman's research demonstrated that viral eradication is possible in animal models using CRISPR–Cas9. It has shown promise in studying and treating viral infections (e.g., HIV and HBV), immunological disorders, and autoimmune diseases.

CRISPR–Cas9's ease of use and ability to target nearly any DNA sequence make it a preferred gene-editing approach. The first human clinical trials using CRISPR–Cas9 targeted the BCL11A erythroid-specific enhancer in CD34+ hematopoietic stem and progenitor cells to treat β-thalassemia (NCT03655678) and sickle cell disease (NCT03745287). Additionally, CRISPR–Cas9 has been applied to enhance T cells' natural ability to combat refractory cancers such as multiple myeloma, liposarcoma, and non-small cell lung cancer.

This revolutionary technology continues to advance the understanding and treatment of various diseases, with significant potential for clinical applications.

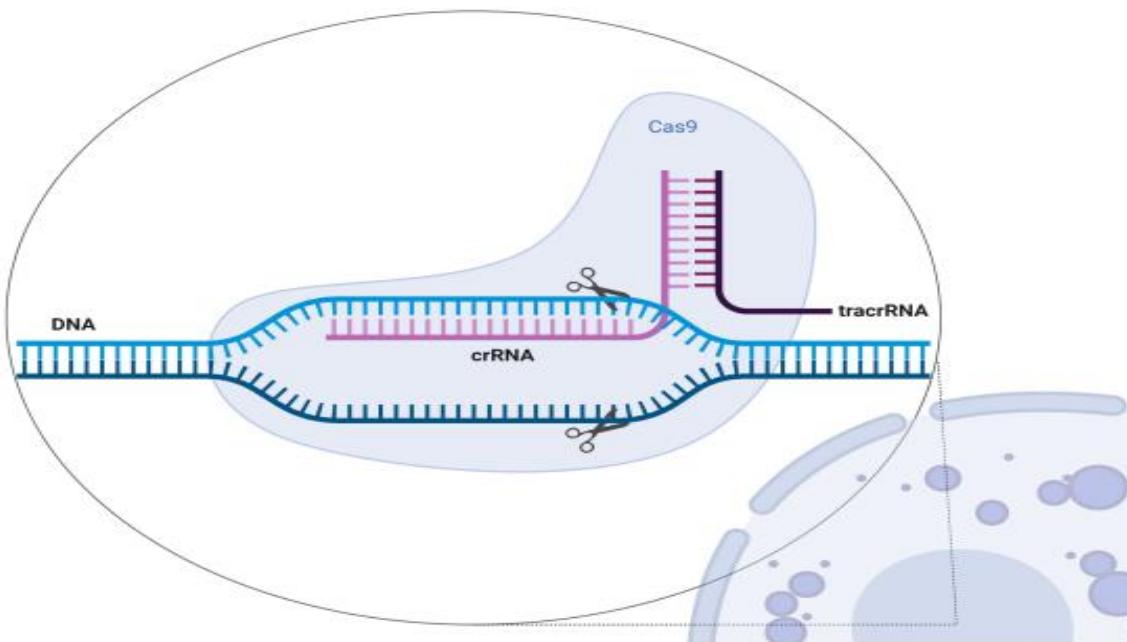


FIGURE 4: Scheme of the CRISPR/Cas9 structure. The CRISPR–Cas9 system is composed of two elements: crRNA–tracrRNA chimera and Cas9.

6 Mechanisms of Immune Modulation

6.1 Immunosuppression

Immunosuppressive drugs aim to downregulate overactive immune responses, particularly in autoimmune diseases and organ transplantation. Key mechanisms include:

- **Cytokine Inhibition:** Drugs such as tocilizumab (anti-IL-6) reduce pro-inflammatory cytokine activity.
- **T-Cell Suppression:** Calcineurin inhibitors like cyclosporine and tacrolimus impede T-cell activation.
- **B-Cell Depletion:** Agents like rituximab target CD20, reducing B-cell-mediated responses.

6.2 Immunostimulation

Immunostimulatory drugs enhance immune responses to combat infections or malignancies. Mechanisms include:

- **Cytokine Augmentation:** Interleukin-2 (IL-2) therapy promotes T-cell proliferation.
- **Immune Checkpoint Inhibition:** Drugs like pembrolizumab block PD-1, reactivating T-cells against tumors.

6.3 Targeted Therapies Advances in molecular biology have enabled precise immune modulation through monoclonal antibodies, CAR-T cells, and small-molecule inhibitors. These therapies offer specificity and reduced off-target effects.

7. Applications in Clinical Practice

7.1 Autoimmune Diseases

- **Rheumatoid Arthritis:** TNF- α inhibitors (e.g., etanercept) have revolutionized treatment paradigms.
- **Systemic Lupus Erythematosus (SLE):** Belimumab, an anti-BAFF monoclonal antibody, is a notable advancement.

7.2 Cancer Immunotherapy

- **Checkpoint Inhibitors:** Anti-PD-1 and anti-CTLA-4 therapies enhance anti-tumor immunity.
- **Adoptive Cell Transfer:** CAR-T cell therapy is effective against hematological malignancies.

7.3 Infectious Diseases

- **Vaccines:** mRNA-based vaccines (e.g., COVID-19 vaccines) represent a leap in immune priming technologies.
- **Immunoglobulins:** Passive immunization through monoclonal antibodies, such as palivizumab for RSV, is an established practice.

7.4 Transplantation Immunosuppressive regimens, combining drugs like mycophenolate mofetil, tacrolimus, and steroids, minimize graft rejection while preserving recipient health.

8. Challenges in Immune Modulation

8.1 Adverse Effects Immune modulation can lead to unintended consequences, such as:

- **Immunosuppression-Induced Infections:** Increased susceptibility to opportunistic infections.
- **Autoimmunity:** Immune checkpoint inhibitors may trigger autoimmune-like syndromes.

8.2 Drug Resistance Prolonged use of immunomodulatory agents may induce tolerance or resistance, necessitating novel approaches.

8.3 Personalized Medicine Individual variability in immune responses underscores the need for biomarkers to predict therapeutic efficacy and safety.

9. Future Perspectives.

9.1 Nanotechnology Nanocarriers offer targeted drug delivery, reducing systemic toxicity and improving therapeutic indices.

9.2 Gene Editing CRISPR-Cas9 technology holds promise for precise genetic modulation of immune responses.

9.3 Systems Immunology Integrating omics technologies (genomics, proteomics, and metabolomics) will enhance understanding and manipulation of immune pathways.

10 Microbiome-Immune Interactions

The human microbiome significantly influences immune responses, and manipulating gut microbiota has emerged as a promising therapeutic strategy. Probiotics, prebiotics, and fecal microbiota transplantation (FMT) are under investigation for treating conditions like inflammatory bowel disease (IBD), multiple sclerosis, and cancer.

11 Immune Tolerance Induction

Developing drugs that induce immune tolerance is a focus in treating autoimmune diseases and preventing transplant rejection. Strategies include:

- **Antigen-Specific Tolerance:** Vaccines delivering disease-specific antigens to retrain the immune system.
- **Regulatory T Cells (Tregs):** Enhancing Tregs via IL-2 derivatives or Treg-adoptive therapy.

12 mRNA Therapeutics Beyond Vaccines

mRNA technology, popularized by COVID-19 vaccines, is being explored for cancer immunotherapy, protein replacement therapies, and autoimmune disease modulation. These therapies can induce specific immune responses with minimal side effects.

13 Bispecific Antibodies (BsAbs)

BsAbs are engineered to bind to two different targets simultaneously, offering advantages in precision therapy.

- **Blincyto (blinatumomab):** A BsAb that connects T-cells and tumor cells to mediate cytotoxicity in acute lymphoblastic leukemia.

14. Pharmacological Tools for Immune Modulation

14.1 Cytokine Modulators

- **Anti-TNF Agents:** Used in rheumatoid arthritis, Crohn's disease, and psoriasis.\n
- **IL-17 Blockers:** Emerging treatments for psoriasis and ankylosing spondylitis.

14.2 Complement System Modulators

The complement system plays a crucial role in innate immunity, but its overactivation can lead to tissue damage. Drugs like eculizumab (a C5 inhibitor) are game-changers in diseases like paroxysmal nocturnal hemoglobinuria (PNH).

14.3 Small Molecule Modulators

Small molecules targeting signaling pathways, such as JAK-STAT inhibitors (e.g., tofacitinib), are effective in modulating immune responses in autoimmune diseases.

15. Challenges in the Development of Immunomodulatory Drugs

15.1 Heterogeneity of Immune Responses

Individual immune systems vary due to genetics, microbiome composition, and environmental exposures. This variability complicates predicting drug efficacy and safety.

15.2 Off-Target Effects

Many immunomodulatory drugs, despite targeting specific pathways, can affect other immune processes, leading to unintended consequences.

15.3 Monitoring and Biomarkers

Accurate biomarkers are essential for monitoring immune responses and guiding therapy. For instance, PD-L1 expression is used to predict responses to checkpoint inhibitors, but its accuracy is inconsistent.

16. Recent Breakthroughs in Immune Modulation

16.1 Checkpoint Blockade Therapy

Checkpoint inhibitors have expanded beyond melanoma to treat lung, renal, and bladder cancers. Dual blockade strategies, combining anti-PD-1 and anti-CTLA-4, are showing promise in clinical trials.

16.2 CAR-NK Therapy

While CAR-T cells dominate adoptive cell therapy, CAR-engineered natural killer (NK) cells are gaining attention for their safety and scalability in cancer treatment.

16.3 Immune Modulation in Neurological Disorders

Therapies targeting microglial activation and neuroinflammation are under exploration for conditions like Alzheimer's disease and multiple sclerosis.

16.3 Ethical and Regulatory Considerations

16.4 Access to Immunotherapy

The high cost of advanced immunotherapies like CAR-T cells poses challenges in accessibility and equity.

16.5 Long-Term Safety

As immune modulators can alter fundamental immune pathways, their long-term effects on infection risk, malignancy development, and autoimmunity require careful surveillance.

Conclusion:

Immunomodulation is a challenging branch of medical science, and with the steady improvements in drug design, immunomodulators have become more selective and attenuate the side effects of novel pharmacological treatments. There are limitations in improving manufacturing capabilities: chemical formulation and delivery mechanisms of recently designed highly selective molecules to be safer and more efficacious therapeutic compounds. As in the case of treating diseases in general, these substantive advances need to be combined with a more judicious selection of disease indications and better-validated intervention pathways. In summary, introducing new therapeutic approaches to treating inflammatory and autoimmune diseases requires ongoing collaboration between clinics and basic research to better understand the complex interactions between individual components of the immune system to identify potentially new targets for more specific therapeutic interventions.

Immune modulation in drug therapy is a dynamic field with profound implications for treating a wide array of diseases. While challenges persist, advances in biotechnology and molecular medicine promise more effective and personalized approaches. Interdisciplinary collaboration and continued research will be pivotal in harnessing the full potential of immune modulation.

Reference:

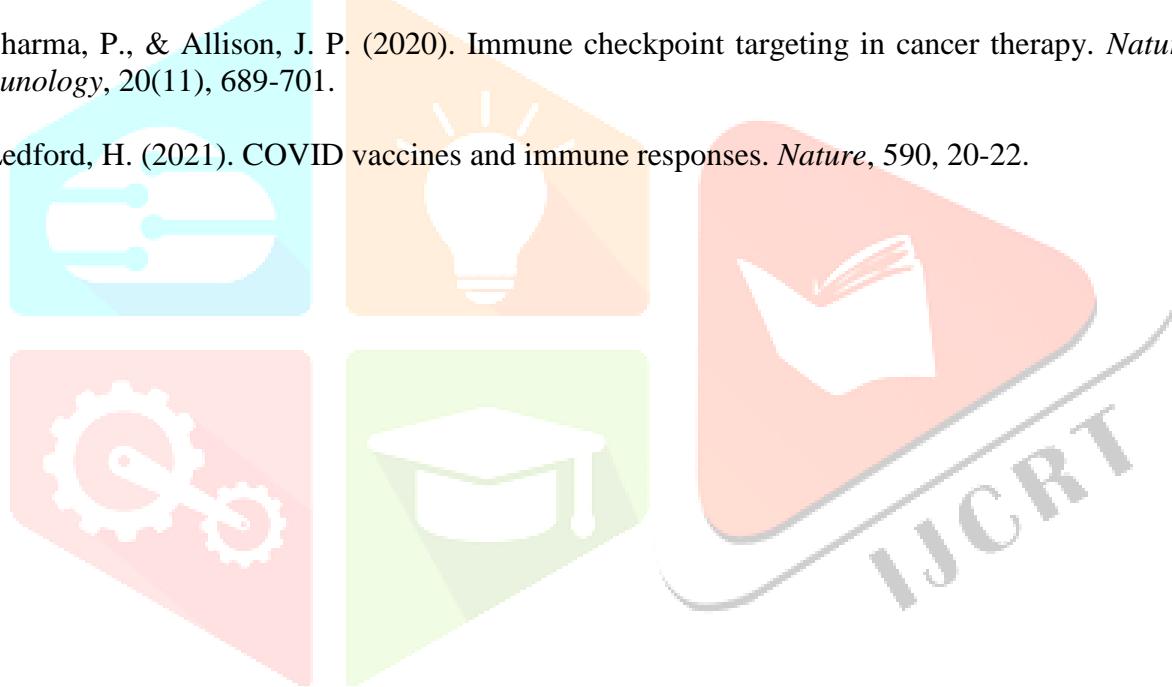
1. Garofalo S, Cocozza G, Porzia A, Inghilleri M, Raspa M, Scavizzi F, et al. Natural killer cells modulate motor neuron-immune cell cross talk in models of amyotrophic lateral sclerosis. *Nat Commun* (2020).
2. Nakajima Y, Chamoto K, Oura T, Honjo T. Critical role of the CD44lowCD62Llow CD8+ T cell subset in restoring antitumor immunity in aged mice. *Proc Natl Acad Sci U S A* (2021).
3. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement dependent manner. *Neuron* (2012).
4. Russo MV, McGavern DB. Inflammatory neuroprotection following traumatic brain injury. *Science* (2016).
5. Brás JP, Bravo J, Freitas J, Barbosa MA, Santos SG, Summaville T, et al. TNF alpha-induced microglia activation requires miR-342: impact on NF-κB signaling and neurotoxicity. *Cell Death Dis* (2020).
6. Heneka MT, Carson MJ, Khoury JEL, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer's disease. *Lancet Neurol* (2015).
7. Avorn J. Learning about the Safety of Drugs. A Half-Century of Evolution. *N Engl J Med*. 2011;365:2151-3.

8. Asherson RA, Gunter K, Daya D, Shoenfeld Y. Multiple Autoimmune Diseases in a Young Woman: Tuberculosis and Splenectomy as Possible Triggering Factors? Another Example of the “Mosaic” of Autoimmunity. *J Rheumatol*. 2008.

9. Chan LS. Ocular and oral mucous membrane pemphigoid (cicatricial pemphigoid). *Clin Dermatol*. 2012.

10. Carsons SE. Issues Related to Clinical Trials of Oral and Biologic Disease-Modifying Agents for Sjögren’s Syndrome. *Rheum Dis Clin North Am*. 2008.

11. Lee SJ, Chinen J, Kavanaugh A. Immunomodulator therapy: monoclonal antibodies, fusion proteins, cytokines, and immunoglobulins. *J Allergy Clin Immunol*. 2010.


12. Preiss JC, Zeitz M. Use of methotrexate in patients with inflammatory bowel diseases. *Clin Exp Rheumatol*. 2010.

13. Keystone EC. Does Anti-Tumor Necrosis Factor- α Therapy Affect Risk of Serious Infection and Cancer in Patients with Rheumatoid Arthritis? A Review of Longterm Data. *J Rheumatol*. 2011.

14. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2021). *Cellular and Molecular Immunology*. Elsevier.

15. Sharma, P., & Allison, J. P. (2020). Immune checkpoint targeting in cancer therapy. *Nature Reviews Immunology*, 20(11), 689-701.

16. Ledford, H. (2021). COVID vaccines and immune responses. *Nature*, 590, 20-22.

