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Abstract: A dominator edge coloring of 𝐺, is a proper edge coloring of 𝐺, in which every edge of 

some color class (possibly its own class) are dominated by every edge in 𝐺. The dominator edge chromatic 

number of𝐺, is the least number of color classes among all dominator edge colorings of G, denoted by𝜒𝑑
′ (𝐺). 

We introduce a new variate known as power dominator edge coloring based on the notion of power edge 

domination and determine the power dominator edge chromatic number for certain classes of graph. Power 

Dominator Edge Coloring of a graph G, refers to the proper edge coloring where each edge in the edge set 

power dominates every edge of at least one-color class. The Power Dominator Edge Chromatic number 

(PDEC-number)𝜒𝑝𝑑
′ (𝐺), is the minimum number of colors that a power dominator edge coloring of the graph 

requires. 

 

Index Terms: Dominator edge coloring, Power dominating set, Power dominator edge coloring  

 

1. Introduction: 
A graph is a data structure used to represent a set of objects, known as vertices or nodes, and the 

connections or relationships between them, known as edges. In this paper we consider only finite, undirected 

graphs. Two edges have a common vertex are called adjacent edges also we can say that an edge dominates 

all its adjacent edges. A tadpole graph𝑇(𝑚, 𝑛) is the graph, [3] obtained by joining by an edge, a vertex of 

the cycle Cm, 𝑚 ≥ 3 and an end vertex of the path Pn; 𝑛 ≥ 1. The m-book graph Bm is the graph [3] 𝑆𝑚+1 ×
 𝑃2, the Cartesian product of Sm+1 and P2 where Sm+1 is the star graph and P2 is the path on two vertices. The 

n-sunlet graph 𝑆 𝑛is a graph on 2𝑛 vertices with a cycle Cn and each vertex of the cycle being joined to a new 

pendant vertex [4]. 

 Let 𝐺(𝑉, 𝐸)be a graph. A subset𝐷′ ⊂ 𝐸is called an edge dominating set if every edge of not in 𝐷’ is 

adjacent to an element of 𝐷’. The number of elements of a minimum edge dominating set is called an edge 

dominating set and is denoted by 𝛾′(𝐺). A proper edge coloring of a graph 𝐺 is a function 𝑐: 𝐸(𝐺) ⟶
{1, . . . , 𝑘}(𝑘 ∈  𝑁)ensuring that no adjacent edges have the same color. The minimum number of colors 

needed for a proper coloring of the graph is called its chromatic number and is represented as χ′(G). [3] “A 

dominator edge coloring of 𝐺, is a proper edge coloring of 𝐺in which each edge of 𝐺dominates every edge of 

some color class (possibly its own class). The dominator edge chromatic number of𝐺, is the minimum number 

of color classes among all dominator edge colorings of G, denoted by𝜒𝑑
′ (𝐺).” 

 A subset S⊆V is a power dominating set of 𝐺 if all vertices of 𝑉 can be observed recursively by the 

following rules: (i) all vertices in 𝑁[𝑆]  are observed initially, and (ii) if an observed vertex 𝑢  has all 

neighbours observed except one neighbor 𝑣, then 𝑣 is observed (by 𝑢). The minimum cardinality of a power 

dominating set of 𝐺 is called the power domination number of 𝐺 and is denoted by 𝛾𝑝(𝐺). 
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Sathish [4], studied the concept of Power dominator coloring of a graph and the chromatic number is 

denoted by 𝛾𝑝𝑑(𝐺). 

 

2. PDEC- Number of Graph 

Informed by the power dominator coloring concept for graphs, we have merged the two concepts 

namely, dominator edge coloring and power domination of graphs to introduce a new variation of coloring 

known as a power dominator edge coloring. This technique mandates that each edge in a color class power 

dominates every other edge. Prior to this, we revisit the concept of monitoring set for edges in graphs.  

 

Definition 2.1 In a graph G, we correlate a set of monitoring set 𝑀(𝑒) with an edge e, as follows: 

Step: 1 𝑀(𝑒)  =  𝑁[𝑒]; the closed neighbourhood of 𝑒 

Step: 2 If g is the neighbour of f and M(e) already contains all of g's neighbours except for f, then add edge 

f to M(e). 

Step: 3 Once another edge can no longer be added to M(e), repeat step 2: 

The edges of M(e) are therefore said to be Power Dominated by the e. 

 

Definition 2.2 

When speaking of the proper edge colouring of a graph G, the term "Power Dominator Edge 

Colouring" refers to the situation when each edge in the edge set powers over every edge in at least one colour  

class. The minimum number of colours needed for a power dominator edge colouring of the graph is known 

as the Power Dominator Edge Chromatic number (PDEC-number) and is denoted by 𝜒𝑝𝑑
′ (𝐺). 

 

Example 2.1 A power dominator edge coloring of a graph 𝐺 in fig. 2.1 is discussed now. 

For the graph 𝐺, 𝜒𝑝𝑑
′ (𝐺) = 3. In fact, color 1 is assigned to the edge e5 while color 2 can be allocated to the 

edges e1, e4, e7. The edges e2, e3, e6can have color 3. For the edge e1; we see the monitoring set, M(e1) = {e1, 

e2, e3, e4} = N[e1]. Now the only edgee5, not in M(e1); but is adjacent to e2 and so we adde5 to M(e1) using 

Step: 2 in the definition of monitoring set. No other edge could be added to M(e1). Thus M(e1) = {e1, e2, e3, 

e4, e5}. Indeed, every edge e2, e3, e4 has the same monitoring set as that of e1. The color class-1 is power 

dominated by the edges e1, e2, e3, e4. In the same procedure, the edges e6, e7 also power dominate the color 

class-1. The edge e5 power dominates itself. Hence every edge of at least one-color class is power dominated 

by each edge. Hence 𝜒𝑝𝑑
′ (𝐺) = 3. It is clear that two colors are not enough to get a power dominator edge 

coloring for this graph. Note also that the dominator edge chromatic number 𝜒𝑑
′ (𝐺)for this graph is 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.1 

For a Path 𝑃𝑛 , 𝑛 ≥ 3, 𝜒𝑝𝑑
′ (𝑃𝑛) = 2. 

Proof: Let a1, a2…, an be the vertices of the path Pn and let f1,f2, …, fn-1, where fi=vivi+1, 1 ≤ 𝑖 ≤ 𝑛 − 1 be the 

edges. Clearly each edge fi, 1 ≤ 𝑖 ≤ 𝑛 − 1, power dominates everyedge of the path Pn. Assign color 1 for fi, 

when i is odd and assign color 2 fi for when i is even for proper coloring. Hence every edge power dominates 

all edges of both color class and so 𝜒𝑝𝑑
′ (𝑃𝑛) = 2 

 

Remarks: For n=2, 𝜒𝑝𝑑
′ (𝑃𝑛) = 1 
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Theorem 2.2 

For a cycle 𝐶𝑛, 𝑛 ≥ 3, 𝜒𝑝𝑑
′ (𝐶𝑛) = {

2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

Proof: Let a1, a2…, an and f1,f2, …, fn, where fi=aiai+1, 1 ≤ 𝑖 ≤ 𝑛 − 1 and fn=ana1 be the vertices and edges 

of the cycle Cn respectively. Clearly every edge fi, 1 ≤ 𝑖 ≤ 𝑛, power dominates all edges of cycle Cn, since all 

edges having degree 2. 

Case:1n is even. Allocate the color-1 for edge fi, when i is odd and assign color-2 to fi when i is even. This 

becomes proper edge coloring of Cn. Thus, every edge power dominates all the edges of both color class and 

so 𝜒𝑝𝑑
′ (𝐶𝑛) = 2. 

Case:2n is odd. Allocate the color-1 for edge fi, when i is odd, 1 ≤ 𝑖 ≤ 𝑛 − 2 and assign color-2 to fi when i 

is even, 1 ≤ 𝑖 ≤ 𝑛 − 1. Assign color-3 to the remaining edge fn, since fn is adjacent to both f1 and fn-1. This 

becomes proper edge coloring of Cn. Hence every edge power dominates all edges of both color class and so 

𝜒𝑝𝑑
′ (𝐶𝑛) = 3. 

 

Theorem 2.3 

For the Star graph 𝐾1,𝑎 , 𝑛 ≥ 2, 𝜒𝑝𝑑
′ (𝐾1,𝑎) = 𝑎. 

Proof: Let 𝐾1,𝑎 be the Star graph on 𝑎 + 1 vertices for which v0 is the common vertex for all n-edges of 𝐾1,𝑎. 

Since each edges have a common vertex v0, all the edges are adjacent to each other and so we color all edges 

with distinct n colors for a proper coloring. Since all edges have distinct color and all are adjacent to each 

other, so every edge dominates all color classes. Hence 𝜒𝑝𝑑
′ (𝐾1,𝑎) = 𝑎. 

 

Theorem 2.4 

For Wheel graph,𝑊1,𝑛, 𝑛 ≥ 3, 𝜒𝑝𝑑
′ (𝑊1,𝑛) = 𝑛. 

Proof: Let a1, a2…, an and f1,f2, …, fn be the vertices and the edges, respectively in the rim of the wheel graph 

and let v0 be the center vertex of W1, n.. We assign distinct colors to the spokes that are incident with v0 as they 

are adjacent to each other. Also assign colors to the rim of the wheel with the same n colors like as in the Fig.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 2.5 

For the Sunlet graph 𝑆𝑛, 𝜒𝑝𝑑
′ (𝑆𝑛) = {

⌊
𝑛

2
⌋ + 3, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛

2
+ 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

Proof: Let a1, a2…, an be the vertices of the n-cycle in the Sunlet graph Sn and let a’1, a’2, …, a’n be the 

pendant vertices of Sn. 

Case:1 n is odd 

We grouping the pendant vertices as distinct pair for which they share a common adjacent edge in the 

cycle. Since n is odd, the number of pendant edge pairs are⌊
𝑛

2
⌋ + 1. Assign distinct ⌊

𝑛

2
⌋ + 1 colors to the edges 

in the cycle which was adjacent to distinct pendant edge pairs. Now we assign a new color c1, to the remaining 

edges in the cycle and assign color c2 to the pendant edges in 𝑆𝑛. Since each pendant edge adjacent to a non-

repeated color and this way of coloring is edge proper coloring, all edges of at least one-color class are 

dominated by each edge of 𝑆𝑛. 

en-1(n-1) 

f’n(n) 

fn(n) 
f1(1) 

f4(4) f3(3) 

f2(2) 

fig: 2 

a1 

a3 

a4 

 

an-1 

an 

a2 

f’1(1) f’2(2) 

f’3(3) 

f’4(4) 

v0 

http://www.ijcrt.org/


www.ijcrt.org                                             © 2024 IJCRT | Volume 12, Issue 11 November 2024 | ISSN: 2320-2882 

IJCRT2411416 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d654 
 

Therefore 𝜒𝑝𝑑
′ (𝑆𝑛) = ⌊

𝑛

2
⌋ + 3 

 

Case:2 n is even 

As we done in Case:1, we grouping the pendant vertices 
𝑛

2
. Assign distinct 

𝑛

2
 colors to the edges in the 

cycle which was adjacent to distinct pendant edge pairs. Now we assign a new color c1, to the remaining edges 

in the cycle and assign color c2 to the pendant edges in Sn. Since each pendant edge adjacent to a non-repeated 

color and this way of coloring is edge proper coloring, all edges of at least one-color class are dominated by 

each edge of 𝑆𝑛. Therefore 𝜒𝑝𝑑
′ (𝑆𝑛) =

𝑛

2
. 

 

Theorem 2.6 

For the Book Graph Bm, 𝜒𝑝𝑑
′ (𝐵𝑚) = 𝑚 + 1, 𝑚 ≥ 3 

Proof:  

The m-book graph Bm is the rectangular product 𝑆𝑚+1 × 𝑃2 where Sm+1 is the star graph with a central 

vertex v1 and the m pendant vertices 𝑎𝑖 , 2 ≤  𝑖 ≤ 𝑚, and P2 is the path on two vertices b1, b2. The vertex set 

V(Bm) of the m-book graph Bm consists of vertices (ai, bj), (1 ≤  𝑖 ≤  𝑚;  1 ≤ 𝑗 ≤  2), such that (a1, b1) and 

(a1, b2) are adjacent in Bm and are of degree m+1 while the degree of remaining 2m vertices is 2. We assign 

color 1 to the edges connecting the vertices (ai, b1) and (ai, b2), 1 ≤  𝑖 ≤  𝑚. Assign m distinct colors to the 

edges which are incident with the central vertex (a1, b1). Now color the remaining edges which are joined 

with another central vertex (a1,b2) with the same m colors as shown in the Fig:2.3 

This coloring is a proper coloring, this is because, and the same-colored edges are parallel to each other. This 

proper edge coloring has m+1 colors. Also edges having degree 2 in Bm dominates all edges of at least one-

color class (parallel color classes) and the edge with central vertex as its one end also dominates all edges of 

some color class. Hence 𝜒𝑝𝑑
′ (𝐵𝑚) = 𝑚 + 1. 

 

 

 

 

 

 

 

 

 

𝜒𝑝𝑑
′ (𝐵4) = 5 

 

 

 

 

 

 

Theorem 2.7 

For a Tadpole graph 𝑇(𝑚, 𝑛), 𝑛 ≥ 2 

𝜒𝑝𝑑
′ (𝑇(𝑚, 𝑛)) = {

3, 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
4,   𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑

 

Proof: 

Let a1,a2, …, am be the vertices of the cycle and let b1,b2, …, bn be the vertices in the path of the Tadpole 

T(m,n). 

Case:1 m is even. Since m is even, we can color the edges of the cycle Cm properly only by 2 colors 

and the also we can color the edges of the path Pn by same two colors. Now we assign the edge which connect 

the cycle and path by color 3. Each edge of T(m,n), power dominates the color class 3. Hence 𝜒𝑝𝑑
′ (𝐺) = 3. 

Case:2 m is odd and 𝑛 ≥ 2. Since m is odd, we can color the edges of the cycle Cm properly by 3 

colors {1,2,3} and also, we can color edges of the path Pn, 𝑛 ≥ 2 by the colors {1,2}. Now we assign the edge 

which connect the cycle and the path by the color 4. Therefore, each edge of T(m,n) power dominates the 

color class 4. Hence 𝜒𝑝𝑑
′ (𝐺) = 4. 
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Remark: 

 For n=1, 𝜒𝑝𝑑
′ (𝑇(𝑚, 𝑛)) = 3 

 

Theorem 2.8 For the Centipete graph, Ctn, 𝜒𝑝𝑑
′ (𝐶𝑡𝑛) = {

𝑛

2
+ 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

[
𝑛

2
] + 3, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

, 𝑛 ≥ 4 

Proof: Let a1, a2, …, am be the vertices of the path and let b1,b2, …, bn be the pendant vertices for which bi ‘s 

is adjacent to ai’s, 1 ≤ 𝑖 ≤ 𝑛. Let f1,f2, …, fn-1 be the edges in path. Now we color the pendant edges with the 

color c1.  

Case:1 if n is even, then assign distinct colors to odd fi’s. Since n is even, the number of odd fi’s are 
𝑛

2
and 

hence we need 
𝑛

2
 distinct color. And color the remaining edges by color c2. Therefore, all the edges in at least 

one-color class are power dominated by each edge of Ctn and so 𝜒𝑝𝑑
′ (𝐶𝑡𝑛) =

𝑛

2
+ 2. 

Case:2 if n is odd, then we assign distinct colors to odd fi’s. since n is odd, the number of odd fi’s are [
𝑛

2
] and 

hence we need 
𝑛

2
+ 2distinct colors and color the uncolored edges by the color c2 color the last edge in the 

path with color c3, since the last pendant edge adjacent to only on edge. Hence all the edges in at least one-

color class are power dominated by each edge of Ctn and so 𝜒𝑝𝑑
′ (𝐶𝑡𝑛) = [

𝑛

2
] + 3 

 

 

 

 

 

  

 

 

 

 

 

 

 

3. Conclusion 

The notion Power Dominator Edge Coloring relates coloring problem with Power Dominating set in 

graphs. The primary aim of this work is to compute the Power Dominator Edge Chromatic number of certain 

classes of graphs. 

 

Classes of 

Graphs 
PDE Chromatic number 

𝑃𝑛  , 𝑛 ≥ 3 2 

𝐶𝑛 , 𝑛 ≥ 3 {
2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
3, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

𝐾1,𝑛, 𝑛 ≥ 3 𝑛 

𝑊1,𝑛, 𝑛 ≥ 3 𝑛  

𝑆𝑛, 𝑛 ≥ 3 {
⌊
𝑛

2
⌋ + 3, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

𝑛

2
+ 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

𝐵𝑚, 𝑚 ≥ 3 m+1 

𝑇(𝑚, 𝑛), 𝑛 ≥ 2 {
3, 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛
4,   𝑖𝑓 𝑚 𝑖𝑠 𝑜𝑑𝑑

 

c1 c1 

 

c1 

 

c1 

 

c1 

 
c3 c5 

𝜒𝑝𝑑
′ (𝐶𝑡𝑛) = 5 

c4 c2 

Fig.3 
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𝐶𝑡𝑛 , 𝑛 ≥ 4 
{

𝑛

2
+ 2, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

[
𝑛

2
] + 3, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 

 

 

 

The certain classes of graphs with PDE- Chromatic number are mentioned above. For general graphs 

there is an opportunity to determine the power dominator edge chromatic number. 
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