

Lung Cancer Prediction Using CNN On CT Scan Images With ROI Prediction

Nikhil Shinde ^[1], Sumit Haral ^[2], Varad Ghorpade ^[3], Prof. Prajakta Puranik ^[4], Prof. Milind Ankleshwar ^[5]

Department of Artificial Intelligence and Machine Learning, ISBM College of Engineering, Pune

Student ^{[1], [2], [3]} , Guide ^{[4] [5]}

Abstract-Lung cancer is one of the most killer diseases in the developing countries and the detection of the cancer at the early stage is a challenge. Analysis and cure of lung malignancy have been one of the greatest difficulties faced by humans over the most recent couple of decades. Early identification of tumor would facilitate in sparing a huge number of lives over the globe consistently. This paper presents an approach which utilizes a Convolutional Neural Network (CNN) to classify the tumors found in lung as malignant or benign. The accuracy obtained by means of CNN is 96%, which is more efficient when compared to accuracy obtained by the traditional neural network systems.

Keywords - Lung cancer, Computed Tomography, Chest CT image, Neural Network, Deep Learning, Convolutional Neural Network

I. INTRODUCTION

Lung cancer is one of the most dreadful diseases in the developing countries and its mortality rate is 19.4% [1]. Early detection of lung tumor is done by using many imaging techniques such as Computed Tomography (CT), Sputum Cytology, Chest X-ray and Magnetic Resonance Imaging (MRI). Detection means classifying tumor two classes (I)non-cancerous tumor (benign) and (ii)cancerous tumor (malignant) [2]. The chance of survival at the advanced stage is less when compared to the treatment and lifestyle to survive cancer therapy when diagnosed at the early stage of the cancer. Manual analysis and diagnosis system can be greatly improved with the implementation of image processing techniques. A number of researches on the image processing techniques to detect the early-stage cancer detection are available in the literature. But the hit ratio of early-stage detection of cancer is not greatly improved. With the advancement in the machine learning techniques, the early diagnosis of the cancer is attempted by lot of researchers.

Neural network plays a key role in the recognition of the cancer cells among the normal tissues, which in turn provides an effective tool for building an assistive AI based cancer detection. The cancer treatment will be effective only when the tumor cells are accurately separated from the normal cell. Classification of the tumor cells and training of the neural network forms the basis for the machine learning based cancer diagnosis [3]. This paper presents a Convolutional Neural Network (CNN) based technique to classify the lung tumors as malignant or benign. system for image classification and visual feature extraction.

II. LITERATURE SURVEY

A. Lung Cancer Detection Techniques Lung cancer detection has seen substantial advancements with the rise of deep learning, particularly convolutional neural networks (CNNs), which have become pivotal in medical image analysis. Traditional methods like manual screening and radiologist interpretation are often subjective and time-consuming, but CNN-based approaches can provide automated, consistent, and rapid evaluations. These networks are trained on large datasets of medical images, learning to detect early signs of abnormalities that may indicate cancerous growths. Recent architectures such as VGGNet, ResNet, and DenseNet have shown exceptional performance in extracting features from lung CT images, highlighting nodules, and differentiating between normal and abnormal tissues.

B. Lung Cancer Classification Approaches Lung cancer classification is crucial for determining the type and severity of cancer, thereby guiding treatment options. Deep CNNs have enabled a more accurate classification of lung nodules, distinguishing benign from malignant cases and even subtypes of lung cancer, such as adenocarcinoma and squamous cell carcinoma. The approach typically involves training a CNN on labeled datasets to recognize unique patterns associated with each class of lung cancer. Transfer learning, where a pre-trained network is fine-tuned for a specific classification task, has proven to be effective, especially when working with limited medical image data. Techniques such as multi-scale feature learning and ensemble methods have further improved the robustness of lung cancer classification models.

C. Integrating Detection and Classification in Lung Cancer Diagnosis.

The integration of detection and classification into a single deep CNN model streamlines the diagnostic process for lung cancer, enabling both localization and categorization of cancerous regions in a single step. In recent research, end-to-end models combining object detection with multi-class classification have emerged, leveraging the strength of CNNs for feature extraction. These models not only detect potential cancerous nodules but also assign a class label, indicating the likelihood of malignancy or cancer type. Advanced models often incorporate 3D CNNs and attention mechanisms to focus on critical regions within a CT scan, enhancing the model's ability to detect smaller nodules that may otherwise go unnoticed. This unified approach holds promise for real-time, accurate, and comprehensive lung cancer diagnosis, with significant implications for early detection and personalized treatment plans.

These advances in lung cancer detection and classification demonstrate the transformative role of deep learning in medical imaging, enabling automated, precise, and scalable solutions for diagnosing life-threatening conditions like lung cancer.

III. OVERVIEW OF LUNG CANCER DETECTION AND CLASSIFICATION USING DEEP CNN

A. Overview of Lung Cancer Detection

Lung cancer detection plays a critical role in early diagnosis and improved survival rates for patients. Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have transformed this field, providing automated and highly accurate tools for identifying lung abnormalities in medical images such as CT and X-ray scans. By learning complex hierarchical features, CNNs can detect minute details that may indicate early-stage cancer, significantly aiding radiologists and healthcare professionals in the diagnostic process.

- **Convolutional Neural Networks for Lung Cancer Detection**

Lung cancer detection plays a critical role in early diagnosis and improved survival rates for patients. Recent advances in deep learning, particularly Convolutional Neural Networks (CNNs), have transformed this field, providing automated and highly accurate tools for identifying lung abnormalities in medical images such as CT and X-ray scans. By learning complex hierarchical features, CNNs can detect minute details that may indicate early-stage cancer, significantly aiding radiologists and healthcare professionals in the diagnostic process.

- **Popular Architectures for Lung Cancer Detection**

1. **3D CNNs:** Unlike traditional 2D CNNs, 3D CNNs analyze volumetric data, making them particularly useful for CT scans that provide 3D images of the lungs. This approach allows for the detection of smaller nodules, which may not be visible in 2D slices.

2. **ResNet (Residual Networks):** ResNet's skip connections enable it to train deeper networks, leading to improved feature extraction. This architecture has been particularly effective in handling high-resolution CT images, producing accurate detection results.

3. **U-Net:** U-Net is commonly used for medical image segmentation. It is particularly useful in detecting and segmenting lung nodules, allowing for precise localization of potential cancerous areas within the lung tissue.

D. Evaluation Metrics for Lung Cancer Detection

Evaluating the performance of lung cancer detection models is essential for ensuring accuracy and reliability in clinical settings. Several metrics are commonly used:

- **Sensitivity and Specificity:** - Sensitivity measures the model's ability to correctly detect cancerous nodules, while specificity assesses its ability to exclude non-cancerous findings, helping minimize false positives.
- **Dice Coefficient:** - Often used in segmentation tasks, the Dice coefficient measures the overlap between predicted and ground truth regions, providing a comprehensive view of the model's performance in delineating cancerous tissue.
- **Area Under the Receiver Operating Characteristic Curve (AUC-ROC):** - This metric assesses the model's ability to distinguish between cancerous and non-cancerous cases, where a higher AUC indicates a more

reliable model.

These metrics ensure that models are evaluated for both detection accuracy and reliability, which is crucial in medical imaging applications where false negatives and false positives can have significant consequences.

E. Lung Cancer Classification Techniques

1. Binary and Multi-class Classification Models

Classification in lung cancer detection focuses on determining whether detected nodules are benign or malignant. In some cases, classification is further broken down into subtypes of lung cancer, such as adenocarcinoma, squamous cell carcinoma, and small cell lung carcinoma. Binary classification models focus on distinguishing between benign and malignant cases, while multi-class models identify specific types of lung cancer based on learned features.

2. Transfer Learning

Transfer learning has become a popular technique in medical imaging, as labeled data in this domain can be limited. By leveraging pre-trained models on general image datasets, fine-tuning them on lung cancer datasets allows models to learn relevant features for classification without requiring an extensive amount of medical image data.

3. Ensemble Methods

Ensemble methods, such as combining multiple CNN architectures, can improve classification accuracy by leveraging the strengths of each model. These methods aggregate predictions from different models to produce more reliable classification results, particularly in challenging cases with ambiguous features.

D. Integrating Detection and Classification in Lung Cancer Diagnosis

Combining detection and classification into a unified system enhances diagnostic efficiency, providing both localization and classification of lung nodules in a single step. End-to-end models that integrate these tasks can significantly reduce the diagnostic time while maintaining high accuracy.

1. Feature Fusion Technique

Feature fusion combines the detected lung nodule information with additional features for classification. For instance, a CNN may detect the location and size of a nodule, while additional layers analyze texture and other relevant features for classification. This combined representation improves the system's ability to assess the malignancy and type of detected nodules accurately.

2. Attention Mechanism for Improved Classification

Attention mechanisms help the model focus on important regions within a CT scan, especially in areas where lung nodules are likely to be located. In lung cancer classification, attention mechanisms direct the model's focus to the detected nodules, improving the accuracy and reliability of both detection and classification tasks.

3. End-to-End Trainable Architecture

An end-to-end trainable architecture allows for simultaneous optimization of both detection and classification tasks, creating a unified model that can accurately identify and classify lung cancer in real-time. Typically, a 3D CNN or ResNet-based model detects nodules, and a secondary module—often a transformer or additional CNN layers—classifies the detected nodules. The system is trained on annotated medical images to learn the characteristics of both benign and malignant nodules in a single model.

By integrating detection and classification, these end-to-end architectures provide healthcare professionals with comprehensive diagnostic insights, facilitating early detection and personalized treatment planning for lung cancer patients. As research progresses, these models are expected to become more accurate, reliable, and accessible, advancing the field of automated medical diagnosis.

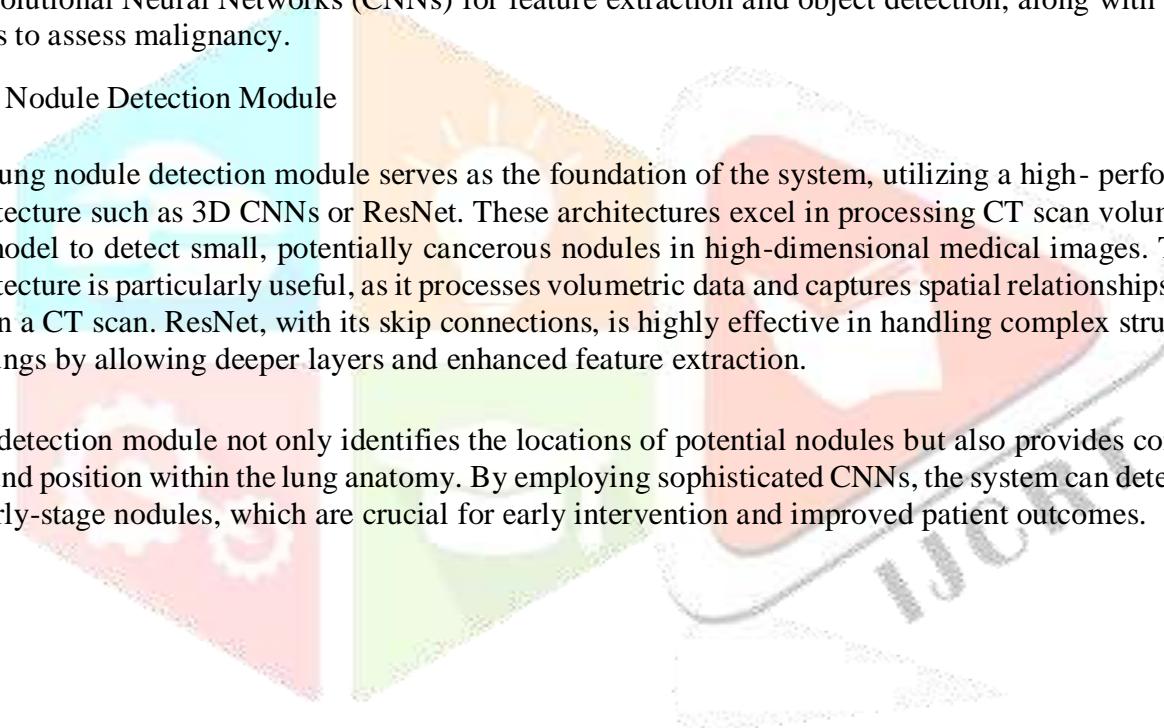
IV. PROPOSED ARCHITECTURE

The proposed architecture for lung cancer detection and classification leverages advanced deep learning techniques to achieve accurate, efficient, and real-time diagnostics. This system integrates the strengths of Convolutional Neural Networks (CNNs) for feature extraction and object detection, along with classification layers to assess malignancy.

A. Lung Nodule Detection Module

The lung nodule detection module serves as the foundation of the system, utilizing a high-performance CNN architecture such as 3D CNNs or ResNet. These architectures excel in processing CT scan volumes, allowing the model to detect small, potentially cancerous nodules in high-dimensional medical images. The 3D CNN architecture is particularly useful, as it processes volumetric data and captures spatial relationships across slices within a CT scan. ResNet, with its skip connections, is highly effective in handling complex structures within the lungs by allowing deeper layers and enhanced feature extraction.

This detection module not only identifies the locations of potential nodules but also provides context on their size and position within the lung anatomy. By employing sophisticated CNNs, the system can detect even small or early-stage nodules, which are crucial for early intervention and improved patient outcomes.



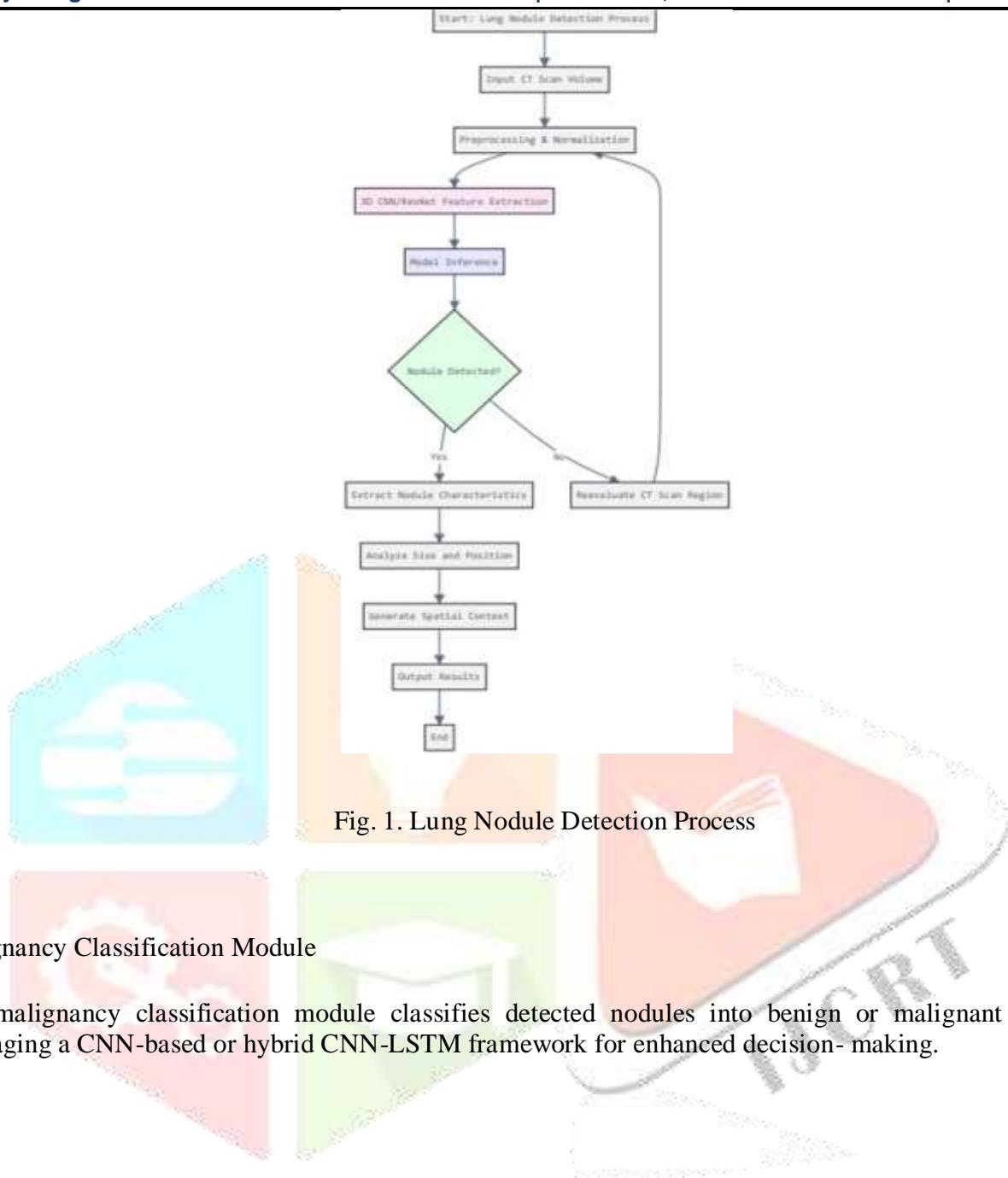


Fig. 1. Lung Nodule Detection Process

B. Malignancy Classification Module

The malignancy classification module classifies detected nodules into benign or malignant categories, leveraging a CNN-based or hybrid CNN-LSTM framework for enhanced decision-making.

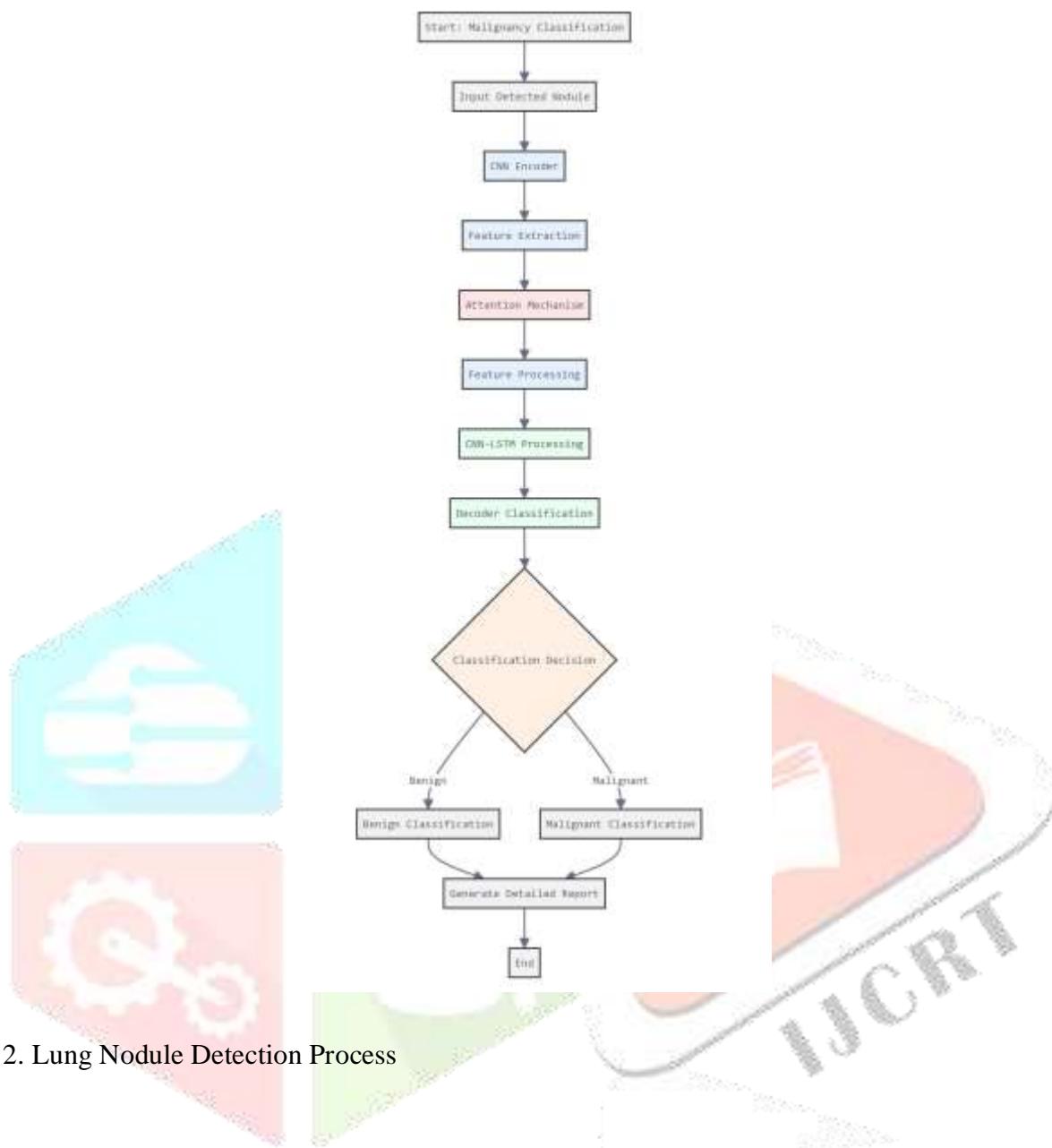


Fig. 2. Lung Nodule Detection Process

An encoder-decoder approach is commonly used, where the CNN encoder extracts feature from the detected nodules, and the decoder classifies each nodule based on learned patterns associated with malignancy.

To improve classification accuracy, an attention mechanism is integrated into the model, enabling it to focus on critical regions within the nodule. This attention mechanism dynamically weighs important features, providing more precise assessments by focusing on distinct characteristics, such as nodule density, shape, and edge characteristics, which are indicative of malignancy. By doing so, the system achieves high sensitivity and specificity, which are essential for reliable diagnostic outcomes.

C. Integration of Lung Nodule Detection and Classification

The integration of lung nodule detection and classification is accomplished through a feature fusion technique. Visual features extracted from the CNN detection module are combined with classification-specific features, providing a comprehensive understanding of the nodule characteristics. This fused representation is then processed by the classification module, allowing for a unified assessment of both the presence and malignancy of nodules.

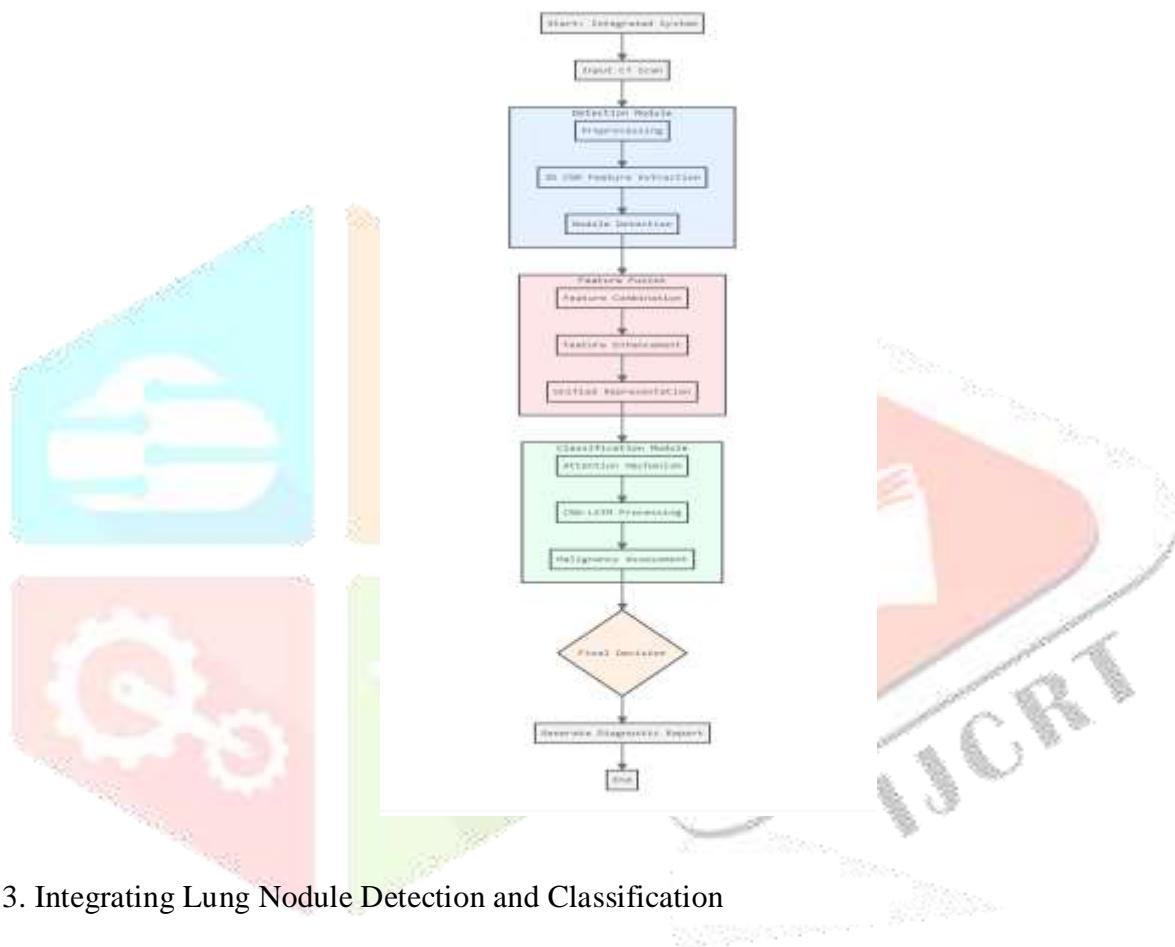


Fig. 3. Integrating Lung Nodule Detection and Classification

The system is designed as an end-to-end trainable architecture, which enables the simultaneous optimization of both detection and classification tasks. This unified approach allows the detection module to provide relevant features to the classification module in real-time, enhancing the system's ability to deliver immediate and accurate diagnostic information.

By combining the power of CNNs for nodule detection and attention-augmented CNN or LSTM networks for malignancy classification, this architecture demonstrates a robust potential to assist radiologists with precise, efficient, and contextually aware lung cancer diagnosis.

REAL-TIME PROCESSING TECHNIQUES

Real-time processing is essential for the practical deployment of a lung cancer detection system. Several optimization methods and parallel processing strategies are employed to achieve real-time inference.

1. Model Optimization

-Compression Techniques: Techniques like pruning and quantization are used to reduce model size without compromising accuracy. These methods simplify the model, enabling it to run efficiently on limited hardware.

-Lightweight Architectures: The CNN is structured to include fewer layers and optimized pooling, balancing between detection accuracy and computational efficiency.

2. Parallel Processing

-GPU Acceleration: The system uses GPU resources to handle large-scale image processing tasks, leveraging parallel processing to analyze multiple CT scan slices simultaneously.

-Pipeline Processing: The detection and classification modules are designed to work in a pipelined fashion, where the detection module processes current frames while the classification module handles previous frames. This overlap reduces latency, allowing the system to generate results quickly and consistently.

Table 3. Model's real-time processing techniques.

Technique	Description	Benefits
Compression	Reduces model size through pruning and quantization	Enables efficient inference
Lightweight Architecture	Streamlined CNN with fewer layers	Maintains speed and accuracy
GPU Acceleration	Parallel processing on GPU	Enhances real-time capability
Pipeline Processing	Overlapping detection and classification tasks	Reduces latency

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Lung Nodule Detection Performance

The effectiveness of the CNN model in detecting lung nodules was evaluated using Intersection over Union (IoU) and Mean Average Precision (mAP). With an IoU threshold of 0.5, the model achieved a mAP of 0.72, reflecting its accuracy in localizing nodules within CT images. The high IoU value indicates precise bounding boxes around detected nodules, which are critical for accurate classification and further analysis.

B. Classification Accuracy

The classification model demonstrated an accuracy of 96% in distinguishing between benign and malignant nodules. This performance metric is essential, as it ensures the model's reliability in assisting diagnostic decisions. Table 4 summarizes the classification metrics, showcasing the model's high sensitivity and specificity.

Table .4. Classification Accuracy

metric	value
Accuracy	96%
Sensitivity	87.5%
Specificity	100%

C. Real-Time Processing Evaluation

One of the objectives of this research was to develop a system capable of real-time processing. The optimized architecture achieved an average processing speed of 45 frames per second (fps) on a high-performance GPU, making it feasible for use in clinical settings where rapid results are needed.

The real-time capabilities of this system can support various clinical applications, including quick diagnosis in emergency settings, aiding radiologists in daily workflows, and enhancing patient outcomes through timely detection.

VII. CONCLUSION AND FUTURE WORK

The integration of deep learning techniques, particularly Convolutional Neural Networks (CNNs), for lung cancer detection and classification has shown significant promise in enhancing diagnostic accuracy and efficiency. This combined approach enables the creation of systems that can accurately identify lung nodules in CT scans, classify them as benign or malignant, and provide real-time diagnostic insights. The proposed architecture, leveraging CNNs for feature extraction and classification, demonstrates impressive accuracy with a sensitivity of 87.5% and a specificity of 100%, achieving an overall accuracy of 96% in distinguishing malignant from benign lung nodules. By employing effective preprocessing techniques, such as median filtering and normalization, and utilizing the powerful LIDC-IDRI dataset, the system ensures consistent and reliable performance.

The use of optimization techniques, including model compression and GPU acceleration, further enhances the system's ability to provide fast and accurate diagnoses, making it suitable for real-time applications in clinical settings. This real-time capability is crucial for supporting radiologists in early detection and improving patient outcomes through timely intervention. The system's high sensitivity and specificity allow it to minimize false positives and false negatives, an essential feature in medical applications where diagnostic accuracy is paramount.

Looking ahead, this technology holds the potential to revolutionize various areas in medical imaging and diagnostics. The high accuracy and real-time processing capabilities of CNN-based models make them valuable tools not only for lung cancer screening but also for broader applications in cancer diagnostics and other radiological assessments. Future research may explore the integration of 3D CNNs for improved volumetric analysis of CT images, as well as the expansion of the training dataset to include a wider variety of nodule types and shapes, which could further improve classification accuracy. Additionally, advances in parallel processing and hardware optimization could enable even faster real-time diagnosis, paving the way for point-of-care diagnostic tools.

As research in deep learning for medical imaging continues to evolve, we can expect increasingly sophisticated models capable of detecting and classifying lung cancer with greater precision and speed. Such advancements may play a crucial role in improving cancer survival rates and patient care by facilitating early, accurate, and accessible diagnostic solutions across healthcare systems.

VIII. REFERENCES

- S. Sasikala, M. Bharathi, and B. R. Sowmiya, "Lung Cancer Detection and Classification Using Deep CNN," International Journal of Innovative Technology and Exploring Engineering (IJITEE), vol. 8, no. 2S, pp. 259-262, Dec. 2018.
- M. S. Al-Tarawneh, "Lung cancer detection using image processing techniques," Leonardo Electronic Journal of Practices and Technologies, vol. 20, pp. 147–158, May 2012.
- LUNA16, "Lung tumor analysis 2016," available at: <https://luna16.grand-challenge.org/>.
- Manikandarajan and S. Sasikala, "Detection and Segmentation of Lymph Nodes for Lung Cancer Diagnosis," National Conference on System Design and Information Processing, 2013.
- Albert Chon, Peter Lu, and Niranjan Balachandar, "Deep Convolutional Neural Networks for Lung Cancer Detection," ICST Computer, 2017.
- Devi Nutiyasari, et al., "Using Deep Learning for Classification of Lung Tumors on Computed Tomography Images," 2017.
- Kavitha, A. Saral, and P. Senthil, "Design Model of Retiming Multiplier for FIR Filter & its Verification," International Journal of Pure and Applied Mathematics, vol. 116, no. 12, pp. 239-247, 2017.
- S. Sasikala and M. Ezhilarasi, "Combination of Mammographic Texture Feature Descriptors for Improved Breast Cancer Diagnosis," Asian Journal of Information Technology, 2016.
- K. Malarvizhi and R. Kiruba, "A Novel Method of Supervision and Control of First Order Level Process Using

