

Review Article: Local Anaesthetics

1Dr. Varsha S. Dudhe, 2Tanaya D. Chandekar, 3Khushbu K. Choudhary, 4Hruttuja D. Gangane,
5Radhika L. Ghumade

1Assistant Professor, 2B.Pharmacy, 3 B. Pharmacy, 4 B. Pharmacy, 5 B. Pharmacy

1DBATU- Lonere,

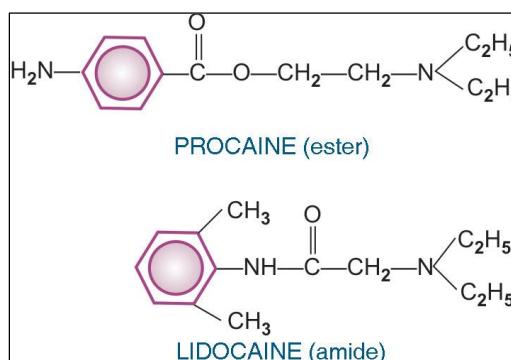
2DBATU- Lonere,

3DBATU- Lonere,

4DBATU- Lonere,

5DBATU- Lonere

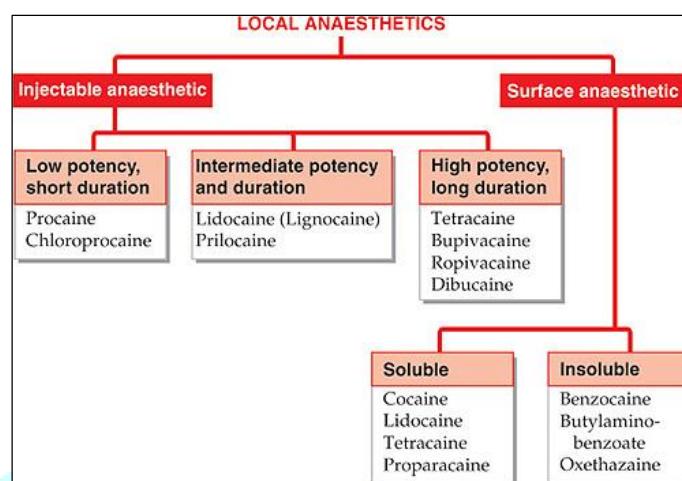
ABSTRACT:


Local anesthetics (LAs) are commonly used in emergency medicine to provide immediate pain relief for minor injuries, wound suturing, or during the reduction of dislocations. Unlike general anesthesia, which causes unconsciousness by eliminating all sensation throughout the body, LAs cause only the absence of all sensation, including pain, in a particular body part without causing loss of consciousness. This review summarizes the most commonly used LAs and discusses the current state of the art of LAs.

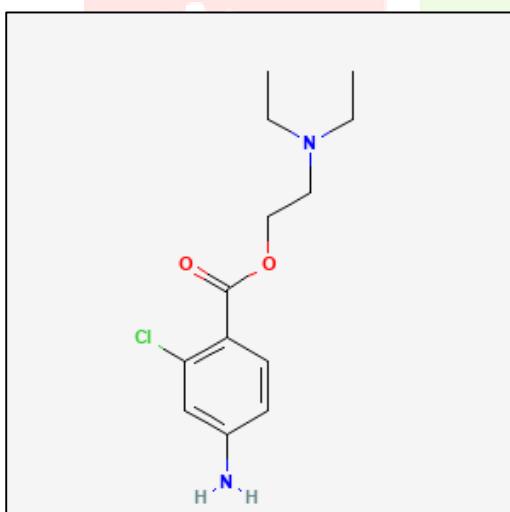
Keywords: Local anesthetics, Pharmacology, Drug toxicity.

Introduction

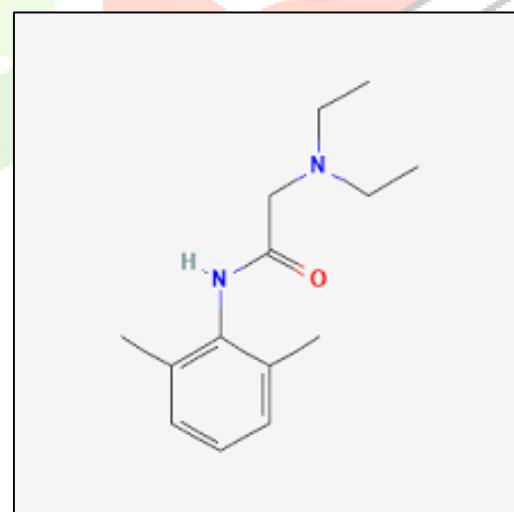
Unlike general anesthetics, which cause unconsciousness by eliminating all sensation throughout the body, **local anesthetics (LAs)** cause only the absence of all sensation, including pain, in a particular body part without causing loss of consciousness. The most popular use of local anaesthetics is to reduce pain during or pursuing surgery. It can also cause paralysis, or the loss of muscle function, when applied to specific nerve pathways (local anesthetic nerve block).


The therapeutically beneficial LAs have amphiphilic properties and are weak bases. An ester or amide linkage connects a lipophilic aromatic residue to a hydrophilic secondary or tertiary amine on one side and an alkyl chain on the other.

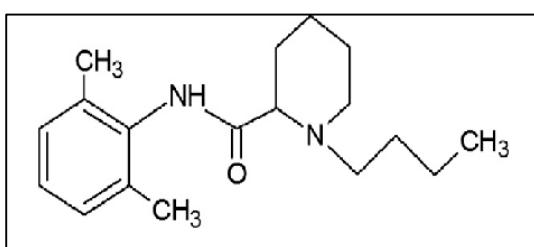
Ester-linked LAs: Cocaine, procaine, chloroprocaine, tetracaine, benzocaine.

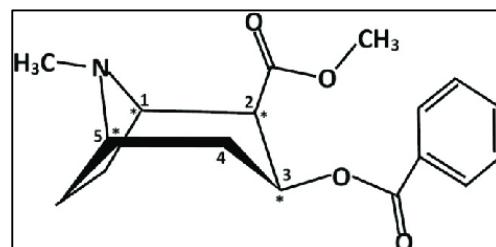

Amide-linked LAs: Lidocaine, bupivacaine, dibucaine, prilocaine, ropivacaine.

Classification



Local anesthetics that are occasionally used in some nations include Mepivacaine, Etidocaine, Proparacaine, Articaine, and Dyclonine.


Although they have strong LA activity, some medications—such as quinine, propranolol, chlorpromazine, and H1 antihistaminics—are not used for this reason due to their strong systemic activity or local irritation. It is also possible to create local anesthesia by cooling, such as by using ice, CO₂ snow, or ethyl chloride spray.


Chloroprocaine

Lidocaine

Bupivacaine

Cocaine

Table 1 Physicochemical characteristics of local anaesthetics.³⁻⁵ MW, molecular weight

	Structural classification	MW	pKa	Protein binding (%)	Partition coefficient	Onset	Elimination half-life (min)	Maximum dose without vasoconstrictor (mg kg ⁻¹)	Maximum dose with vasoconstrictor (mg kg ⁻¹)
Cocaine	Ester	311	8.6	95	—	Fast	100	1.5 (topical)	—
Chloroprocaine	Ester	271	9.1	—	17	Fast	6	11	14
Prilocaine	Ester	220	7.7	55	50	Fast	100	6	8
Lidocaine	Amide	234	7.8	70	110	Fast	100	3	7*
Mepivacaine	Amide	246	7.7	77	42	Fast	115	5	7
Bupivacaine	Amide	288	8.1	95	560	Moderate	210	2	2
Ropivacaine	Amide	274	8.1	94	230	Moderate	120	3	3
Levobupivacaine	Amide	288	8.1	95	—	Moderate	210	2	2

History

Cocaine was first anaesthetic to be discovered and is the only naturally occurring local anaesthetic.

In Peru, the ancient Incas are believed to have used the leaves of the coca plant as a local anesthetic in addition to its stimulant properties.

A graduate student in Vienna Sigmund Freud used cocaine by "self-experimentation" on his oral mucosa prior to subjecting it to research involving humans or animals. He was surprised to find that it had a very numbing effect on his tongue. He published the paper "Uber Cocaine" in 1884. Freud suggested using it in the paper to treat morphine addiction as well as a number of other symptoms, such as headaches and fatigue.

Austrian Koller in 1884 performed the first clinical procedure using local anesthesia by administrating cocaine to the eye.

In 1885, two American physicians, Dr. Halsted and Dr. Hall, described an intraoral anaesthetic method that involved using 4% cocaine to block the antero-superior dental nerve and the inferior alveolar nerve.

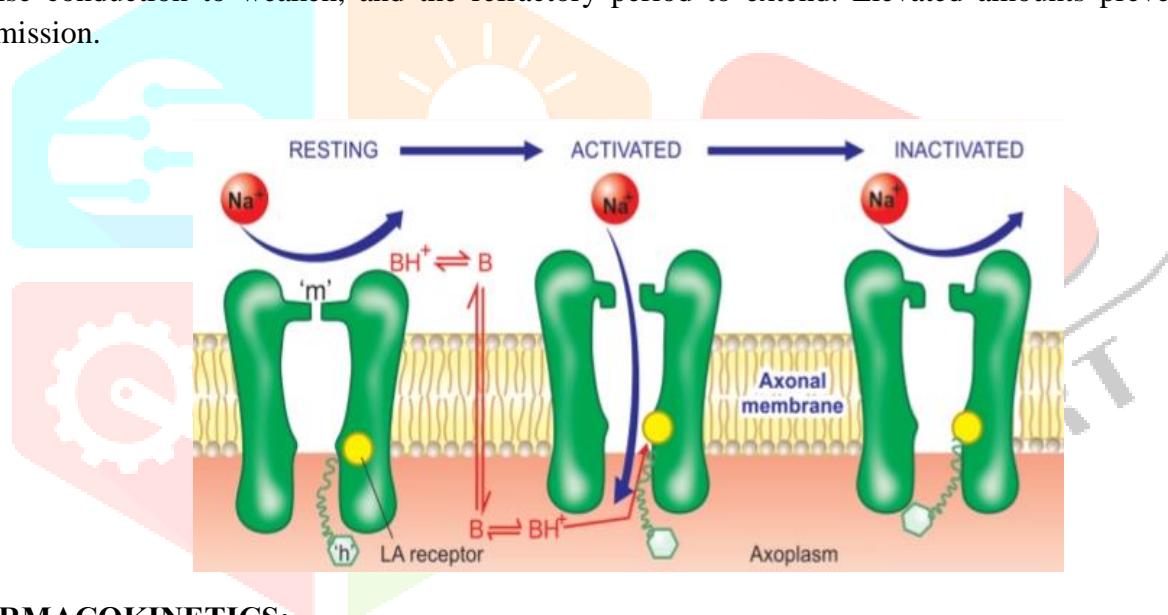
One of the initial steps toward developing a safer local anaesthetic was taken in 1903 by German surgeon Heinrich Braun.

Braun added adrenal hormone to a cocaine solution because he was aware that the glands' byproducts, such as epinephrine, cause vasoconstriction. He then administered a long-lasting anaesthetic that was limited to his arm by injecting the new solution into it.

Systemic anaesthetic diffusion was prevented by the epinephrine-induced vasoconstriction. As an anaesthetic solution, this formula is in use right now.

Before the advancement of modern organic chemistry resulted in the synthesis of pure cocaine in 1891, local anesthesia was experiencing a severe crisis. Between 1891 and 1930, several new amino ester local anesthetics were created, including tetracaine, Holocaine, eucaine, orthoform, and benzocaine.

In 1904 Procaine was created by Alfred Einhorn and Alfred von Bayer and was the first synthetic analog of cocaine.

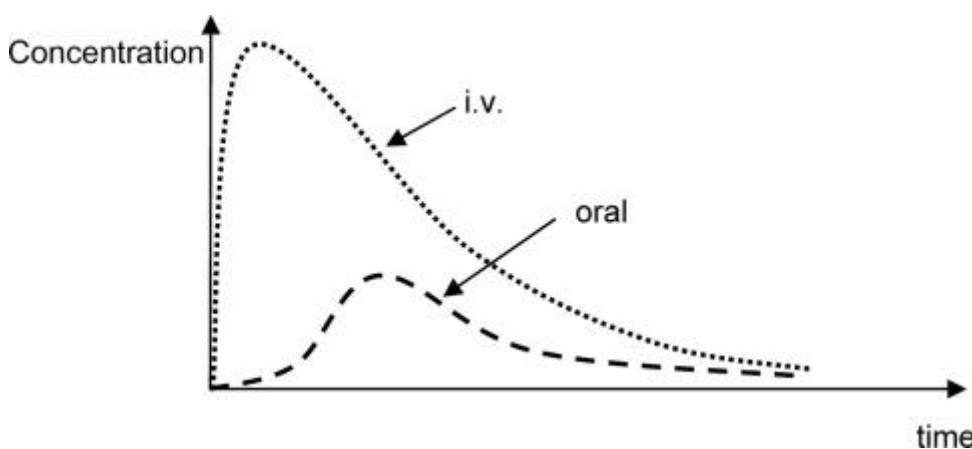

The most recent significant invention was Lidocaine, which was released onto the market in 1949 by the Swedish pharmaceutical company Astra. The first readily available non-ester local anesthetic was lidocaine, sometimes referred to as Xylocaine.

Despite producing an even deeper level of anesthesia than procaine lidocaine turned out to have even fewer adverse effects. It is currently among the most often utilized local anesthetics.

August Bier released the first description of intravenous regional anesthesia in 1908. This technique, which is still in use, is remarkably safe when implemented to low-systemic-toxicity drugs such as prilocaine.

MECHANISM OF ACTION:

Local anesthetics generate anesthesia by decreasing nerve ending stimulation or preventing peripheral nerve transmission. This is accomplished by anesthetics reversibly binding to and deactivating sodium channels. Lipophilic, unionised local anesthetic molecules pass through the phospholipid neuronal membrane. The molecules dissociate to form a new balance of ionized and un-ionised moieties, which is determined by the intracellular pH and the pKa of the local anesthetic. The ionized form binds to voltage-gated Na^+ channels in a reversible and concentration-dependent way. The binding site for local anaesthetics lies in domain IV, loop S6, and can only be accessed when the channel is open. Local anaesthetics become more effective at opening Na^+ channels when neuronal depolarization frequency increases. This is called a use-dependent or phasic block. This effect is amplified by the dose-dependent blocking of potassium channels. Large A fibers send motor impulses, while small unmyelinated C fibers and small myelinated A fibers transmit pain signals. The majority of local anesthetics block C fibers at a rate that is approximately constant, but the physicochemical characteristics of each medication—such as its high pKa and limited lipid solubility—determine how quickly A fibers are blocked. Rather of acting on $\text{A}\beta$ fibers, which are linked to motor function, they specifically target $\text{A}\delta$ and C nerves, which transmit pain. A bound local anesthetic stabilizes the state of the inactivated receptor, inhibiting subsequent neural transmission. The effects of local anesthetic nerve block vary on concentration. Higher local anesthetic concentrations cause the action potential peak to decrease, the firing threshold to rise, impulse conduction to weaken, and the refractory period to extend. Elevated amounts prevent all nerve transmission.



PHARMACOKINETICS:

ABSORPTION:

The site, rate, dosage, and vasoactivity of the injectate all affect how well local anesthetics are absorbed. The maximum absorption is usually associated with intrapleural block, and the lowest absorption is usually associated to subcutaneous infiltration. Following a single dose, the following is the order of peak plasma concentration: intrapleural > intercostal > lumbar epidural > brachial plexus > subcutaneous > sciatic > femoral.

Drugs administered by gastrointestinal (GI) routes must pass through the intestinal wall. Surface area, pH, and sometimes active systems of medications all affect how quickly pharmaceuticals are absorbed. Unionized medicines, like ethanol, are generally well absorbed throughout the intestine; a low pH facilitates the absorption of weak bases, like morphine, and a high pH facilitates the absorption of weak acids, like aspirin. In the case of medications like glycopyrrolate that stay fully ionized throughout the intestines, passive GI absorption is minimal.

DISTRIBUTION:

When a drug is administered intravenously, the dose, the rate of administration, and the cardiac output all affect the drug's peak blood concentration. A higher effective blood volume in which the drug is first diluted results in a lower peak concentration when cardiac output is high. Nonetheless, the medication is rapidly transported to the vessel-rich tissues (such as the brain) by the high cardiac output, and for pharmaceuticals that are very lipid-soluble, this rapid equilibration results in a prompt commencement of action. This is explained more by the large blood supply than by the lipid solubility.

In contrast, a low heart rate results in a higher peak concentration because the drug is combined with a smaller amount of blood during injection. However, it will take longer for the drug to reach the target site. This is why an elderly patient or a shocked patient may need a lower dose of induction agent, but may experience a slower onset of effects. A young patient may need a much higher dose, but will experience the effects more quickly.

Even though they get a smaller percentage of the cardiac output, other tissues may nevertheless have a strong affinity for the medication and can only absorb it gradually. But as they do, the drug's concentration in the blood drops and eventually falls below that in the brain, at which point it leaves the brain and is transferred to other tissues. This redistribution, known as the α phase, accounts for the quick loss of efficacy of lipid-soluble medications like thiopental or propofol after a bolus dosage. The concentration differential between compartments decreases and the rate of redistribution slows in an exponentially decreasing manner as the less well-perfused tissues accumulate more medication. Additionally, if more medication is administered, this slows down the redistribution, so successive doses should be given accordingly.

METABOLISM:

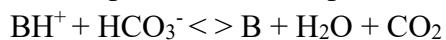
The metabolism and allergenic potential of ester and amide local anesthetic drugs vary. Pseudocholemyrase quickly hydrolyzes esters in plasma to produce the metabolite para-aminobenzoic acid (PABA), which may trigger an allergic response. The half-life of plasma varies and can be extended in the presence of atypical cholinesterase, ranging from less than 1 minute for chloroprocaine to 8 minutes for tetracaine. Unlike other esters, cocaine is hydrolyzed in the liver and then excreted by the kidneys. In the liver, amide local anesthetics are aromatically hydroxylated, hydrolyzed, and N-dealkylated. Amide metabolism is much slower than plasma hydrolysis, hence amide local anaesthetics are more likely to accumulate in the context of hepatic dysfunction or decreased hepatic blood flow. Prilocaine is metabolized in the lungs. Amides have a very minimal allergenic potential, and any observed sensitivity could be caused by an addition like the stabilizing chemical methylparaben. In addition, sensitivity to vasoconstrictor adjuvants may be misinterpreted as allergy.

EXCRETION:

While the majority of drugs are eliminated by the kidneys, large molecular weight pharmaceuticals are frequently eliminated in the bile. Lipid-soluble medications must be converted into a polar, water-soluble form before the kidneys can handle them. There are two main phases to this metabolism: Phase 1 and Phase 2 reactions, which take place mostly in the liver. Phase 1 reactions comprise hydrolysis, reduction, and oxidation; Phase 2 reactions involve conjugating the resultant metabolites with glucuronide, sulfate, or other groups.

As the downstream end of the gradient stays at zero, the rate of elimination for the majority of drugs declines exponentially and is proportionate to the plasma concentration. First-order kinetics describes this system, in which the amount of medication being eliminated is a constant fraction in unit time rather than a constant amount.

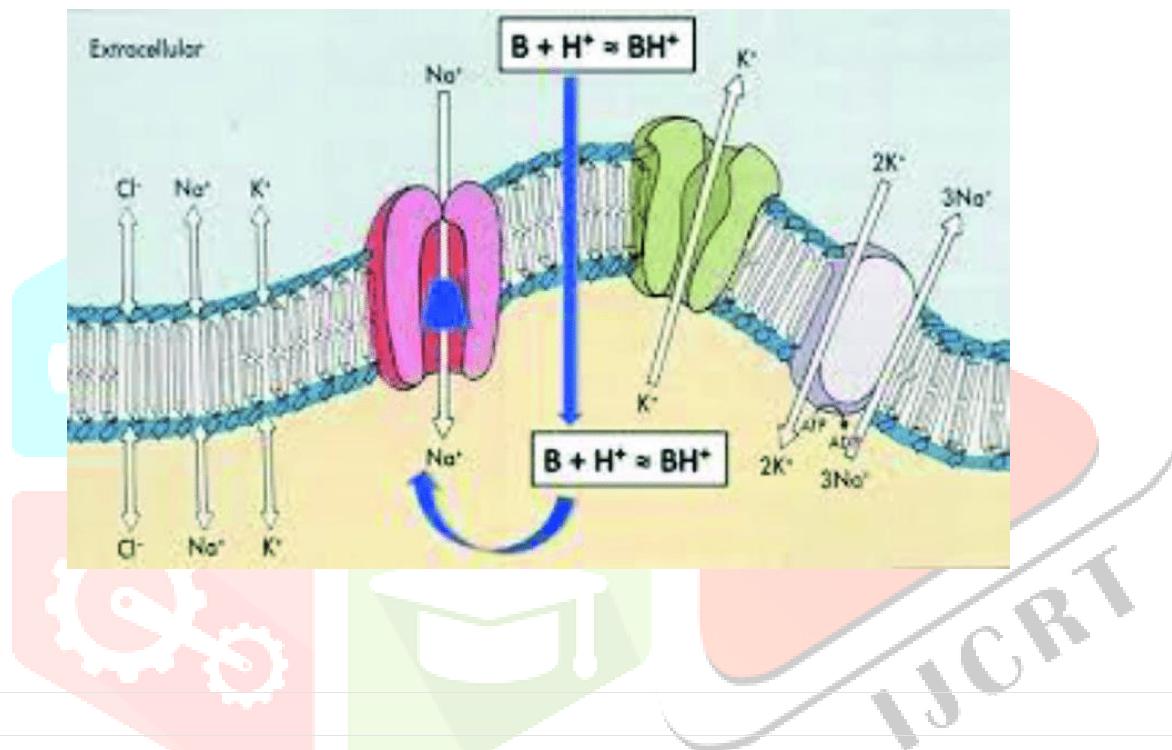
Elimination of some drugs may be reliant on the activity of transporters or an enzyme that can get saturated. Elimination becomes constant after the relevant blood concentration is reached and is capped at a maximum amount in a certain amount of time.


Due to the low renal excretion of unaltered drugs, clearance numbers and elimination half-times for amide local anesthetics primarily reflect hepatic metabolism. Metabolite accumulation is a possible side effect of renal failure. Lidocaine has a high hepatic extraction ratio, meaning that variations in hepatic enzyme activity have little effect on its clearance, which is reliant on hepatic blood flow. Hepatic perfusion is the rate-limiting stage because of the drug's effectiveness in separating from plasma proteins, entering the hepatocyte, and passing through metabolism. This is crucial in cases of critical disease, especially when there is a decrease in hepatic blood flow and cardiac output.

Pharmacodynamics effects of local anaesthesia

Tertiary amine bases (B), which are supplied as hydrochloride salts (B.HCL), make up the majority of LA medications. Their readily disband to pattern acidic solutions in this way:

Following tissue penetration, the extracellular fluid's pH causes a ratio of the protonated basic pattern (BH^+) to change to the unprotonated basic pattern (B):


The unprotonated pattern B is the only one that can pass through the neurilemmal membrane, seize H^+ in the neuroplasm, and approach its site of action in the open Na^+ channel to cause blockade. In order to recruit H^+ into the Na^+ channel, the unprotonated pattern B may further penetrate straight through the neurilemma to the Na^+ channel.

It can cause puffiness in the lipoprotein matrix of the Na^+ channel and cause blockade by membrane expansion (ME) (e.g., benzocaine). Saxitoxin and tetrodotoxin directly obstruct the Na^+ channel from the membrane's outside, near the external pore.

Since action potentials and local anesthesia have an inverse relationship, the voltage-gated Na^+ channel—the main target of LAs—is what causes action potentials in excitable membranes [13]. Although their interactions with K^+ and Ca^{2+} channels are limited at these sites, LAs also interact with a wide variety of other ion channel types. With the exception of extremely high concentrations, they do not significantly change the neuronal

resting potential. Similarly, even though the gears of depolarization and repolarization are weakened and conduction velocity is decreased, they do not alter the threshold potential required for impulse spread and may have unfavorable side effects. It is generally accepted that the toxic effects of bupivacaine on the heart are partially related to its effects on K^+ and Ca^{2+} channels.

Different isoforms of mammalian voltage-gated Na^+ channels are found in excitable tissues like cardiac tissues, skeletal muscles, the central nervous system (CNS), and the peripheral nervous system (PNS) [14]. Furthermore, the CNS and PNS contain several major isoforms of these neuronal Na^+ channels; some are resistant to tetrodotoxin (TTX), while others are sensitive to it. Potent naturally occurring neurotoxin known as tetrodotoxin (TTX) was isolated from puffer fish and has been linked to both human intoxications and deaths. Its typical mode of toxicity is through consumption of tainted puffer fish, which are highly prized in Japanese cuisine. A useful technique for identifying different neuronal Na^+ channel isoforms is TTX.

Uses

- Dental Procedures:** Local anesthetics are often used by dentists to numb the mouth and surrounding areas during procedures such as fillings, root canals, and tooth extractions.
- Minor Surgeries:** Local anesthetics can be applied topically or injected to numb the skin and underlying tissues for minor surgical procedures, such as skin biopsies, mole removals, or minor plastic surgeries.
- Labor and Delivery:** Local anesthetics, particularly epidural anesthesia, are commonly used during labor and delivery to relieve pain in the lower body while allowing the mother to remain awake and alert.
- Pain Management:** Local anesthetics may be injected into specific areas, such as joints or nerves, to provide pain relief for conditions like arthritis, chronic pain syndromes, or nerve injuries.
- Regional Anesthesia:** Local anesthetics can be used for regional anesthesia to block sensation in larger areas of the body, such as limbs or the lower half of the body, for surgeries like joint replacements or cesarean sections.
- Diagnostic Procedures:** Local anesthetics are used to numb the skin or mucous membranes during diagnostic procedures such as biopsies, endoscopies, or lumbar punctures.

7. **Eye Procedures:** Local anesthetics are used in ophthalmology for procedures such as cataract surgery, corneal transplants, or removal of foreign bodies from the eye.
8. **Pain Relief in Emergency Medicine:** Local anesthetics may be used in emergency medicine to provide immediate pain relief for minor injuries, wound suturing, or during the reduction of dislocations.
9. **Nerve Blocks:** Local anesthetics can be administered directly into specific nerves or nerve plexuses to block pain sensation in a particular region of the body, such as for chronic pain management or during surgery.
10. **Cosmetic Procedures:** Local anesthetics are used in cosmetic procedures such as Botox injections, dermal fillers, and laser treatments to minimize discomfort during the procedure.

It's important to note that while local anesthetics provide temporary pain relief and numbness, they do not eliminate the sensation of pressure or discomfort, and they carry potential risks and side effects, such as allergic reactions, nerve damage, or toxicity if used improperly. Therefore, they should only be administered by trained healthcare professionals in appropriate clinical settings.

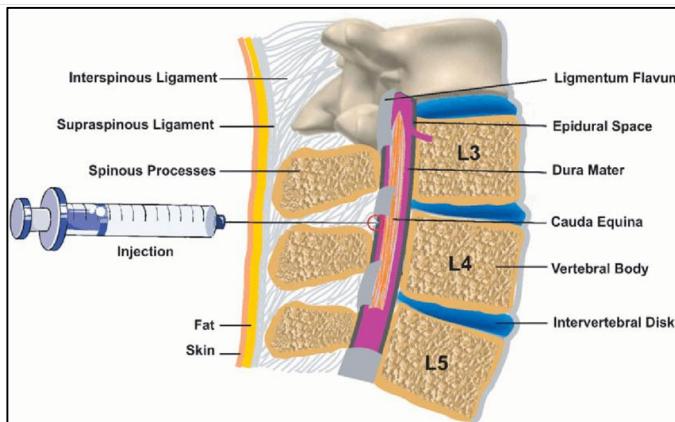
Administration

Local anesthetic administration involves the use of medication to numb a specific area of the body, typically for medical procedures or pain management. Here's an overview of how local anesthetics are administered:

1. Administration: Topical

- Topical local anesthetics are applied directly to the skin or mucous membranes to numb the surface area. They come in the form of creams, gels, sprays, or patches. Common examples include lidocaine and benzocaine.

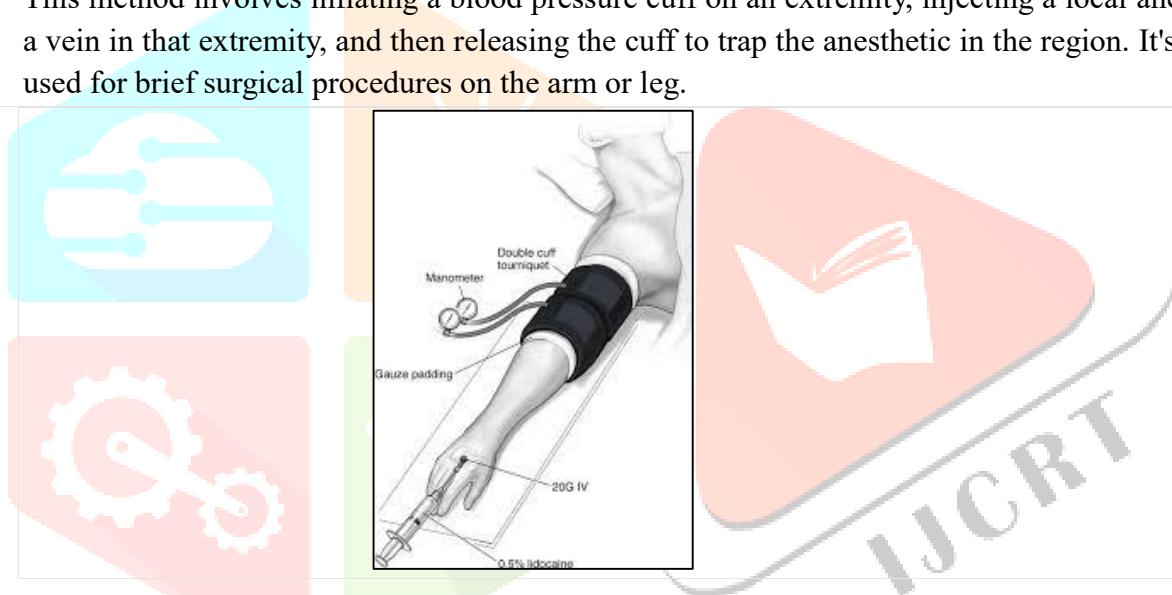
2. Infiltration Injection:


- Infiltration involves injecting the local anesthetic directly into the tissue around the area requiring anesthesia. This method is commonly used for minor surgical procedures, dental work, or suturing wounds. The anesthetic is typically injected using a syringe and a fine needle.

3. Nerve Block:

- Nerve blocks involve injecting the local anesthetic near specific nerves to block sensation to a larger area of the body supplied by those nerves. This method is used for procedures such as joint surgeries, limb surgeries, or childbirth. Examples include epidural anesthesia for childbirth and brachial plexus block for arm surgeries.

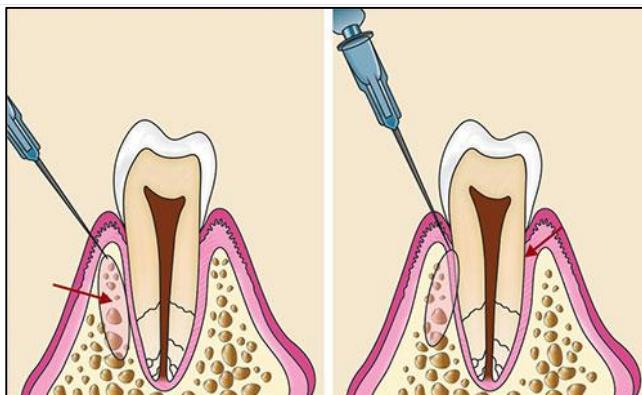
4. Regional Anesthesia:


- Similar to nerve blocks, regional anesthesia involves injecting the local anesthetic near clusters of nerves (plexuses) that supply a particular region of the body. This method provides anesthesia to a larger area than a single nerve block. Examples include spinal anesthesia and epidural anesthesia.

Regional Anaesthesia | Local Anaesthetics | Geeky Medics

5. Intravenous Regional Anesthesia (Bier Block):

- This method involves inflating a blood pressure cuff on an extremity, injecting a local anesthetic into a vein in that extremity, and then releasing the cuff to trap the anesthetic in the region. It's commonly used for brief surgical procedures on the arm or leg.



6. Intravenous Regional Anesthesia (IVRA):

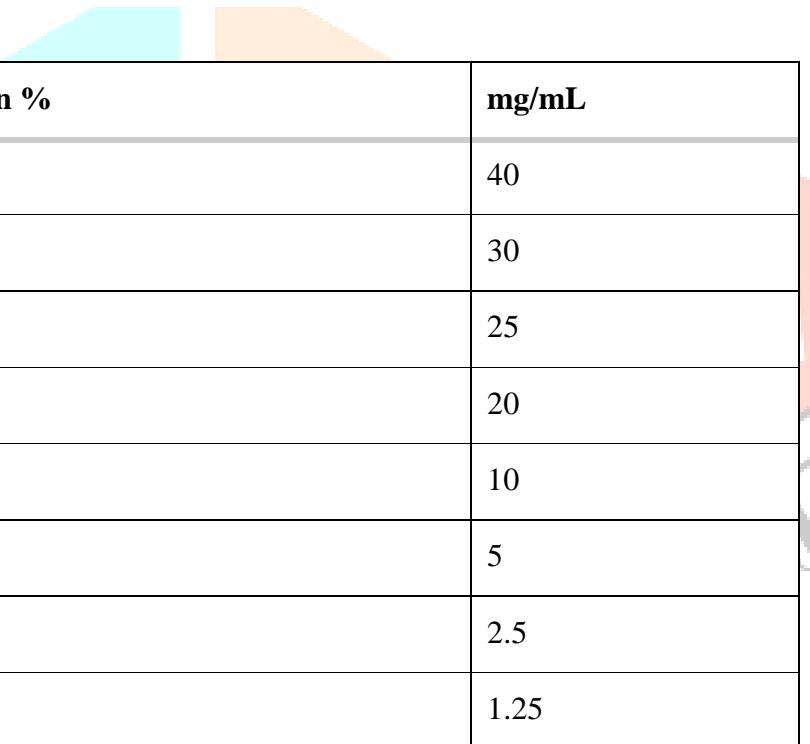
- Also known as a Bier block, this technique involves injecting a local anesthetic into a vein in an extremity while using a tourniquet to prevent its systemic absorption. It provides anesthesia for procedures on the hand or forearm.

7. Dental Anesthesia:

- Local anesthetics are commonly used in dentistry for procedures such as fillings, root canals, and tooth extractions. They are typically administered via infiltration injections or nerve blocks in the mouth.

Local anesthetics work by blocking the transmission of nerve signals in the area where they are applied or injected, thereby preventing the sensation of pain. The choice of administration method depends on factors such as the type of procedure, the location of the area requiring anesthesia, and the patient's medical history and preferences.

Dosage


Drug	Onset	Maximum Dose (with Epinephrine)	Duration (with Epinephrine)
Lidocaine	Rapid	4.5 mg/kg (7mg/kg)	120 min (240 min)
Mepivacaine	Rapid	5mg/kg(7mg/kg)	180 min (360min)
Bupivacaine Ropivacaine Levobupivacaine	Slow Medium Medium	2.5 mg/kg (3 mg/kg) 2-3 mg/kg 2.0 mg/kg or 400mg in 24 hrs	4 hours (8 h) 3 hours (6h) 4-6 hours (8-12h)
Procaine	Slow	8 mg/kg (10 mg/kg)	45 min (90 min)
Chloroprocaine	Rapid	10 mg/kg (15 mg/kg)	30 min (90 min)
Etidocaine	Rapid	2.5 mg/kg (4 mg/kg)	4 hours (8 h)
Prilocaine	Medium	5 mg/kg (7.5 mg/kg)	90 min (360 min)
Tetracaine	Slow	1.5 mg/kg (2.5 mg/kg)	3 hours (10 h)

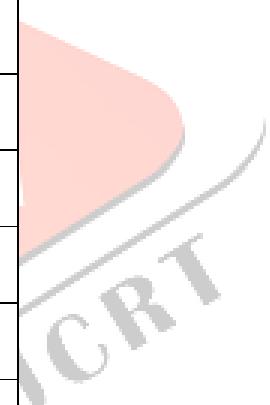
Example calculation - Lidocaine when administered without vasoconstriction

- Total dose that can be used
 - Maximum dose of lidocaine (plain, without vasoconstrictor) is 4.5 mg/kg (not to exceed 300 mg)
 - Example patient weight - 10 kg
 - Total dose that can be used for this patient = $4.5 \text{ mg/kg} \times 10 \text{ kg} = 45 \text{ mg}$
- Maximum volume of lidocaine administered
 - Depends on concentration (see conversion table below)
 - E.g. for 1% lidocaine: contains *10 mg of lidocaine per 1 mL*
 - Max volume of 1% lidocaine that can be administered to a 10 kg patient = $45 \text{ mg} / 10 \text{ mg/mL} = 4.5 \text{ mL}$

Calculation of Maximum Recommended Dosage:

1. The **concentration** of the local anesthetic should be known.
 - Percent concentration must be converted to concentration of drug (mg/mL) as follows (table modeled from AAP, AAPD, CJ Cote, S Wilson, Work Group on Sedation)

Concentration %	mg/mL
4	40
3	30
2.5	25
2	20
1	10
0.5	5
0.25	2.5
0.125	1.25


2. The **weight** of the patient should be known.

Average Weight of Pediatric Patients

Adapted from the Centers for Disease Control and Prevention Clinical Growth Charts 2001.

Boys:

Age (year)	Mean (kg)	Range - 3% to 97% (kg)
1	10.3	8.4 - 12.7
2	12.7	10.4 - 15.6
3	14.3	11.8 - 17.9
4	16	13 - 21
5	18.5	15 - 24.5
6	21	16.5 - 28
7	23	18 - 31.8
8	25.5	20 - 37
9	28.5	22 - 43
10	32	24 - 49
11	36	26.5 - 56
12	40.5	29 - 63
13	45.5	32.5 - 70
14	51	37 - 76.5
15	56	41.3 - 83
16	61	45.5 - 88.5
17	64.5	49 - 93.5

 The logo for IJCRT (International Journal of Creative Research Thoughts) is a stylized graphic. It features a red and grey swoosh that forms the letters 'IJCRT'. The 'I' is red, the 'J' is grey, and the 'CRT' is a combination of red and grey.

Girls:

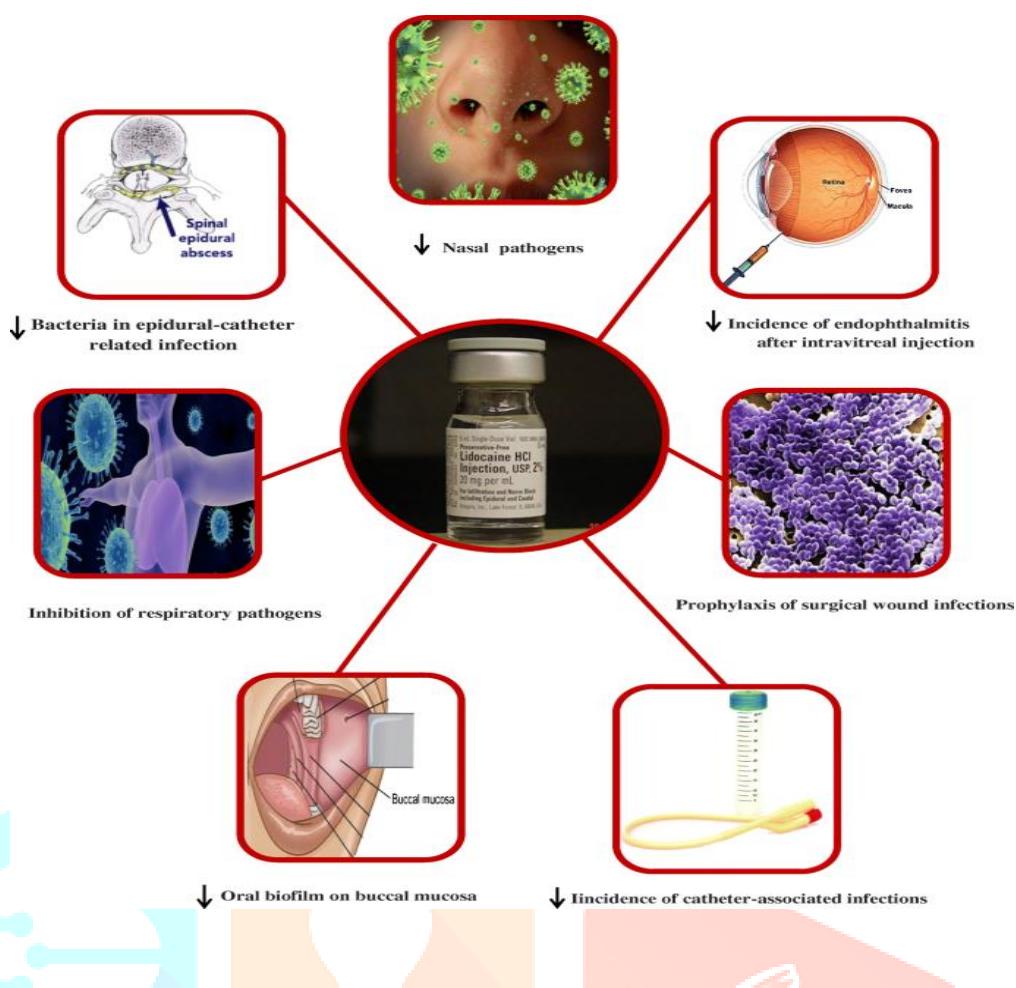
Age (year)	Mean (kg)	Range - 3% to 97% (kg)
1	9.5	7.8 - 11.7
2	12	10.0 - 15.0
3	13.9	11.3 - 17.9
4	16	13 - 21
5	18	14 - 25
6	20	16 - 28.5
7	22.5	17.5 - 33
8	25.5	19.5 - 38.5
9	29	21.5 - 44.5
10	33	24 - 51
11	37	26.5 - 58.5
12	41.5	30 - 65.5
13	46	33 - 72
14	49	36.5 - 77.5
15	52	39.5 - 81.5
16	54	42 - 84.5
17	55	43 - 86

Toxicity**Causes:**

- Accidental rapid intravenous injection.
- Rapid absorption such as from a very vascular site i.e. mucous membrane
- Overdose.

Factors reducing toxicity:

- Choose the amount of local anesthetic concentration needed to complete the block. It is necessary to compute the total volume of medication.
- Use least toxic drug available.
- Use lower doses in frail patients or at the extremes of ages.
- Use a slow, 1 ml/minute injection technique and aspirate frequently to check for blood, which could indicate an unintentional intravenous injection.

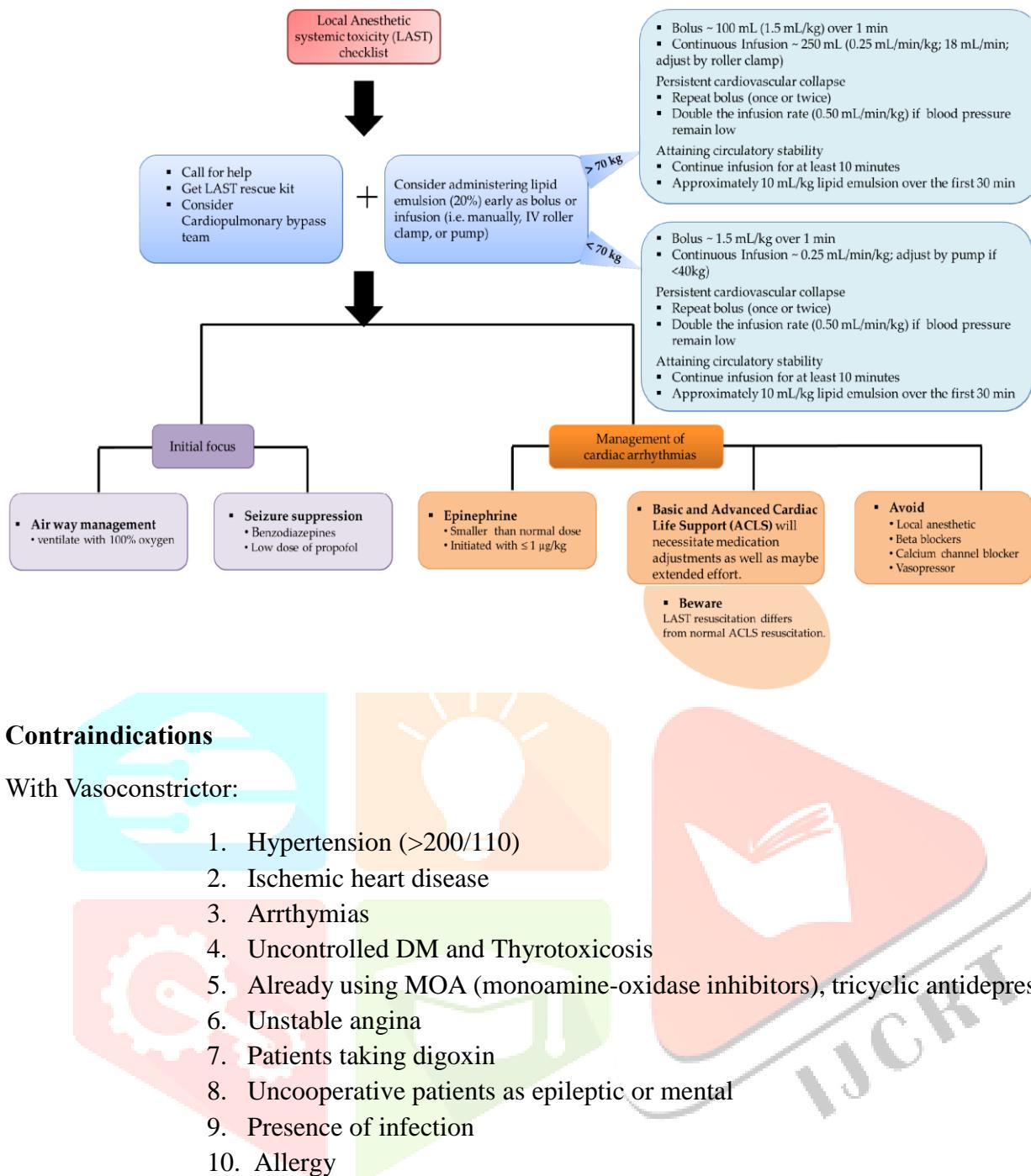

- A test injection of 2-3 ml of an adrenaline-containing local anaesthetic given intravenously will frequently (though not always) result in severe tachycardia.
- Increase the amount of adrenaline to slow down absorption. The maximum blood concentration will drop by roughly 50% when adrenaline is added. Adrenaline is typically added at a ratio of 1:200,000, with a 200-micrograms maximum dosage.

As the local anaesthetic is being administered and after the surgery, make sure the patient is being closely observed by the anaesthetist or a trained nurse.

Adverse Effects

Systemic toxicity <https://www.sciencedirect.com/>

1. While local anaesthetics have the ability to produce anaesthesia of intended nerves and anatomic areas, they are not exempt from Paracelsus' law, 'Only the dose makes the poison'. That is, they too can be toxic in higher doses. When systemic concentrations of circulating local anaesthetic become high enough, there can be unintended and severe consequences which are neuralgic and cardiac in nature.
2. Inhibitory neurons in the nervous system are generally those first affected, which when blocked will produce excitatory symptoms such as visual and sensory disturbances, seizures, and muscle toxicity.
3. As plasma concentrations continue to rise, depressive clinical manifestations begin to appear such as decreased level of consciousness possibly leading to coma and respiratory arrest. Following increased plasma concentration leading to adverse neurological events, cardiac conditions canaries from heightened concentration of the drug.
4. Local anaesthetics will again act to block sodium channels, but this time in areas of the heart required for propagation of cardiac conduction. A variety of sequelae can manifest from tachyarrhythmias to bradyarrhythmia's, up to the point that plasma levels of the drug will inhibit cardiac function.
5. The best means of avoiding local anaesthetic systemic toxicity is awareness of the patient's weight, the maximum per kilogram (or absolute) dose of the local anaesthetic being avoid systemic concentrations of the drug that could disrupt regular cell membrane function. Included in the Table is a list of the most commonly used local anaesthetics in dentistry as well as their associated maximums that can be administered to patients on a per kilogram basis.
6. In order to determine the maximum dose for a patient, one must simply multiply the patient's weight by the per kilogram maximum specific to the local anaesthetic being used by the dentist.



Despite the best efforts of clinicians, drug errors occur when the patient receives too large a dose of local anaesthetic, or an intravascular administration of local anaesthetic occurs, and the patient demonstrates an abnormal reaction of systemic toxicity despite no pre-existing medical condition,¹⁴ or perhaps the patient had an unknown medical condition that predisposed them to local anaesthetic systemic toxicity (tinnitus, metallic taste, circumoral numbness, altered medical status, slurred speech, hypotension, bradycardia, seizures, ventricular arrhythmias, and cardiac arrest).

The management of local anaesthetic systemic toxicity includes (but is not limited to):

Activating emergency medical services when in an ambulatory location in order to be able to transport and monitor the patient in a tertiary care facility ensuring adequate oxygenation (may include administering supplemental oxygen and/or manual ventilation of the patient) Provided that intravenous access is established and the provider has been trained to administer intravenous rescue medications:

- Administering of intravenous Intralipid 20% (1.5 mL/kg for a child or 100 mL bolus for an adult over 65 kg and a subsequent infusion of 0.25 mL/mh/min or more if hypotension persists) to treat the cardiac aspects of local anaesthetic systemic toxicity.
- Treating seizures, if present (titration of intravenous midazolam beginning with 100 m.

Contraindications

With Vasoconstrictor:

1. Hypertension ($>200/110$)
2. Ischemic heart disease
3. Arrhythmias
4. Uncontrolled DM and Thyrotoxicosis
5. Already using MOA (monoamine-oxidase inhibitors), tricyclic antidepressants (TCAs)
6. Unstable angina
7. Patients taking digoxin
8. Uncooperative patients as epileptic or mental
9. Presence of infection
10. Allergy

CONCLUSION:

Local anesthetics provide a localized absence of sensation, particularly pain, without causing unconsciousness. They work by blocking nerve transmission through sodium channel deactivation, offering a safe and effective method for reducing pain during medical procedures. Understanding the pharmacology of local anesthetic drugs is crucial to their safe administration. Recent advancements in the creation of peripheral analgesics include the use of polymer-based compounds with prolonged slow release as well as toxins.

K D Tripathi pharmacology book

[1]https://en.wikipedia.org/wiki/Local_anesthetic#History Gazourian A (4 April 1985). "Cocaine's use: From the Incas to the U.S." *Boca Raton News*. Retrieved 2 February 2014.

[2]López-Valverde A, de Vicente J, Martínez-Domínguez L, de Diego RG (July 2014). "Local anaesthesia through the action of cocaine, the oral mucosa and the Vienna group". *British Dental Journal*. **217** (1): 41–43. doi:10.1038/sj.bdj.2014.546. PMID 25012333.

[3]<https://pubmed.ncbi.nlm.nih.gov/1895133/#:~:text=Local%20anesthesia%20was%20in%20a,orthoform%2C%20benzocaine%2C%20and%20tetracaine..> Gregory RP, Koutsoubelis G, Kerr RF, Adams CB. Spontaneous intraneurral haematoma of the optic nerve. *J Neurol Neurosurg Psychiatry*. 1991 Jul;54(7):653-4. doi: 10.1136/jnnp.54.7.653-a. PMID: 1895133; PMCID: PMC1014442.

[4]<https://www.ijhns.com/doi/IJHNS/pdf/10.5005/jp-journals-10001-1261> Nathan, John & Asadourian, Lynda & Erlich, Mark. (2016). A Brief History of Local Anesthesia. *International Journal of Head and Neck Surgery*. 7. 29-32. 10.5005/jp-journals-10001-1261

[5]<https://pubchem.ncbi.nlm.nih.gov/compound/Chloroprocaine> PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 8612, Chloroprocaine; [cited 2024 Apr. 15]. Available from: <https://pubchem.ncbi.nlm.nih.gov/compound/Chloroprocaine>

[6]Lidocaine | C14H22N2O | CID 3676 – PubChem National Center for Biotechnology Information. "PubChem Compound Summary for CID 3676, Lidocaine" *PubChem*, <https://pubchem.ncbi.nlm.nih.gov/compound/Lidocaine>. Accessed 15 April, 2024.

[7][Bupivacaine – chemical structure. | Download Scientific Diagram](#) Rogobete, Alexandru & Bedreag, Ovidiu & Sarandan, Mirela & Papurica, Marius & Preda, Gabriela & Dumbuleu, Corina & Corina, Vernic & Stoicescu, Emil & Sandesc, Dorel. (2015). Liposomal bupivacaine - New trends in Anesthesia and Intensive Care Units. *Egyptian Journal of Anaesthesia*. 31. 89-95. 10.1016/j.ejga.2014.12.004.

[8][Structural formula of the cocaine molecule. | Download Scientific Diagram](#)

Amara, Safa & Koslowski, Thorsten & Zaidi, Ali. (2021). Quantum Chemistry of Cocaine and its Isomers I: Energetics, Reactivity and Solvation. *South African Journal of Science*. 75. 18. 10.17159/0379-4350/2021/v75a3.

Img [9] [https://www.bjaed.org/article/S2058-5349\(19\)30152-0/fulltext](https://www.bjaed.org/article/S2058-5349(19)30152-0/fulltext) Taylor A, McLeod G. Basic pharmacology of local anaesthetics. *BJA education*. 2020 Feb 1;20(2):34-41.

[10]<https://emedicine.medscape.com/article/873879-overview?form=fpf#showall>

[11][https://www.bjaed.org/article/S2058-5349\(19\)30152-0/fulltext](https://www.bjaed.org/article/S2058-5349(19)30152-0/fulltext) Taylor A, McLeod G. Basic pharmacology of local anaesthetics. *BJA education*. 2020 Feb 1;20(2):34-41.

[12]https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.researchgate.net/publication/51451731_Ropivacaine_A_review_of_its_pharmacology_and_clinical_use&ved=2ahUKEwjZnM-zqaGFAxVAia8BHWfQBBsQFnoECDsQAO&usg=AOvVaw3guHwe9KBP5u_JGOq4F3Nd

Kuthiala, Gaurav & Chaudhary, Geeta. (2011). Ropivacaine: A review of its pharmacology and clinical use. *Indian journal of anaesthesia*. 55. 104-10. 10.4103/0019-5049.79875.

[13][https://www.bjaed.org/article/S2058-5349\(19\)30152-0/fulltext#secsectitle0025](https://www.bjaed.org/article/S2058-5349(19)30152-0/fulltext#secsectitle0025) Taylor A, McLeod G. Basic pharmacology of local anaesthetics. *BJA education*. 2020 Feb 1;20(2):34-41.

[14][https://www.bjaed.org/article/S1743-1816\(17\)30512-7/fulltext#seccetitle90](https://www.bjaed.org/article/S1743-1816(17)30512-7/fulltext#seccetitle90)

[15]Amino-base free Google. | Download Scientific Diagram

Michel-Levy, Javier. (2020). Pharmacokinetics and Pharmacodynamics of Local Anesthetics. 10.5772/intechopen.91700.

[16]<https://www.intechopen.com/chapters/71920>

Marcos Michel-Levy J. Pharmacokinetics and Pharmacodynamics of Local Anesthetics [Internet]. Topics in Local Anesthetics. IntechOpen; 2020. Available from: <http://dx.doi.org/10.5772/intechopen.91700>

[17]Regional Anaesthesia | Local Anaesthetics | Geeky Medics

[18]Upperextremity nerve blocks (Chapter 60) - Essential Clinical Anesthesia

Feliz EM, Frey TS, Collins AB, Mehio A-K. Upperextremity nerve blocks. In: Vacanti C, Segal S, Sikka P, Urman R, eds. *Essential Clinical Anesthesia*. Cambridge University Press; 2011:361-369.

[19]<https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.jaypeedigital.com%2FeReader%2Fchapter%2F9789350251898%2Fch27&psig=AOvVaw01sgapL98cK4Yt76XFbDkF&ust=1712560061403000&source=images&cd=vfe&opi=89978449&ved=0CBIQjRxqFwoTCKiwuMnFr4UDFQAAAAAdAAAAAB>

[20]Contributions to the problem of allergy to local anesthetics

Oral Surg Oral Med Oral Pathol (1949)

• [21]DT Brown *et al.*

- P. Adler, M. Simon, Contribution to the problem of allergy to local anesthetics, *Oral Surgery, Oral Medicine, Oral Pathology*, Volume 2, Issue 8, 1949, Pages 1029-1036, ISSN 0030-4220, [https://doi.org/10.1016/0030-4220\(49\)90214-5](https://doi.org/10.1016/0030-4220(49)90214-5). (<https://www.sciencedirect.com/science/article/pii/0030422049902145>)

[22]Allergic reaction to an amide local anesthetic

D.T. BROWN, D. BEAMISH, J.A.W. WILDSMITH, ALLERGIC REACTION TO AN AMIDE LOCAL ANAESTHETIC, *British Journal of Anaesthesia*, Volume 53, Issue 4, 1981, Pages 435-437, ISSN 0007-0912, <https://doi.org/10.1093/bja/53.4.435>.

(<https://www.sciencedirect.com/science/article/pii/S0007091217432004>)

[23]Preventing adverse local anesthetic reactions: The use of the skin test

Special Care in Dentistry (1987)

• MJ Chandler *et al.*

[24]Provocative challenge with local anesthetics in patients with a prior history of reaction

J All Clin Immunol (1987)

• RD de Shazo *et al.*

[25]An approach to the patient with a history of local anesthetic hypersensitivity: Experience with 90 patients

J Allergy Clin Immunol
(1979)

- J Eyre *et al.*

[26] [Nasal test for hypersensitivity](#)

Lancet

(1971)

John Eyre, Fergal F. Nally,

NASAL TEST FOR HYPERSENSITIVITY: Including a Positive Reaction to Lignocaine, The Lancet,

Volume 297, Issue 7693, 1971, Pages 264-265, ISSN 0140-6736, [https://doi.org/10.1016/S0140-6736\(71\)91002-6](https://doi.org/10.1016/S0140-6736(71)91002-6). (<https://www.sciencedirect.com/science/article/pii/S0140673671910026>)

[29] <https://www.sciencedirect.com/science/article/pii/S0091674996800674>

Gall H, Kaufmann R, Kalveram CM. Adverse reactions to local anesthetics: analysis of 197 cases. Journal of allergy and clinical immunology. 1996 Apr 1;97(4):933-7.

[30] <https://www.sciencedirect.com/science/article/pii/S1081120610616808>

Berkun Y, Ben-Zvi A, Levy Y, Galili D, Shalit M. Evaluation of adverse reactions to local anesthetics: experience with 236 patients. Annals of Allergy, Asthma & Immunology. 2003 Oct 1;91(4):342-5.

[31] PPT – Local anesthetics agents Done by: Asal Alsayyed Yara saleh Areej Alhadidi PowerPoint

<https://emedicine.medscape.com/article/873879-overview?form=fpf>

<https://medicine.uiowa.edu/iowaproocols/maximum-recommended-doses-and-duration-local-anesthetics>

slideshare.net/DrAnkitMohapatra/pharmacology-of-local-anesthesia-91707217