

ANALYSIS AND PREDICTION OF THE BRAIN CANCER USING DEEP LEARNING

Dr.C. Poongodi , K. Abitha Gushambal, D. Dhavanishaa, T. Divya , P. Nithyasri

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vivekanandha College of Engineering for Women, Namakkal, Tamil Nadu, India

ABSTRACT

Brain cancer is a complex and devastating disease with multifaceted causes, including genetic predisposition, environmental factors, and exposure to carcinogens. The intricate interplay of these factors contributes to the development and progression of brain tumor, presenting significant challenges for diagnosis and treatment. Convolutional Neural Networks (CNNs) have emerged as a powerful tool in medical image analysis, offering automated and data-driven approaches to disease detection and characterization. In the context of brain cancer, CNNs have been utilized to analyse magnetic resonance imaging (MRI) data, extract relevant features, and classify tumor types with high accuracy. Their ability to learn intricate patterns from complex imaging data has paved the way for improved diagnostic capabilities and personalized treatment strategies .This project is proposed to use the You Only Look Once (YOLO) algorithm as an alternative approach for the analysis and prediction of brain cancer.

Keywords: CNN, MRI ,Image, Tumor.

INTRODUCTION

Brain cancer is a devastating disease characterized by the abnormal growth of cells within the brain tissue. It poses significant challenges to healthcare professionals due to its complex nature and the variability of tumor characteristics among patients. Brain tumors can originate from various cell types within the brain, leading to diverse subtypes with distinct clinical presentations and treatment responses. The causes of brain cancer are multifactorial, with both genetic and environmental factors playing significant roles. Genetic predisposition can increase the likelihood of developing brain tumors, as certain hereditary conditions, such as neurofibromatosis and Li-Fraumeni syndrome, are associated with an elevated risk of brain cancer.

Environmental exposures also contribute to the risk of brain cancer, although the exact mechanisms are not fully understood. Ionizing radiation, such as that used in radiation therapy for other malignancies or from occupational sources, has been linked to an increased risk of brain tumors. Similarly, exposure to certain chemicals and pollutants,

including pesticides, solvents, and air pollutants, may play a role in the development of brain cancer. Furthermore, lifestyle factors such as diet, smoking, and alcohol consumption may influence the risk of developing brain cancer.

LITERATURE SURVEY

Journal Name: Hindawi International Journal of Biomedical Imaging

In this paper using MR images of the brain, we segmented brain tissues into normal tissues such as white matter, gray matter, cerebrospinal fluid (background), and tumor-infected tissues. We used pre-processing to improve the signal-to-noise ratio and to eliminate the effect of unwanted noise. We can use the skull stripping algorithm its based on threshold technique for improve the skull stripping performance.

Journal Name: IEEE 7th International Conference on Cloud Computing, Data Science & Engineering

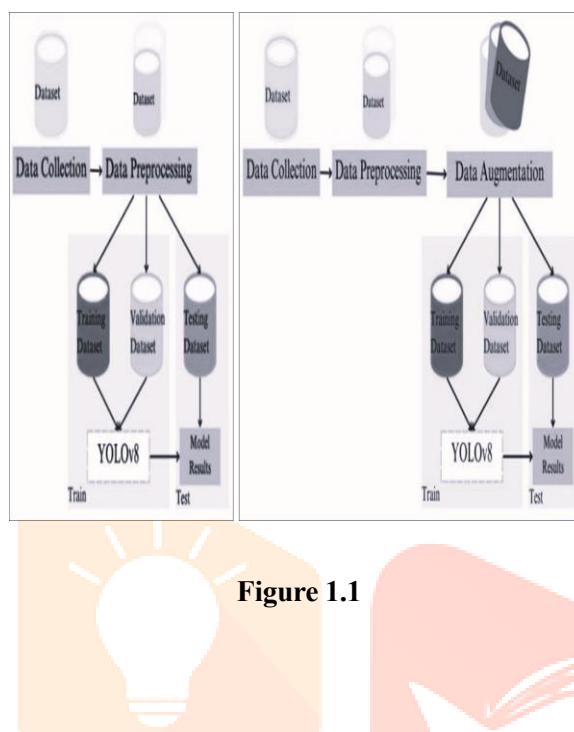
This paper surveys the various techniques that are part of Medical Image Processing and are prominently used in discovering brain tumors from MRI Images. Based on that research.

Journal Name: IEEE Transactions on Medical Imaging

This paper presents a deep learning approach for brain tumor detection and classification using MRI images. The authors propose a convolutional neural network (CNN) architecture trained on a large dataset of annotated MRI scans. They achieve high accuracy in tumor detection and demonstrate the effectiveness of deep learning techniques in medical imaging analysis.

Journal Name: Medical Image Analysis

Brief Summary: This review paper provides an overview of convolutional neural network (CNN) based approaches for brain tumor segmentation. The authors analyze various CNN architectures, training strategies, and data augmentation techniques used in previous studies. They highlight the challenges and future directions in brain tumor segmentation research.


SYSTEM ANALYSIS

EXISTING SYSTEM:

The current landscape of brain tumor detection predominantly relies on traditional image processing techniques and machine learning algorithms. These methods typically involve multi-step processes, including image preprocessing, feature extraction, and classification. Image preprocessing techniques such as noise reduction and contrast enhancement are applied to enhance the quality of medical images obtained from MRI scans. Feature extraction methods extract relevant information from the pre-processed images, including texture, shape, and intensity features. Machine learning algorithms such as support vector machines (SVM), artificial neural networks (ANN), and decision trees are then trained on the extracted features to classify brain tumor regions. While these approaches have shown promising results, they often require manual feature engineering and may struggle with complex tumor phenotypes and variability in imaging data. Additionally, the computational complexity of these methods limits their scalability and real-time applicability in clinical settings. As a result, there is a growing need for more advanced and efficient techniques for brain tumor detection that can overcome these limitations and improve diagnostic accuracy.

MODULE DESCRIPTION

This research aims to detect meningioma, glioma, and pituitary brain tumors using the YOLOv8 architecture based on data augmentations. The results obtained will be analyzed and evaluated. The research stages to achieve the final results of this study are outlined in the research framework .

PERFORMANCE

From the trained model, validation is performed using performance metrics based on the confusion matrix. In the confusion matrix, true positive refers to the model predicting a label correctly and matching the ground truth. False positive indicates the model predicting a label that is not part of the ground truth. True negative means the model not predicting a label and it is not part of the ground truth. False negative signifies the model not predicting a label, but it is actually part of the ground truth. namely precision, recall, and mAP (mean Average Precision).

Precision is used to assess the accuracy of the model being used. Recall is the ratio of the number of true positives to the total number of objects. For example, if there are 100 trees in an image and the model detects 75 trees, the recall would be 75%.

Tumor Type	Training	Validation	Testing
Meningioma	496	141	71
Glioma	998	285	143

Figure 1.2 : Data Preprocessing

SCREENSHOTS

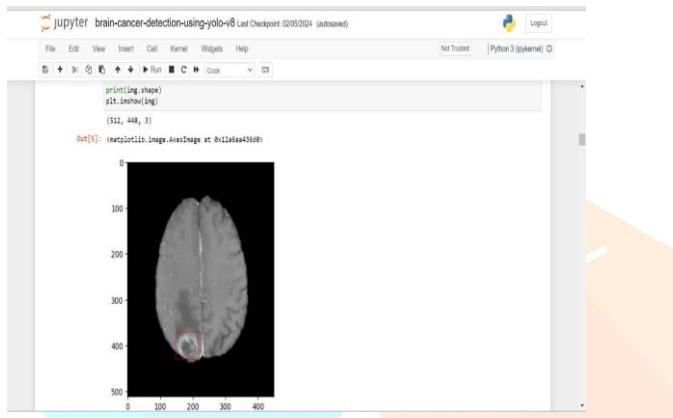


Figure 2.1 Prediction image

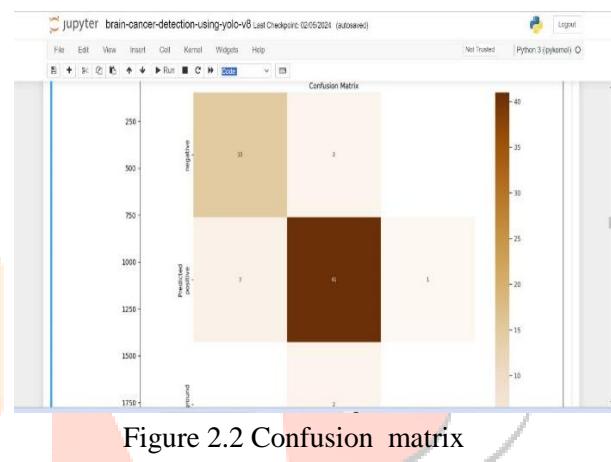


Figure 2.2 Confusion matrix

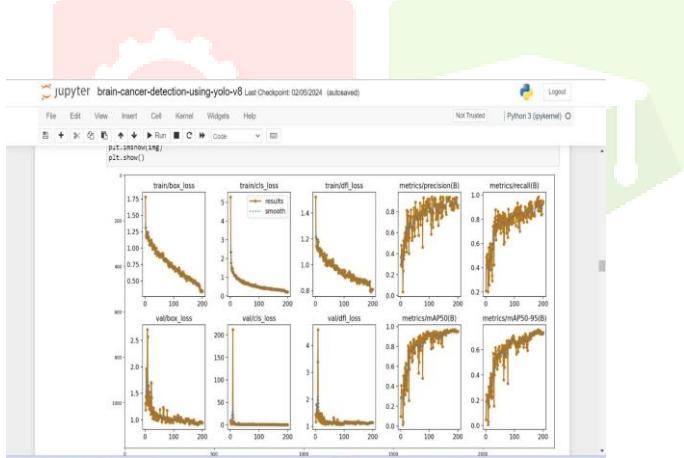


Figure 2.3 Augmentation

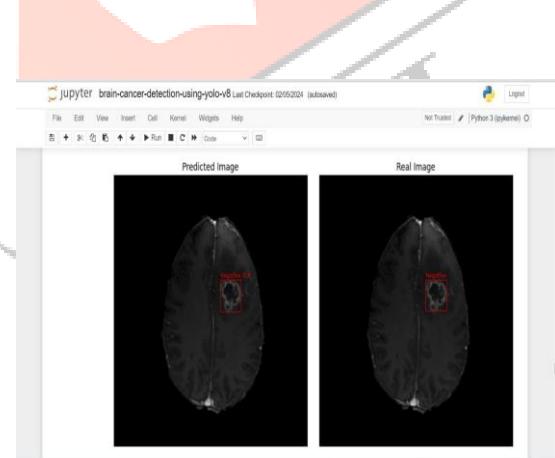


Figure 2.4 Output

CONCLUSION

In summary, the application of deep learning in the analysis and prediction of brain cancer has shown promising results, demonstrating significant potential for improving diagnostic accuracy and treatment outcomes. Techniques such as convolutional neural networks (CNNs) and deep neural networks (DNNs) have been instrumental in enhancing the early detection, segmentation, and classification of brain tumors from MRI images. The research highlights the importance of incorporating advanced deep learning models to address the complexities of brain tumor analysis and advocates for continuous innovation and optimization in this field to achieve better patient outcomes and survival rates.

REFERENCES

- [1] Faizan Ullah1 , Muhammad Nadeem 1, Muhammad Abrar 2, Farhan Amin 3, Abdu Salam 4, Amerah Alabrah5, And Hussain Alsalm 6, “Evolutionary Model for Brain Cancer-Grading and Classification” version 14 Nov.2023, doi: 10.1109/ACCESS.2023.3330919.
- [2] Abiwinanda, M. Hanif, S. T. Hesaputra, A. Handayani, and T. R. Mengko, “Brain Tumor Classification Using Convolutional Neural Network.” World Congr. Med. Phys. Biomed. Eng. 2018, 2019, pp. 183–189, doi: 10.1007/978-981-10-9035-6_33.
- [3] J. R. McFalone-Figueroa and E. Q. Lee, “Brain Tumors,” Am. J. Med., vol. 131, no. 8, pp. 874–882, 2018, doi: 10.1016/j.amjmed.2017.12.039.
- [4] B. Khagi and G.-R. Kwon, “3D CNN based Alzheimer’s Diseases Classification Using Segmented Grey Matter Extracted from Whole-Brain MRI,” JOIV Int. J. Informatics Vis., vol. 5, no. 2, p. 200, 2021, doi: 10.30630/joiv.5.2.572.
- [5] F. Ali et al., “A Two-Tier Framework Based on GoogLeNet and YOLOv3 Models for Tumor Detection in MRI,” Comput. Mater. Contin., vol. 72, no. 1, pp. 73–92, 2022, doi: 10.32604/cmc.2022.024103.

