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Abstract ─ The spoke-inset type, fractional slot synchronous motor with an inside permanent magnet has a 

wider range of industrial applications due to its higher efficiency and maximum power output. The motor 

must run at a nominal speed and rated power in high-power applications. To meet the motor's high-power 

demand, the coil's stator turns have been changed. The increased number of turns lengthens the conductor, 

resulting in a more rotating magnetic field that provides the necessary horsepower. If the number of turns 

increases more, the undesirable effects of, a drop in speed, a rise in total loss, the density of current changes, 

and a decrease in efficiency, can aggravate the performance of the motor. To demonstrate the impact of turn 

variation on IPMSM performance, a 12.45 kW, 2000 rpm IPMSM is employed, and a 

3D transient electromagnetic field model is developed. Initially, Electromagnetic behavior analysis was made 

by the Finite Element Method (FEM). The optimum performance-determining parameters are then obtained 

by sensitivity analysis. The IPMSM's performance is quantitatively analyzed based on the significance of turn 

variation, including the amount of current, rated speed, torque, and power. In addition, the effect of turn 

number variation on eddy current, copper, and hysteresis loss is being addressed further. Finally, the IPMSM 

temperature profile is analyzed using the coupling method of electromagnetic field and thermal field, and the 

various parts of temperature distribution in IPMSM are obtained. The effectiveness of the IPMSM design 

optimization is demonstrated in this study. 

 

Index Terms - Copper loss, Fractional slot, FEM, IPMSM, Iron loss, Number of turns variation.  

I. INTRODUCTION 

 

IPMSMs are the preferred electric vehicle motor choice for the majority of automobile industries, despite 

price instability and restricted raw material availability. Inner rotors with inserted permanent magnet designs 

offer superior performance, a wide ranging of speed, a less weight, and more rugged geometrical construction. 

[Bianchi N, 2004]. Different rotor structures with various PM combinations were presented, and their impact 

on machine performance was studied in [Jung H (2005), Du J (2016), Asef P (2021)]. Several rotor designs 

for electric vehicles were studied, and their electromagnetic field features, such as efficiency, torque 

production, and flux reduction capability over a wide working range, were compared [Hwang M.-H (2018), 

Li Y (2019)]. Many studies were performed to overcome the drawbacks of generating more ripples and non-

uniformity distribution of air gap magnetic field while constructing an optimal rotor design. [Chu G (2020), 

Chang Y.-H (2021)]. Because of its flux concentration capability, the spoke-type rotor became more popular 

among the several IPMSM rotor types that offer high torque density and more robustness [Kwon B. I (2015), 
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Breban S (2022), Suganthi S (2023)]. In motor design construction, three-phase stator winding is another 

important part. The stator winding turns have an important role in the energy interchange process takes place 

which determines the operation of the motor [Ali Ihsan Canakoglu (2016)].  

In references [Hu K (2019), Gu B.-G (2023)], It can be found that the winding number of turns had an 

impact on energy efficiency improvement with considering motor losses. The impact of turn variation on 

motor losses was addressed. In [Chaithongsuk S (2015)], rotor losses were reduced by modifying the flux 

path of the armature reaction based on the pulse width modulation technique in the fractional slot concentrated 

winding PMSM motor. In reference [Chiba M (2012)], proposed a method for reducing the maximum stator 

current of switched reluctance motor by increasing the number of winding turns. In reference [Al-Habshi S.M 

(2014)], it can be seen that a significant reduction of unbalanced magnetic force was achieved possibly by 

employing an uneven number of turns per coil. In reference [Corda J (1996)], suggested a method for 

determining the optimal number of turns per phase winding of a switching reluctance motor with a specified 

magnetic configuration and operating parameters in terms of output power and speed. In reference [Qiu H 

(2020)], The current generated by the stator coil provides an alternating magnetic field, which has a direct 

impact on the motor's performance. The characteristics of the PMSM were studied using a 2D transient 

electromagnetic field. An IPMSM temperature field was studied using the electromagnetic field-thermal field 

coupling technique [Chen L (2018)]. In recent years, many scholars have made relevant studies on the winding 

turns of motors. But, many scholars have not fully studied on the influence of the armature winding turns on 

PMSM performance, and the influence of the variation mechanism was not demonstrated properly.  

The main objective of this research is the influence of the number of winding turns per coil on IPMSM 

performance and the optimum selection of the number of turns of IPMSM is achieved by sensitivity analysis 

for the specified operating conditions in terms of rated power, speed, and torque. The performance parameters 

such as induced electromotive force (EMF), winding resistance, power factor, iron loss, copper loss, 

efficiency, speed, torque, output power, and torque ripples are directly impacted by turn variations. Due to 

these parameters changing, the motor performance will then be shifted to some more extent by the influence 

of the turn variations. The stator winding turn value has been effectively optimized to increase the motor's 

performance. The FEM of 3D electromagnetic field is established and the behavior of the electromagnetic 

field influence on variation in winding turns is studied in this paper. In addition, based on the electromagnetic 

field-thermal field coupling method, the sensitivity of the temperature field to motor winding turns is also 

studied in our manuscript. 

 

II. GEOMETRICAL DESIGN ASPECTS   

A 12.45 kW, 2000 r/min, IPMSM is considered in this paper as an example to analyze the performance of 

a three-phase fractional slot spoke-type IPMSM. This machine has an 8-pole/36-slot configuration, with q=1.5 

slots/pole/phase. This fractional slot motor has a double layer of lap-type winding with 4 number of parallel 

paths. The basic parameters and geometrical data used in the 3D FEM simulation studies are listed in Tables 

1 and 2. According to the design structure and parameters required, electromagnetic analysis of the 3D finite 

element model is established. In the finite element model study, the total number of meshes is 19830, which 

can meet the solving accuracy.  

Table 1. Specifications of Motor Parameters 

Parameters Value 

Output power 

capacity 

12.45 (kW) 

Speed  2000 (r/min) 

Peak Current  35.5 (A) 

Torque 60.2 (Nm) 

No of Poles  8 

No. of stator Slots 36 

Phase resistance 0.34 (Ω) 
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Rotor magnetic 

structure  

Interior- 

Spoke  

Number of turns per 

coil 

50 

TABLE 2. IPMSM DESIGN PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. ANALYSIS OF SPOKE TYPE OF IPMSM  

A. Theoretical Investigation on Winding Impedance 

This study investigates the effect of turn variation on phase resistance and end leakage reactance. When 

the number of stator turns changes, the winding resistance and reactance also change accordingly. This can 

be found from the calculation of resistance and reactance equations (1) and (2) that The resistance of the 

winding changes with the number of turns, whereas the reactance changes with the square of the number of 

turns, when other parameters are unchanged. As the turns vary, the overall length of the conductor increases. 

resulting in an increase in phase resistance. When the number of turns increases, the polar distance and airgap 

length increase as well, resulting in an increase in end leakage reactance. 

        R =  
ρ x2N1xL𝑚𝑒𝑎𝑛

𝐴1𝑎1  
                                            (1)        

     𝑋𝑚 = 4 𝑓 𝜇0
𝑚

𝜋
   

   𝑚(𝑁 1𝐾𝑤𝑓1)
2

𝑝
 𝑙𝑒𝑓𝑓  

𝜏

𝛿𝑒𝑓𝑓
              (2) 

 

Where, R1 is stator phase resistance, ρ is the resistivity of copper at 75℃, N1 is the number of ampere-turns, 

Lmean is the mean length of half turns, A1 is conductor cross-section, a1 is the number of parallel branches, Xm 

is the end leakage reactance of stator winding, Kwf1 is winding factor, μ0 is the permeability of vacuum, p 

represents pole-pairs, δeff is effective air gap length, leff is armature calculation length, τ is polar distance. 

 

B. Design Optimization using 3D FEM Simulation  

The FEM technique has been widely used in the Electromagnetic field domain to analyze the complete 

behavior of electric machines under a steady state or transient state. This method provides an accurate value 

of necessary parameters and this will be used for fault diagnosis and analysis of real-time operation. The 

Maxwell equation has been solved by the FEM method to study the behavior of magnetic fields in the time 

and frequency domain. FEM analysis includes three steps: pre-processing, during, and post-processing. In 

pre-processing, the geometries of IPMSM are defined such as inner diameter, out diameters of stator and rotor 

cores, pole shoe, the core length, number of poles and slots, type of winding, the structure of permanent 

magnet, PM thickness and depth, magnet position, Slot width open and airgap. The simulation tests are carried 

out to investigate the performance parameters of IPMSM. The main contribution of this study is the impact 

Design Parameters Dimension 

Value in 

mm 

Outer diameter  183 (mm) 

Inner diameter  102 (mm) 

Core length 105 (mm) 

Sleeve width 0.2 (mm) 

Width of PM  3.85(mm) 

Air-gap  0.9 

PM type  Nd Fe B 
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of a number of turns variation in a stator coil on the performance of the motor. This analysis can serve as a 

theoretical foundation for optimizing IPMSM designs. Figure 1 displays the geometrical design of IPMSM's 

FEM, which includes radial geometry and a winding diagram. Figure 1 also shows the magnetic field lines 

distribution and electromagnetic flux density B(T), vector potential, current density, and 3D mesh view of 

IPMSM. 

    
                                                                  (a)                                                                          (b)                                                                             

              
                                                                   (c)                                                                             (d)                                    

          
                                                     (e)                                                                                      (f) 

 

Fig.1. Finite Element model of spoke type of IPMSM ((a)radial geometry (b)winding diagram (c)3D mesh 

view (d)current density (e) magnetic flux density (f) vector potential. 
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IV. THE EFFECT OF TURN VARIATIONS ON THE PERFORMANCE OF IPMSM  

 

A. Impact of winding turns on rated torque  

       The quantity of turns in each coil is one of the crucial parameters in a PMSM design. If that is not taken 

into consideration properly, the excessive current will harm the stator windings. Furthermore, this will lead 

to a higher torque ripple, which in turn increases the vibration and noise during motor operation. As a result, 

the focus of this work is on identifying the precise turn number and the effect of turn variation on IPMSM 

performance metrics, as well as obtaining the rated values of IPMSM performance parameters such as speed, 

output power, and maximum electromagnetic torque output. 

 

     When the number of turns is changed from 41, 44, 47, 50, 53, 56, and 59 respectively, the performance 

parameters of PMSM are shown in Fig.2. From Fig. 2, it shows that the output torque increases by 12%, and 

torque ripple reduces by 28.7% when the turn quantity increases by 3. As the quantity of turns rises, the 

maximum torque output is increased to maintain the fixed stator winding current. The increased winding turns 

with a fixed winding current produce a reduced torque ripple and constant magnetic field distribution. 

 
Fig.2. Torque output and torque ripple variation on the influence of winding turns. 

 

B. Impact of winding turns on current density and winding loss due to copper wire 

     The armature current density increases linearly as the number of winding turns increases, and the rated 

speed and torque are reached at 50 turns in a coil. Fig.3 depicts the current density, phase resistance, and 

copper loss as the number of turns varies from 41 to 59. A linear increase is associated with the current density 

for the corresponding ampere turns increment so as to maintain the required stator current. The increment of 

current density causes a temperature rise along with it, and more heat is generated in the winding. Therefore 

copper loss of the winding is also increased due to the use of copper wire as the number of turns increases.  

 

    When armature turns increase, current density increases by 6.5% and armature winding's copper 

loss increases by 14%. The back EMF shows an exponentially increasing trend with the number of turns 

increment. The back EMF is an important parameter that can be used to evaluate the performance of the 

IPMSM, and it must be precisely determined. Fig.4 shows the impact of turns variation on speed and back 

EMF of the IPMSM. If turns varies, speed of the motor decreases and the back EMF of the machine increases 

due to the rate of change of flux variation. 
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Fig.3. Influence of number of turns variation on copper loss. 

 

 
Fig.4. Influence of number of turns variation on speed and back EMF. 

 

 

C. Impact of winding turns on iron loss of IPMSM 

  

 Fig.5 illustrates the effect of variation in the number of turns on iron loss, which includes hysteresis and 

eddy current losses. As observed in Fig.5, the stator iron loss is increased due to increased hysteresis and eddy 

current loss as the increased winding turns. The increment is due to more magnetic flux distribution in stator 

back iron and tooth because iron loss mainly depends on frequency and magnetic flux density. Because of the 

larger winding turns, the airgap flux density is not uniform, resulting in increased eddy currents on the stator's 

inner layer. This in turn leads to an increase in stator iron loss. 
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Fig.5. Influence of number of turns variation on Iron loss 

 

D. The influence of the number of turns on power capacity and efficiency 

 

      Fig.6 shows the variation in the number of turns with the power factor at different power angles. Fig.7 

indicates the power factor and efficiency of the IPMSM, respectively. Fig.8 shows the impact of load angle 

on the output power and Electromagnetic torque of the motor.  It is proven that from Fig. 6,7, and 8 the power 

factor and efficiency of the motor decrease as the winding turns increase by 3 from 41 to 59. The decrement 

has been done due to an increase in the load angle δ. This in turn, the distance between the position of the 

rotor and the rotating magnetic field of the stator increases as the ampere winding turns increase. In a 

synchronous motor, load angle is an important key parameter and the load angle variation has more impact 

on the performance of motor. If load angle δ increases, electromagnetic torque increases, and the power output 

of the motor also increases. Thus, increasing the load angle δ increases the rated output power which is directly 

proportional to the output power of the synchronous motor. We cannot increase load angle δ beyond 90 

degrees because the motor will lose the synchronism due to the increase in distance between the stator and 

rotor field poles. This load angle δ will affect the stable operation.  

 

 
Fig.6. Significance of turn variation on load angle 
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Fig.7. Impact of turn variation on efficiency 

 

 
 Fig.8. Effect of turn variation on output power capacity 

Table 1: Influence on no. of turns on performance parameters of IPMSM 

 

 

 

No.of  

turns 

Speed 

(RPM) 

Electromagnetic 

torque 

(in Nm) 

Output 

power 

(in KWs) 

Efficiency  

(in %) 

Torque 

ripple 

(in Nm) 

Cogging 

Torque 

(in Nm) 

41 2593.6 52.663 10.912 94.637 2.8657 4.1599 

44 2367.6 55.418 11.482 94.277 2.5361 4.1599 

47 2173.5 57.955 12.006 93.874 2.2394 4.1599 

50 2004 60.032 12.490 93.485 2.0407 4.1599 

53 1857.8 62.430 12.935 93.059 2.038 4.1599 

56 1729.1 64.376 13.344 92.612 1.9727 4.1599 

59 1615.9 66.154 13.719 92.147 1.9074 4.1599 
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IV. OPTIMIZED PERFORMANCE PARAMETER SIMULATION RESULTS USING FEM 

APPROACH  

The study results show the best IPMSM performance characteristics with the optimum finding value of 

armature winding turns as 50 for a given rated current. Figures 9,10, 11, 12, 13, and 14 illustrate the optimum 

performance parameters of IPMSM for 50 turns in terms of rated current, back EMF, output torque, cogging 

torque, efficiency, and efficiency map. 

 

 
Fig.9 stator current(peak) of IPMSM 

 

 
Fig.10 Back EMF of IPMSM 

 

 
Fig.11 Rated output torque of IPMSM 
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           Fig.12 Cogging torque of IPMSM 

 

 
Fig.13 Efficiency of IPMSM 

 
Fig.14 Efficiency map of IPMSM 
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V. Investigation on Temperature Field distributions of IPMSM 

       Temperature rise is the major factor, that threatens the magnetic behavior of PMs, winding insulation, 

reliable operation, and life span. The demagnetization effect of the permanent magnet takes place when the 

operating temperature exceeds the highest possible allowed temperature of the PMs. To illustrate the influence 

of the turn variations on the IPMSM's thermal field, the thermal and electromagnetic field of the coupling 

method is adopted. Fig.15 shows the temperature distribution of IPMSM. Because of the consistent magnetic 

field distribution, the temperature distribution field has no effect on turn variation, as seen in Fig.15. When 

the quantity of turns changes, the motor's loss increases, yet the temperature distribution on IPMSM remains 

constant. The high-temperature withstanding insulating materials are used in the stator winding of IPMSM to 

prevent leakage of fluxes and various classes of insulating materials are also utilized for various motor parts 

according to the requirement of various environments. The ambient temperature of IPMSM running is 40°C.  

 

FIG.15 TEMPERATURE DISTRIBUTION OF  IPMSM. 

 

VI. CONCLUSION 

 

     In this investigation study, a 12.45 KW IPMSM is utilized as the research resource to investigate the 

significance of the coil’s turn variations in the electromagnetic field and temperature field distribution 

produced by the IPMSM. The outcomes of this investigation lead to the following conclusions. 

 

 For fixed stator winding current, the highest possible magnetic flux density of IPMSM is constant for 

all winding turns per coil variations.  As the quantity of coil turns increases, the magnitude of the flux 

density in the airgap also increases, resulting in increased current density and copper loss. When armature 

turns increase, the current density increases by 6.5%, and armature winding's copper loss increases by 

14%. 

 When the quantity of coil turns increases, the current density is increased to maintain the winding current 

constant. Due to this increase, stator phase resistance and length of the conductor are increased, and the 

area of the conductor is decreased. when the quantity of turns changes, hysteresis and eddy current loss 

fluctuate considerably,  increasing the iron loss of the motor. 

 As the number of turns is increased by 3, the maximum output torque increases by 12% and torque ripple 

reduce by 28.7%. The cogging torque maintains a constant value for all numbers of turn variations.With 

the increase of winding turns per coil, the efficiency of the motor has decreased due to increased iron loss 

and copper loss. The power factor of the IPMSM is decreased due to an increased load angle, as the turns 

increase.  

 As the number of turns decreases by 3, back EMF, output capacity, and maximum torque also decrease 

dramatically, while torque ripple increases significantly. When winding turns are 50, the speed of the 

motor is attained the required rated rpm of 2000 rated torque 60Nm and efficiency of 93.5% at a rated rms 

current of 26.2 A. A suitable choice of a number of turns is essential for the design optimization and 

performance enhancement of fractional slot of spoke type of IPMSM. 
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